七年级上册数学教案

短文网

2025-07-30教案

短文网整理的七年级上册数学教案(精选17篇),快来看看吧,希望对您有所帮助。

七年级上册数学教案 篇1

【学习目标】:

1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念

【教学过程】:

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

(3)阅读P2的内容

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:

1. P3第1,2题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

则正数有_____________________;负数有____________________。

4.下列结论中正确的是 ????????????????( )

A.0既是正数,又是负数

C.0是最大的负数

【要点归纳】:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

其中最高处为_______地,最低处为_______地.

3.“甲比乙大-3岁”表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

【课后作业】P5第1、2题

七年级上册数学教案 篇2

教学目标

1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;

2、会用计算器进行较繁杂的有理数混合运算。

教学重点

1、有理数的混合运算;

2、运用运算律进行有理数的混合运算的简便计算。

教学难点

运用运算律进行有理数的混合运算的'简便计算。

有理数的混合运算的运算顺序

也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:

先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。

你会根据有理数的运算顺序计算上面的算式吗?

2、8有理数的混合运算:同步练习

1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。

《2、8有理数的混合运算》课后训练

1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?

七年级上册数学教案 篇3

人教版七年级上册数学教案模板

作为一位无私奉献的人民教师,就不得不需要编写教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?以下是小编整理的人教版七年级上册数学教案模板,供大家参考借鉴,希望可以帮助到有需要的朋友。

七年级上册数学教案 篇4

教学内容:

苏教版课程标准实验教科书小学数学五年级下册第15-16页“确定位置”。

教材分析:

本课主要学习数对的含义,以及用数对在方格图上确定位置,学生在以前已经学习了类似“第几”“第几排第几个”等方式描述物体在方向或平面上的位置,初步获得了用自然数表示位置的经验。本课主要对这种经验加以提升,用抽象的数对来表示位置,进一步发展空间观念,提高抽象思维能力。数对能帮助学生初步建立二维空间的表象,架起数与形间的桥梁,初步渗透数形结合及坐标思想,这也是学生以后学-面直角坐标系的重要基础。

教学目标:

1.使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则;初步理解数对的含义,会用数对表示具体情境中物体的位置。

2.使学生经历用数对描述实际物体的位置到用数对描述方格图上点的位置的抽象过程,知道数对与方格图上点的对应,逐步掌握用数对确定位置的方法,丰富对现实空间和平面图形的认识,进一步发展空间观念。

3.使学生积极参与学习活动,感受数对与生活实际的联系,体会数学文化的价值,拓宽知识视野,激发数学学习的兴趣。

教学重点、难点:

初步理解并掌握数对的含义,理解用数对描述方格图上点的位置的方法。

教学过程:

一、用自己的方法确定位置

1.谈话:仔细观察这一张座位图,你知道小红的位置在哪里吗?

2.交流:学生用自己的方式确定小红的位置。

3.设疑:为什么同一个位置,说法却不一样呢?引发学生对已有的确定位置的方法进行质疑。

4.揭题:怎样才能统一、正确、简明地确定小红的位置呢?今天我们一起来研究确定位置。

【设计意图:让学生用自己的语言来描述小红的位置,激活了学生头脑中已有的描述物体位置的经验,学生的描述可能比较简练但不够准确,可能比较准确但不够简练,通过学生之间互动交流,使他们认识到这些表示方法的优点和不足,产生用统一、简明的方式来确定位置的需求。】

二、用列与行的方法确定位置

1.认识列和行的概念。

谈话:像这样排列时,一般用“列”和“行”来确定位置。什么是“列”,什么是“行”呢?

交流:哪儿是第一列,哪儿是第一行呢?

讲授:一般确定第几列从左往右数,确定第几行从前往后数。

2.用列和行确定位置。

表示:小红的位置,你能用第几列第几行确定吗?让学生尝试用第几列第几行进行描述。

简化:为了研究方便,还可以把这张座位图简化成点子图,小红位置所在的点,我们用A表示。

运用:这儿还有两个点,B、C,也能用第几列第几行说出它们的位置吗?

【设计意图:引导学生建立用“第几列第几行”的方法确定位置的规则,并观察从座位图到点子图的变化过程,感受到用“列与行的方法”确定位置的统一性和准确性。这一板块也是学习在方格图上确定一个点位置的必要过渡环节。】

三、用数对的方法确定位置

1.初步认识数对。

谈话:第几列第几行,让我们确定位置有了统一的说法。不过数学还追求简明,像第4列第2行,能否写得再简明些呢?

比较:比较一下,这些方法中有哪些相同的地方?

交流:学生在交流想法的过程中,初步感受用数对表示位置方法的基本含义。

讲授:介绍数对的写法。

运用:这两个位置,用数对来表示,你能试着写一写吗?并交流写法。

2.及时练习。

谈话:学会了用数对表示点的位置,那根据数对,你能找到对应的点吗?

交流:生介绍找到两个点的过程。

感悟:在交流的过程中感悟数对的含义和思想,掌握数对的写法。

【设计意图:根据数学的简明性特点和符号化特点,自主探索更简捷的表示方法,让学生的主动性和创造性得以尽情释放。在此基础上提升到“数对”的方法上,使学生更加充分感受用数对确定位置的简明性,同时也体验到数对的意义。】

四、用数对的方法在方格图上确定位置

1.根据方格图上的点说出数对。

谈话:刚刚我们在点子图上研究了数对,如果在我们熟悉的方格纸上,你能用数对表示出这个点的位置吗?

交流:如果这就是学校的平面图,你还能用数对说出其他景点的位置吗?

感悟:在方格图上用数对的方法确定位置,首先要确定什么?

2.根据数对在方格图上找到对应点。

谈话:在方格图上,你还能根据数对找到对应的点吗?这儿有三个数对,请找到对应的点并标上数对,边找边思考,你发现了什么?

交流:在你描点的过程中,你发现了什么?

延伸:根据这一个发现,想一想,同一列上的数对又有怎样的特点?

总结:看来数对不仅能表示出点的位置,还能反映出点和点之间的位置关系。

3.根据图形特点在方格图上选择数对。

谈话:如果顺次连结这些点,就围成了一个三角形。如果再确定一个D点,围成一个平行四边形,D点的位置用数对表示是多少呢?

交流:学生介绍选择数对的过程。

感悟:看得出,同学们对数对又有了新的认识。图形的特征可以反映在数对中,数对的特点也能通过图形来体现。

【设计意图:本课有两大主线贯穿始终,一是图例的抽象和演变,二是是确定位置的方法。两大主线的层层递进与发展,充分展现了本课的数学知识和思想的产生与发展过程。在方格图上用数对确定位置,不仅关注了数对方法的运用,还关注了在方格图用数对确定位置的背景,让学生真正体会到了图形与数对的联系,最重要的是学生真正亲身经历了数学知识的形成过程,感悟了最基本的数学思想。】

五、用数对的思想确定位置

谈话:其实类似这样的现象生活中非常多见,比如下棋时确定棋子的位置。(向学生介绍国际象棋的走法。)

延伸:用经纬线描述地球上各点的位置(介绍北京的位置等)。

总结:同学们,数对真是简单而又神奇,这数对究竟是谁发明的呢?介绍数对发明的背景。

【设计意图:学生掌握了用数对表示位置的方法,为了帮助学生建立数对的思想,“生活中哪些地方用到了数对思想(国际象棋)”和介绍“地球上经纬线知识”两个环节,让学生感悟了“数对思想”的价值。在此基础上,再向学生介绍数对产生的背景,促发学生学会思考,做一个“思想者”。】

七年级上册数学教案 篇5

一、目标

1.用它们拼成各种形状不同的四边形,并计算它们的周长。

(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

2.教师揭示以上这些工作实际上是在进行整式的加减运算

3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

生1:“去括号”

生2:“合并同类项”

师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

二、揭示如何进行整式的.加减运算

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

解:(2a2-4a+1)-(-3a2+2a-5)

=2a2-4a+1+3a2-2a+5

=5a2-6a+6

3.拓展练习

(1)求多项式2x -3 +7与6x -5 -2的和.

提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

4.教学例3

先化简下式,再求值:

(做此类题目应先与学生一起探讨一般步骤:

(1)去括号。

(2)合并同类项。

(3)代值)

解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

=15a2b –5ab2+4ab2 -12a2b)

=3a2b –ab2

三、小结

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.进行化简求值计算时

(1)去括号。

(2)合并同类项。

(3)代值

3.通过本节课的学习你还有哪些疑问?

四、布置作业

习题4.5 2. (3) ;4. (2);5.。

五、课后反思

省略

七年级上册数学教案 篇6

教学目标:

1.了解正数与负数是实际生活的需要.

2.会判断一个数是正数还是负数.

3.会用正负数表示互为相反意义的量.

教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

教学难点:负数的引入.

教与学互动设计:

(一)创设情境,导入新课

课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

(二)合作交流,解读探究

举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

(三)应用迁移,巩固提高

【例1】举出几对具有相反意义的量,并分别用正、负数表示.

【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

A.3B.-3C.-2.5D.-7.45

【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.

(四)总结反思,拓展升华

为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

星期日一二三四五六

(元)+16+5.0-1.2-2.1-0.9+10-2.6

(1)本周小张一共用掉了多少钱?存进了多少钱?

(2)储蓄罐中的钱与原来相比是多了还是少了?

(3)如果不用正、负数的'方法记账,你还可以怎样记账?比较各种记账的优劣.

2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

(五)课堂跟踪反馈

夯实基础

1.填空题:

(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

(2)如果4年后记作+4年,那么8年前记作年.

(3)如果运出货物7吨记作-7吨,那么+100吨表示.

(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

(1)用正数或负数记录下午1时和下午5时的水位;

(2)下午5时的水位比中午12时水位高多少?

提升能力

3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

(六)课时小结

1.与以前相比,0的意义又多了哪些内容?

2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

人教版七年级上册数学教案

作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!以下是小编整理的人教版七年级上册数学教案,希望能够帮助到大家。

七年级上册数学教案 篇7

一、基本情况分析

1、学生情况分析:

本学期我继续承担七(1)(2)两班的数学教学,两班学生进行了一个学期的学习,虽然期末考试成绩可以,但是发现两班学生尖子生少,中等生较多,差生较多,上课很多学生不认真,学习态度、学习习惯不是很好,学生整体基础参差不齐,没有养成良好的学习习惯,对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要有待加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间强化几何训练,培养学生良好的学习习惯。全面提升学生的数学素质。

2、教材分析:

第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。

第六章、实数:了解算术平方根、平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.2.了解无理数、实数的概念,实数与数轴一一对应的关系,能估计无理数的大小,能进行实数的计算.本章重点:平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.本章难点:实数的概念,实数与数轴一一对应的关系

第七章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。有序实数对与平面直角坐标系的点一一对应的关系。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。

第八章、二元一次方程组:本章主要学习二元一次议程(组)及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。

第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。

第十章、数据的收集、整理与描述:本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。本章重点:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。

二、教学目标和要求

(一)知识与技能

1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

(二)过程与方法

1、采用思考、类比、探究、归纳、得出结论的方法进行教学;

2、发挥学生的主体作用,作好探究性活动;

3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力.

(三)情感态度与价值观

1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。

2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。

三、提高教学质量的主要措施

1.本学期教学工作重点仍然是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。所以要抓好课前备课,这就要求我要认真研究教材,把握每节课的教学重点和难点,课堂上注重教学方法,努力让不同的学生都学到有用的数学。

2.依据课程标准、教材要求和学生实际,设计出突出重点,突破难点,解决关键的整体优化教学方法。教学方法的运用要切合学生的实际,要有利于培养学生的良好学习习惯,有利于调动不同层次的学生的学习积极性,有利于培养学生的自学能力、思维能力和解决问题的能力。采取多种教学方法,如多让学生动手操作,多设问,多启发,多观察等,增加学习主动性和学习兴趣,体现学生的主体性。教学过程中尽量采取多鼓励、多引导、少批评的教育方法。这样通过多种教学方法,充分调动学生的学习积极性,使学生形成主动学习的意识,教学中通过鼓励性的语言激励学生,使水同层次的学生都能得到鼓励,以此增强他们的学习信心。

3.根据学生的不同学习状况,给不同的学生布置不同的作业,对于学习比较的学生,给他们留一些与课堂教学内容相关的基础性的作业,检验他们对当堂教学内容的掌握情况;对于学习成绩比较好的学生,留一些综合运用或拓展能力方面的作业,检查他们对知识的'灵活运用和综合运用情况。

4.利用课堂教学培养学生养成良好的学习习惯。要求学生课前自学,通过预习“我”知道了什么,还有什么不知道或还有什么我看不懂,在书上做出记号。以便上课时重点听讲。课堂上,要求学生养成良好的听课习惯:课前做好上课的准备,听课时要集中精神,专心听讲,积极思考问题,认真回答问题,不懂的及时提出来。要求课后养成复习的习惯,每天都要把所学的知识进行复习,可在头脑中回顾当天所学知识,对于忘掉的或回想不起来的,可翻书重新记忆。另外,隔段时间还要把前面所学的知识再行回顾,以免时间长了忘记了。要求学生每天认真完成作业,作业要书写工整,解题规范,杜绝抄袭现象,使学生养成良好的做作业习惯。

5.关注待进生,不歧视待进生,尊重、关心、爱护他们,使他们感到老师和同学对他们的关心。设置一些简单的问题,由他们回答,增强他们的自信心。利用中午休息时间或课外活动时间为他们辅导,尽量使他们跟上教学进度。另外,对他们要有耐心,对于他们提出的问题,耐心解答。

6.培优补差。对于中上等生,利用课后阅读材料和课外资料丰富他们的头脑,增加他们的知识面,通过专题训练,提高他们的综合分析问题的能力和解决问题的能力。鼓励他们利用课余时间通过课外资料或上网学习等方式拓宽他们知识面和视野,不懂就问,养成勤学好问的习惯,以提高他们的各方面的能力。对于待进生多关心和帮助,在课堂上多提问他们一些简单的问题,多鼓励他们,以增强他们的信心。

四、教学进度表(略)

七年级上册数学教案 篇8

【学习目标】:

1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念

【教学过程】:

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的.—3、—8、—47。

(2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

(3)阅读P2的内容

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:

1. P3第1,2题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

则正数有_____________________;负数有____________________。

4.下列结论中正确的是 ????????????????( )

A.0既是正数,又是负数

C.0是最大的负数

【要点归纳】:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

其中最高处为_______地,最低处为_______地.

3.“甲比乙大-3岁”表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

【课后作业】P5第1、2题

七年级上册数学教案 篇9

教学目标

1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点 数轴的概念和用数轴上的点表示有理数

知识重点

教学过程(师生活动) 设计理念

设置情境

引入课题 教师通过实例、课件演示得到温度计读数.

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的'温度?

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

点表示数的感性认识。

点表示数的理性认识。

合作交流

探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

寻找规律

归纳结论 问题3:

1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4, 每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习

教科书第12页练习

小结与作业

课堂小结 请学生总结:

1, 数轴的三个要素;

2, 数轴的作以及数与点的转化方法。

本课作业 1, 必做题:教科书第18页习题1.2第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级上册数学教案 篇10

一、教材分析

1、教材的地位和作用

课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

2、教学目标

根据学生的学习内容、新课程理念和认知水平,特制定如下目标:

(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

3、重点和难点

(1)重点:培养学生的数感和统计观念。

(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

二、学情分析

我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

三、教法和学法分析

枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。

四、教学形式和课前准备

本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。

五、教学过程分析

教学过程设计意图说明

新课引入

资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:

(1)看了这些图片,你有哪些感受?

(2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!

探究新知活动一:

阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

(1)地球上的水资源和淡水资源分布情况怎么样?

(2)我国农业和工业耗水量情况怎么样?

(3)我国不同年份城市生活用水的变化趋势怎么样?

(4)根据国外的经验,一个国家的'用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?

学生阅读资料,通过小组合作、讨论的形式完成活动一。

活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?

(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?

(5)你还可以得到哪些信息?

(教师巡视,指导各小组开展调查实验活动)

活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。

课堂小结:

1.当前水资源状况,

2.节约水资源带来的价值,

3.节约水资源的办法

布置作业

整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。

通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!

七年级上册数学教案 篇11

一、目标

1.用它们拼成各种形状不同的四边形,并计算它们的周长。

(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

2.教师揭示以上这些工作实际上是在进行整式的加减运算

3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

生1:“去括号”

生2:“合并同类项”

师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的`综合应用,

二、揭示如何进行整式的加减运算

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

解:(2a2-4a+1)-(-3a2+2a-5)

=2a2-4a+1+3a2-2a+5

=5a2-6a+6

3.拓展练习

(1)求多项式2x -3 +7与6x -5 -2的和.

提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

4.教学例3

先化简下式,再求值:

(做此类题目应先与学生一起探讨一般步骤:

(1)去括号。

(2)合并同类项。

(3)代值)

解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

=15a2b –5ab2+4ab2 -12a2b)

=3a2b –ab2

三、小结

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.进行化简求值计算时

(1)去括号。

(2)合并同类项。

(3)代值

3.通过本节课的学习你还有哪些疑问?

四、布置作业

习题4.5 2. (3) ;4. (2);5.。

五、课后反思

省略

七年级上册数学教案 篇12

教学目标

1.知识与技能

①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

2.过程与方法

经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

3.情感、态度与价值观

通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

教学重点难点

重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.

教与学互动设计

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

说明:我们把所有的这些数统称为有理数.

七年级上册数学教案 篇13

一、教学目标

1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个

负数的大小。 (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。 2、过程与方法目标:(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学

生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过

观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; (3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言

表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

二、教学重点和难点

理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

三、教学过程:

1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟) 2.在组长的组织下进行讨论、交流。(约5分钟) 3、小组分任务展示。(约25分钟) 4、达标检测。(约5分钟) 5、总结(约5分钟)

四、小组对学案进行分任务展示

(一)、温故知新:

前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?

(二)小组合作交流,探究新知

1、观察下图,回答问题: (五组完成)

大象距原点多远?两只小狗分别距原点多远?

归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.

4的绝对值记作,它表示在上与的距离,所以| 4|= 。

2、做一做:

(1)、求下列各数的绝对值:(四组完成) -1.5,0,-7,2 (2)、求下列各组数的绝对值:(一组完成)

(1)4,-4; (2) 0.8,-0.8;

从上面的结果你发现了什么?

3、议一议:(八组完成)

(1)|+2|=,

1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;

你能从中发现什么规律?

小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

4、试一试:(二组完成)

若字母a表示一个有理数,你知道a的绝对值等于什么吗?

(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

5:做一做:(三组完成)

1、( 1 )在数轴上表示下列各数,并比较它们的大小:

- 3,- 1

( 2 )求出(1)中各数的绝对值,并比较它们的大小

( 3 )你发现了什么?

2、比较下列每组数的大小。

(1) -1和– 5;(五组完成) (2) ?

(3) -8和-3(七组完成)

5和- 2.7(六组完成) 6

五、达标检测:

1:填空:

绝对值是10的数有( )

|+15|=( ) |–4|=( )

| 0 |=( ) | 4 |=( ) 2:判断(1)、绝对值最小的数是0。( ) (2)、一个数的绝对值一定是正数。( ) (3)、一个数的绝对值不可能是负数。( )

(4)、互为相反数的两个数,它们的绝对值一定相等。( ) (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )

六、总结:

1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

2.绝对值的性质:正数的绝对值是它本身;

负数的绝对值是它的相反数; 0的绝对值是0.

因为正数可用a>0表示,负数可用a0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0

3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

七、布置作业

P50页,知识技能第1,2题.

七年级上册数学教案 篇14

1.1 生活中的立体图形

教学过程:

一、看一看:(情境创设)

教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。

设计:(1)卡通A(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”

(2)卡通B(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”

教师(问):卡通A、B身体各部分是什么图形?

通过卡通A、B 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的`兴趣。培养集体意识,增强团队精神。

教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。

(出示课题):生活中的立体图形

音乐响起,屏幕播放录象。

二、议一议(课堂讨论)

问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?

组织学生围绕以上问题四人一小组讨论,说明自己的观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。

问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?

电脑演示:(1)球体 (2)圆柱 (3)圆锥

并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。

电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),

问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的关系?

诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?

(用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。

通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。

三、练一练(评价)

遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:

1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。

尽量让每个学生都发言,注意培养学生的语言表达能力。

七年级上册数学教案 篇15

教学目标

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点 正确理解分类的标准和按照一定的标准进行分类

知识重点 正确理解有理数的概念

教学过程

探索新知

在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的`概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:

按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

思考:

问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

小结与作业

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

七年级上册数学教案 篇16

教学内容:

苏教版数学教科书五年级(下)P93-94

教学目标:

1.通过对已知图形的观察、思考初步建立圆的基本概念,沟通新旧知识之间的联系;在几次画圆过程中理解什么是圆,掌握基本绘图方法,在画和对比中感受圆的本质。

2.让学生经历操作验证的全过程,通过交流分享,不断深化对圆心、半径、直径意义的理解,对它们之间的关系进行深入思考。

3.结合生活实例让学生感受圆的本质,应用半径、直径的意义、联系思考解决问题,体会新旧知识之间的联系,体会数学的价值。

教学重点:

在尝试、操作、思考中理解圆心、半径和直径的意义、联系,感受圆的本质。

教学难点:

沟通新旧知识的联系,在实际问题中思考、应用圆心、半径和直径的意义及联系。

教学准备:

圆规、圆片、练习纸、课件、应用模型。

教训过程:

一、引入

1.从学习过的正方形开始。

引导学生找到正方形的中心点。

从中心点引出到边、顶点的距离,明确其长度不等。

2.逐步呈现正多边形的变化。

引导学生通过比较,形成数学思考。

思考:如果正多边形的边数不断增加,中心点到边、顶点的距离会怎样变化?多边形将趋于……?

引出圆,呈现课题。

◇设计意图:

从正方形引入,观察中心点到边、顶点距离之间的关系,渗透圆的本质:“平面内到定点的距离等于定长的点的集合”,感受极限思想。

二、画圆

1.用身边的素材自己画圆。

交流不同工具的画法,初步感受圆规画圆有优势。

2.学生汇报,教师示范、规范画圆的方法。

3.学生们再次尝试画圆。

4.对比用圆规画圆和用其它方式画圆的共同点,体会“平面内到定点的距离等于定长的点的集合”。

◇设计意图:

第一次让学生自主画圆,初步体会,充分容错,引发对圆规画圆“工作原理”的思考;第二次教师示范画圆,尊重教材,有效讲授,形成学生对规范画圆的“有意接受”;第三次再让学生画圆,“反刍”画圆的核心要素,建立圆心、半径的初步感知,为自学做好铺垫。

三、自主学习

1.自学与分享。

(1)了解圆心、半径、直径的意义;(2)在自己画的圆里面标出圆心、半径和直径;画好以后和同桌交流。

2.交流并理解。

学生汇报,教师引导学生补充、质疑,关注理解。

过程中教师示范画圆心、半径、直径。

3.发现与思考。

用圆形纸片折一折、画一画,发现圆中半径、直径的特点,这个圆中半径、直径之间有什么联系?

组织交流反馈。

4.现象与本质。

学生观察自己手中的圆,思考:

(1)半径(直径)真的有无数条?

(2)半径(直径)的长度都相等?

(3)圆中,直径最长吗?半径呢?

结合课件演示,理解圆心、半径、直径间的联系,再次领悟圆的本质。

◇设计意图:

“以学定教”。学生会的不教,学生通过自学能理解和掌握的不教。

介绍“如何画圆心、半径和直径”时,既提供自主画图、理解同圆半径、直径联系的机会,又让学生自己的话解释,逐步贴近数学用语。尊重学生与尊重教材并重。

从验证的角度设问“圆中半径真的有无数条?”让不同层次的孩子产生不同的思考,这个环节具有多重效能,既传递给学生“经得起检验的东西,才能揭示其规律”,又在验证过程中从不同视角去理解圆。

四、深度研究、联系生活。

1.怎样找到圆心。

(1)学生思考、交流自己不同的想法,结合“生成”引导思考。

学生介绍想法,用圆片演示。

在学生理解后,教师课件呈现,再次引发质疑----为什么这样折出来的就是圆心?

引导学生结合今天学习的知识进行分析和解释。

◇设计意图:

“折一折”并不那么简单,要“折”出半径的意义、直径的意义,要“折”出数学的味道。不断地“反刍”半径、直径的意义,加深印象,深刻体会三要素“圆心、半径、直径”间的联系。

(2)再找圆心。

引发思考:无法折一折的圆形怎样找其圆心?

引导发现:解决问题的过程中体会新旧知识有联系。

充分预设,呈现学生可能出现的思考。

◇设计意图:

此处设计再一次打破学生刚刚构建的“找圆心”的“好”方法,“折一折”并不那么简单,因为生活中太多的“圆”折不了,设置这样的问题意在引导学生联系已有知识经验进行分析,进行数学思考。学会在解决新问题中发现已有知识的价值,培养学生发现问题、提出问题、应用知识解决问题的能力。

2.联系生活。

引导学生自主使用学到的知识、概念,解决生活中与圆形有关的实际问题。

◇设计意图:

与教学伊始呼应,从“方”中进入,回“方”中思考。让学生感受数学源于生活,高于生活,又应用于生活的轮回现象;领悟数学可以还解释生活现象,解决现实问题的应用价值;养成用数学眼光、数学思维观察、分析事物的习惯。

六、全课小结。

引导学生简要回顾、梳理本节课学到的知识,小结收获,提出希望。

七年级上册数学教案 篇17

内容:整式的乘法—单项式乘以多项式 P58-59

课型:新授 时间:

学习目标:

1、在具体情景中,了解单项式和多项式相乘的意义。

2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

3、培养学生有条理的思考和表达能力。

学习重点:单项式乘以多项式的法则

学习难点:对法则的理解

学习过程

1.学习准备

1.叙述单项式乘以单项式的法则

2.计算

(1)(- a2b) ?(2ab)3=

(2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)

3、举例说明乘法分配律的应用。

2.合作探究

(一)独立思考,解决问题

1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?

结合图形,完成填空。

算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3

天共修筑路面 m2.

算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.

因此,有 = 。

3.你能用字母表示乘法分配律吗?

4.你能尝试单项式乘以多项式的法则吗?

(二)师生探究,合作交流

1、例3 计算:

(1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)

2、练一练

(1)5x(3x+4) (2) (5a2? a+1)(-3a)

(3)x(x2+3)+x2(x-3)-3x(x2?x-1)

(4)(?a)(-2ab)+3a(ab-b-1))

(三)学习

对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

(四)自我测试

1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。

2、判断题

(1)-2a(3a-4b) =-6a2-8ab ( )

(2) (3x2-xy-1) ? x =x3 -x2y-x ( )

(3)m2- (1- m) = m2- - m ( )

3、已知ab2=-1,-ab(a2b3-ab3-b)的.值等于 ( )

A. -1 B. 0 C. 1 D. 无法确定

4、计算(20xx 贺州中考)

(-2a)?( a3 -1) =

5、(3m)2(m2+mn-n2)=

(五)应用拓展

1、计算

(1)2a(9a2-2a+3)-(3a2) ?(2a-1)

(2)x(x-3)+2x(x-3)=3(x2-1)

2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?

大家都在看