短文网整理的初中数学教案(精选25篇),快来看看吧,希望对您有所帮助。
初中数学教案 篇1
生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。
侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。
底面:棱柱有上、下两个底面,形状相同。
侧面:棱柱的侧面都是平行四边形。
立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。
棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。
特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。
圆柱:上、下两个面都是圆形,侧面展开图是长方形。
圆锥:底面是圆形,侧面展开图是扇形。
截面:用一个平面去截一个几何体,截出的面。
球:用一个平面去截,截面图形是圆形。
正方体的截面:可以是正方形、长方形、梯形、三角形。
圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。
展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。
从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)
初中数学教案 篇2
知识技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。
解由题意,得解得。
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k0,所以直线与y轴的交点在x轴的上方。
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。
例3已知反比例函数的图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(2)点A(—5,m)在反比例函数图象上,所以,
点A的坐标为。
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=—2。
(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以。
(2)x>0。
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线(hyperbola)。
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈
1、在同一直角坐标系中画出下列函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0 一、教学目标 1、了解二次根式的意义; 2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题; 3、掌握二次根式的性质和,并能灵活应用; 4、通过二次根式的计算培养学生的'逻辑思维能力; 5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。 二、教学重点和难点 重点: (1)二次根的意义; (2)二次根式中字母的取值范围。 难点:确定二次根式中字母的取值范围。 三、教学方法 启发式、讲练结合。 四、教学过程 (一)复习提问 1、什么叫平方根、算术平方根? 2、说出下列各式的意义,并计算 (二)引入新课 新课:二次根式 定义:式子叫做二次根式。 对于请同学们讨论论应注意的问题,引导学生总结: (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢? 若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。 (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次 根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。 例1当a为实数时,下列各式中哪些是二次根式? 例2 x是怎样的实数时,式子在实数范围有意义? 解:略。 说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。 例3当字母取何值时,下列各式为二次根式: 分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。 解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。 (2)—3x≥0,x≤0,即x≤0时,是二次根式。 (3),且x≠0,∴x>0,当x>0时,是二次根式。 (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。 例4下列各式是二次根式,求式子中的字母所满足的条件: 分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。 解:(1)由2a+3≥0,得。 (2)由,得3a—1>0,解得。 (3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。 (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。 目标 1.联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。 2.在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。 重点难点 理解轴对称图形的基本特征 教具 准备 剪刀、纸(含平行四边形、字母N S)、教学挂图、直尺 教学方法 手段 观察、比较、讨论、动手操作 教学过程 一、新课 1.教师取一个门框上固定门的铰连让学生观察是不是左右对称? 2.出示教学挂图:天安门、飞机、奖杯的实物图片 将实物图片进一步抽象为平面图形,对折以后问学生发现了什么? 生:对折后两边能完全重合。 师:对折后能完全重合的.图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 教师先示范,让学生认识天安门城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。 3.练习题:(出示小黑板) (1)P57“试一试” 判断哪几个图形是轴对称图形?试着画出对称轴。 估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。 (2)用剪刀和纸剪一个轴对称图形。 教学过程 二、练习 1.出示挂图:(p58“想想做做”第1题) 判断哪些图形是轴对称图形? 生:竖琴图、轿车图、五角星图、铁锚图、科技标志图、中国农业银行标志图 师:钥匙图和紫荆花图为什么不是? 生:因为对折以后两部分没有完全重合。 2.看书p58“想想做做”第2题 判断哪些英文字母是轴对称图形? 生:A、C、T、M、X(有可能有的学生没有选C,还有可能有的学生选N、S、Z) 师:没有选C的同学除了竖着对折,看看横着、斜着对折你有没有去试一试?认为N、S、Z是轴对称图形的我请两个学生到讲台前用表示字母N、S的纸对折一下,看看对折以后两部分有没有完全重合? 学生试完以后会发现两部分没有完全重合。 教师再将字母N横过来就变成了字母Z,同样道理,两部分也不会完全重合。 一、主题分析与设计 本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。 二、教学目标 1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。 2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事 3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。 4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。 三、教学重、难点 1、重点:对平行线性质的掌握与应用 2、难点:对平行线性质1的探究 四、教学用具 1、教具:多媒体平台及多媒体课件 2、学具:三角尺、量角器、剪刀 五、教学过程 (一)创设情境,设疑激思 1、播放一组幻灯片。 内容: ①供火车行驶的铁轨上; ②游泳池中的泳道隔栏; ③横格纸中的线。 2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗? 3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行; 4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书) (二)数形结合,探究性质 1、画图探究,归纳猜想 教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角) 教师提出研究性问题一: 指出图中的'同位角,并度量这些角,把结果填入下表: 教师提出研究性问题二: 将画出图中的同位角任先一组剪下后叠合。 学生活动一:画图————度量————填表————猜想 学生活动二:画图————剪图————叠合 让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。 教师提出研究性问题三: 再画出一条截线d,看你的猜想结论是否仍然成立? 学生活动:探究、按小组讨论,最后得出结论:仍然成立。 2、教师用《几何画板》课件验证猜想,让学生直观感受猜想 3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等) (三)引申思考,培养创新 教师提出研究性问题四: 请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系? 学生活动:独立探究————小组讨论————成果展示。 教师活动:评价学生的研究成果,并引导学生说理 因为a ∥ b(已知) 所以∠ 1= ∠ 2(两直线平行,同位角相等) 又∠ 1= ∠ 3(对顶角相等) ∠ 1+ ∠ 4=180°(邻补角的定义) 所以∠ 2= ∠ 3(等量代换) ∠ 2+ ∠ 4=180°(等量代换) 教师展示: 平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等) 平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补) (四)实际应用,优势互补 1、(抢答)课本P13练一练1、2及习题7。2 1、5 2、(讨论解答)课本P13习题7。2 2、3、4 (五)课堂总结:这节课你有哪些收获? 1、学生总结:平行线的性质1、2、3 2、教师补充总结: ⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题) ⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题) ⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述) ⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程) (六)作业 学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸) 六、教学反思: 数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变: ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。 ②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。 ③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。 总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧 教学目标 1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2, 能区分两种不同意义的量,会用符号表示正数和负数; 3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。 教学难点 正确区分两种不同意义的量。 知识重点 两种相反意义的量 教学过程(师生活动) 设计理念 设置情境 引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生 活中仅有这些“以前学过的数”够用了吗?下面的例子 仅供参考. 师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%… 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗? 学生活动:思考,交流 师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗? 请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。 (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等) 学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多 地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的`问题情境,以尽量贴近学生的实际. 这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。 以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。 分析问题 探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解. 教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流. 这阶段主要是让学生学会正数和负数的表示. 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。 举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维. 问题4:请同学们举出用正数和负数表示的例子. 问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明. 能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性 课堂练习 教科书第5页练习 小结与作业 课堂小结 围绕下面两点,以师生共同交流的方式进行: 1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了; 2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。 本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。 作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要 教学内容: 在学生初步了解,季度的概念后,寻找历法与扑克之间的关系。 教学目标: 1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。 2、调动学生丰富的`联想,养成一种思考的习惯。 教学重难点: "扑克"与年月日、季度的联系。 教学过程: 一、谈话引入 师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢? 生:...... (教师补充,引发学生的好奇心。) 师: "扑克"还有一种作用,而且与数学有关! 生:...... 二、新课 1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬 2、大王=太阳 小王=月亮 红=白天 黑=夜晚 3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1 4、所有牌的和+小王=平年的天数 所有牌的和+小王+大王=闰年的天数 5、扑克中的K、Q、J共有12张,3x4=12,表示一年有12个月 6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。 7、一种花色的和=一个季度的天数 一种花色有13张牌=一个季度有13个星期 三、小结 生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。 知识技能目标 1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2、利用反比例函数的图象解决有关问题。 过程性目标 1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质; 2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。 教学过程 一、创设情境 上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。 二、探究归纳 1、画出函数的图象。 分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。 解 1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。 3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。 上述图象,通常称为双曲线(hyperbola)。 提问这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。 学生讨论、交流以下问题,并将讨论、交流的结果回答问题。 1、这个函数的图象在哪两个象限?和函数的图象有什么不同? 2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有下列性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 注 1、双曲线的两个分支与x轴和y轴没有交点; 2、双曲线的两个分支关于原点成中心对称。 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。 在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。 三、实践应用 例1若反比例函数的图象在第二、四象限,求m的值。 分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。 解由题意,得解得。 例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。 分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k0,所以直线与y轴的交点在x轴的上方。 解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。 例3已知反比例函数的图象过点(1,—2)。 (1)求这个函数的解析式,并画出图象; (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。 解(1)设:反比例函数的解析式为:(k≠0)。 而反比例函数的图象过点(1,—2),即当x=1时,y=—2。 所以,k=—2。 即反比例函数的解析式为:。 (2)点A(—5,m)在反比例函数图象上,所以, 点A的坐标为。 点A关于x轴的对称点不在这个图象上; 点A关于y轴的对称点不在这个图象上; 点A关于原点的对称点在这个图象上; 例4已知函数为反比例函数。 (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当—3≤x≤时,求此函数的最大值和最小值。 解(1)由反比例函数的'定义可知:解得,m=—2。 (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。 (3)因为在第个象限内,y随x的增大而增大, 所以当x=时,y最大值=; 当x=—3时,y最小值=。 所以当—3≤x≤时,此函数的最大值为8,最小值为。 例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。 (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象。 解(1)因为100=5xy,所以。 (2)x>0。 (3)图象如下: 说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。 四、交流反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质。 1、反比例函数的图象是双曲线(hyperbola)。 2、反比例函数有如下性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 五、检测反馈 1、在同一直角坐标系中画出下列函数的图象: (1);(2)。 2、已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。 4、已知反比例函数经过点A(2,—m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0 学习目标: 1.理解平行线的意义两条直线的两种位置关系; 2.理解并掌握平行公理及其推论的内容; 3.会根据几何语句画图,会用直尺和三角板画平行线; 学习重点: 探索和掌握平行公理及其推论. 学习难点: 对平行线本质属性的理解,用几何语言描述图形的性质 一、学习过程:预习提问 两条直线相交有几个交点? 平面内两条直线的位置关系除相交外,还有哪些呢? (一)画平行线 1、 工具:直尺、三角板 2、 方法:一"落";二"靠";三"移";四"画"。 3、请你根据此方法练习画平行线: 已知:直线a,点B,点C. (1)过点B画直线a的平行线,能画几条? (2)过点C画直线a的平行线,它与过点B的平行线平行吗? (二)平行公理及推论 1、思考:上图中,①过点B画直线a的平行线,能画 条; ②过点C画直线a的.平行线,能画 条; ③你画的直线有什么位置关系? 。 ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么? 二、自我检测: (一)选择题: 1、下列推理正确的是 ( ) A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c 2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个 (二)填空题: 1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。 2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系: (1)L1与L2 没有公共点,则 L1与L2 ; (2)L1与L2有且只有一个公共点,则L1与L2 ; (3)L1与L2有两个公共点,则L1与L2 。 3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。 4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。 三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°. 一、课题 27.3 过三点的圆 二、教学目标 1.经历过一点、两点和不在同一直线上的三点作圆的过程. 2.. 知道过不在同一条直线上的三个点画圆的方法 3.了解三角形的外接圆和外心. 三、教学重点和难点 重点:经历过一点、两点和不在同一直线上的三点作圆的过程. 难点:知道过不在同一条直线上的三个点画圆的方法. 四、教学手段 现代课堂教学手段 五、教学方法 学生自己探索 六、教学过程设计 (一)、新授 1.过已知一个点A画圆,并考虑这样的圆有多少个? 2.过已知两个点A、B画圆,并考虑这样的圆有多少个? 3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个? 让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑. 得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个. 不在同一直线上的三个点确定一个圆. 给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心. 例:画已知三角形的外接圆. 让学生探索课本第15页习题1. 一起探究 八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套? 分析:带领学生完成课本第13页的.表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解. (二)、小结 七、练习设计 P15习题2、3 八、教学后记 后备练习: 1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 . 2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在() A.在AC,BC两边高线的交点处 B.在AC,BC两边中线的交点处 C.在AC,BC两边垂直平分线的交点处 D.在A,B两内角平分线的交点处 教学目标: 1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角. 2.理解对顶角相等,并能运用它解决一些问题. 重点: 邻补角、对顶角的概念,对顶角的性质与应用. 难点: 理解对顶角相等的性质的探索. 教学过程: 一、创设情境,引入新课 引导语: 我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题. 二、尝试活动,探索新知 教师出示一块布片和一把剪刀,表演剪刀剪布的过程. 教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化? 学生观察、思考、回答,得出: 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大. 教师提问:我们可以把剪刀抽象成什么简单的图形? 学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角. 教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类? 学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的'两个角相等) 学生根据观察和度量完成下表: 两条直线相交、所形成的角、分类、位置关系、数量关系 教师提问: 如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗? 学生思考回答: 只会改变数量关系而不会改变位置关系. 师生共同定义邻补角、对顶角: 有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角. 如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角. 教师提问: 你同意下列说法吗?如果错误,如何订正? 1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上. 2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角. 3.邻补角是互补的两个角,互补的两个角也是邻补角. 学生思考回答:1、2是对的,3是错的. 第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角. 教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验. 教师把说理过程规范地板书: 在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD. 教师板书对顶角的性质: 对顶角相等. 强调对顶角的概念与对顶角的性质不能混淆: 对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系. 三、例题讲解 【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数. 【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°. 四、巩固练习 1.判断下列图中是否存在对顶角. 2.按要求完成下列各题. (1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角. eq o(sup7(,图(1)) ,图(2)) (2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何? 【答案】 1.都不存在对顶角. 2.(1)对顶角,邻补角. 对顶角:∠AOC和∠BOD,∠AOD和∠BOC. 邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD. (2)垂直. 五、课堂小结 教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系. 教学反思 通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。 人教版初中数学教案7篇 作为一位杰出的教职工,时常需要用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么教案应该怎么写才合适呢?以下是小编帮大家整理的人教版初中数学教案,欢迎阅读与收藏。 教学目标: 1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。 2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。 3、通过对问题的探索研究,培养学生分析问题和解决问题的`能力以及思维的灵活性。 4、培养学生大胆猜想、合理论证的科学精神。 教学重点: 探索并运用三角形中位线的性质。 教学难点: 运用转化思想解决有关问题。 教学方法: 创设情境——建立数学模型——应用——拓展提高 教学过程: 情境创设:测量不可达两点距离。 探索活动: 活动一:剪纸拼图。 操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。 观察、猜想: 四边形BCFD是什么四边形。 探索: 如何说明四边形BCFD是平行四边形? 活动二:探索三角形中位线的性质。 应用 练习及解决情境问题。 例题教学 操作——猜想——验证 拓展:数学实验室 小结:布置作业。 教学目标 1、理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则; 2、能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别; 3、三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程; 4、通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力; 5、本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。 教学建议 (一)重点、难点分析 本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。 (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。 (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。 (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。 (二)知识结构 (三)教法建议 1、对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。 2、有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。 3、应强调加法交换律“a+b=b+a”中字母a、b的.任意性。 4、计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。 5、可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。 6、在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。 一、教材的地位与作用 《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。 二、教学目标 (一)知识与技能: 1.了解二元一次方程概念; 2.了解二元一次方程的解的概念和解的不唯一性; 3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。 (二)数学思考: 体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。 (三)问题解决: 初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。 (四)情感态度: 培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。 三、教学重点与难点 教学重点:二元一次方程及其解的概念。 教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。 四、教法与学法分析 教法:情境教学法、比较教学法、阅读教学法。 学法:阅读、比较、探究的学习方式。 五、教学过程 1.创设情境,引入新课 从学生熟悉的姚明受伤事件引入。 师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。 (1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程? (2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗? 设姚明投进了x个两分球,罚进了y个球,可列出方程。 (3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗? 设易建联投进了x个两分球,y个三分球,可列出方程。 师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗? 从而揭示课题。 (设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。) 2.探索交流,汲取新知 概念思辨,归纳二元一次方程的特征 师:那到底什么叫二元一次方程?(学生思考后回答) 师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答) 师:根据概念,你觉得二元一次方程应具备哪几个特征? 活动:你自己构造一个二元一次方程。 快速判断:下列式子中哪些是二元一次方程? ①x2+y=0②y=2x+ 4③2x+1=2x ④ab+b=4 (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。) 二元一次方程解的概念 师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗? 师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法) 使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的'值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。) 二元一次方程解的不唯一性 对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的? (设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解 例:已知方程3x+2y=10, (1)当x=2时,求所对应的y的值; (2)取一个你自己喜欢的数作为x的值,求所对应的y的值; (3)用含x的代数式表示y; (4)用含y的代数式表示x; (5)当x=负2,0时,所对应的y的值是多少? (6)写出方程3x+2y=10的三个解. (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。) 大显身手: 课内练习第2题 梳理知识,课堂升华 本节课你有收获吗?能和大家说说你的感想吗?3.作业布置 必做题:书本作业题1、2、3、4。 选做题:书本作业题5、6。 设计说明 本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。 在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”, 此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。 一、指导思想 教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。 二、检查反馈 本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。 特点: 1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。 2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。 3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。 4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。 不足: 1、教案后的'教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。 2、个别教师教案过于简单。 作业方面的特点与不足 特点: 1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。 2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。 不足: 1、对于学生书写的工整性,还需加强教育。 2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。 三维目标 一、知识与技能 1.能灵活列反比例函数表达式解决一些实际问题. 2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题. 二、过程与方法 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题. 2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力. 三、情感态度与价值观 1.积极参与交流,并积极发表意见. 2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具. 教学重点 掌握从物理问题中建构反比例函数模型. 教学难点 从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想. 教具准备 多媒体课件. 教学过程 一、创设问题情境,引入新课 活动1 问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一. 在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培. (1)求I与R之间的函数关系式; (2)当电流I=0.5时,求电阻R的值. 设计意图: 运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力. 师生行为: 可由学生独立思考,领会反比例函数在物理学中的综合应用. 教师应给“学困生”一点物理学知识的引导. 师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值. 生:(1)解:设I=kR ∵R=5,I=2,于是 2=k5 ,所以k=10,∴I=10R . (2) 当I=0.5时,R=10I=100.5 =20(欧姆). 师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢? 生:这是古希腊科学家阿基米德的名言. 师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为; 阻力×阻力臂=动力×动力臂(如下图) 下面我们就来看一例子. 二、讲授新课 活动2 小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米. (1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力? (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少? 设计意图: 物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用. 师生行为: 先由学生根据“杠杆定律”解决上述问题. 教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系. 教师在此活动中应重点关注: ①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系; ②学生能否面对困难,认真思考,寻找解题的途径; ③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣. 师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题. 生:解:(1)根据“杠杆定律” 有 Fl=1200×0.5.得F =600l 当l=1.5时,F=6001.5 =400. 因此,撬动石头至少需要400牛顿的力. (2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有 Fl=600, l=600F . 当F=400×12 =200时, l=600200 =3. 3-1.5=1.5(米) 因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米. 生:也可用不等式来解,如下: Fl=600,F=600l . 而F≤400×12 =200时. 600l ≤200 l≥3. 所以l-1.5≥3-1.5=1.5. 即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米. 生:还可由函数图象,利用反比例函数的性质求出. 师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题: 用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力? 生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0) 根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力. 师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用. 活动3 问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少? 设计意图: 在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题. 师生行为: 由学生先独立思考,然后小组内讨论完成. 教师应给予“学困生”以一定的帮助. 生:解:(1)∵y与x -0.4成反比例, ∴设y=kx-0.4 (k≠0). 把x=0.65,y=0.8代入y=kx-0.4 ,得 k0.65-0.4 =0.8. 解得k=0.2, ∴y=0.2x-0.4=15x-2 ∴y与x之间的函数关系为y=15x-2 (2)根据题意,本年度电力部门的纯收入为 (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元) 答:本年度的纯收人为0.6亿元, 师生共析: (1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值; (2)纯收入=总收入-总成本. 三、巩固提高 活动4 一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值. 设计意图: 进一步体现物理和反比例函数的关系. 师生行为 由学生独立完成,教师讲评. 师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系. 生:V和ρ的反比例函数关系为:V=990ρ . 生:当ρ=1.1kg/m3根据V=990ρ ,得 V=990ρ =9901.1 =900(m3). 所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3. 四、课时小结 活动5 你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得. 设计意图: 这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的'个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性. 师生行为: 学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流. 教师组织学生小结. 反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系. 板书设计 17.2 实际问题与反比例函数(三) 1. 2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力? 设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理, Fl=k 即F=kl (k>0且k为常数). 由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小. 活动与探究 学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示. (1)绿化带面积是多少?你能写出这一函数表达式吗? (2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内? x(m) 10 20 30 40 y(m) 过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值. 结果:(1)绿化带面积为10×40=400(m2) 设该反比例函数的表达式为y=kx , ∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400. ∴函数表达式为y=400x . (2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。 一年级学生认知水平处于启蒙阶段,尚未形成完整的知识结构体系。由于学生所特有的年龄特点,学生有意注意力占主要地位,以形象思维为主。从整体上看一年级学生都比较活跃,大多数学生上课基本上能够跟上教师讲课的思路,教师上课组织课堂纪律并不难,而且学生的学习积极性也很容易调动。但每个班都有个别的学生上课不注意听讲,我行我素。 对于他们数学知识和能力掌握情况的分析: 1、对于一年级的数学学习,新生无论在数学知识上还是数学能力上都有所准备。就数的认识来看,新生二十以内的数数非常流利和连贯,可以正数倒数。学生在这方面具有良好的知识准备的原因之一是学生受过这方面的训练,在幼儿园中大部分学生学习过十以内的加减法,同时在一些家长在家中也进行过辅导,另一方面,数数和十以内数的分解组合学生在生活中有机会使用,因此这方面的准备比较好。 2、在数的计算中,学生对于十以内数的计算较为熟练,这和学生的生活需要、学习需要有关。 3、新生在数感方面的发展是不平衡的数感——学生对数的意义理解有一定困难。通过个别访谈,了解到学生对于蕴涵在实际生活中的数的意义的理解较为准确,例如对于“你的小组中有几个小朋友,从前往后数,你是第几个,从后往前数,你是第几个,第几个小朋友是谁”这样的问题,学生的解答没有问题,都能根据实际情况作出正确的回答,但是对于图形,学生的理解有一定的困难。这可能是学生对图形的认识造成了对数的基数序数意义理解的干扰。 4、概括能力和推理能力——普遍学生关注的范围比较小,角度单一。全册教材分析 本册教材一共分为八个单元,本册教材主要是通过各种各样的活动对学生进行数感及观察能力、思维能力、口头表达能力、学习习惯、合作与交流的能力等方面的培养,让学生对数学产生浓厚的学习兴趣,同时鼓励学生用自己喜欢的方式去学习自己有用的知识,对学生进行有效地思想品德教育,初步了解一定的学习方法、思考方式。 全册教学目标 1、熟练地数出数量在20以内的物体的个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各数的组成,会读、写0――20各数。 2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和10以内的减法。 3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。 4、认识符号“=”“<”“>”,会使用这些符号表示数的大小。 5、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。 6、初步了解分类的方法,会进行简单的分类。 7、初步了解钟表,会认识整时和半时。 8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。 9、认真作业、书写整洁的良好习惯。 10、通过实践活动体验数学与日常生活的密切联系。 全册重、难点: 教材重点:在具体的情境中能熟练的认读、写、20以内的数,能用数表示物体的个数或事物的位置与顺序;建立初步的空间观念;能按照给定的标准或选择某个标准对物体进行比较和分类。 教材难点:体会20以内加减法的意义,能熟练的口算20以内的数的加减法;初步形成空间观念;经历简单的数据收集过程,形成初步的统计观念。教学准备 画有田字格的小黑板挂图小棒圆片 多媒体课件视频展示台部分实物模型 智能培养 1、培养学生应用数学知识解决问题的能力。 2、培养学生独立思考与合作交流的能力。 3、培养学生学习数学的良好情感。 4、培养学生学习数学的兴趣和良好的学习习惯。 教学思路及措施 1.一年级学生的计算学习要和意义理解与思维训练相结合。在小学数学课堂教学中要重视计算策略的优化和算理的渗透,同时在计算教学过程中要渗透思维的训练。 2.数学教学中加强学生的生活经验的积累和对学习对象的直接感知。学生的生活经验和已有的知识能力对学生解决问题有着很大的帮助,甚至很多学生都是建立在生活经验的基础上进行学习的。因此,一年级的数学教学应该加强学生的实际感知,丰富学生的生活经验,让学生在现实情景中把握数的意义和运算的意义,发展数感和符号感。扩大学生的信息贮备,提供有利于学生理解数学、探究数学的生活情景,给学生机会在实际情景中感知、操作、认识数学知识,理解数学,学习数学。 3.空间观念的培养要把握好度,在具体和抽象的空间观念的建立,在低段 要紧密和学生的动手操作相联系,可以通过观察、接触(摸、折、剪、拼等)等各种手段来让学生认识几何形体,建立空间观念。同时,要将生活材料数学化,在具体、半抽象、抽象之间建立一座桥梁,发展学生的空间想象能力。 4.在教学中要逐步渗透重要的数学概念和数学思想方法。数学思想方法已经作为数学知识的一部分,教师在教学中要逐步随着数学知识的学习进行渗透。例如一年级教材中有很多地方可以渗透一一对应思想、函数思想、符号化思想的,要在平时的教学中加以落实。 教学 建议 一、知识结构 二、重点、难点分析 本节 教学 的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念. 1.不等式的解与方程的解的意义的异同点 相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同. 不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解. 2.不等式的解与解集的区别与联系 不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解. 注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立. 3.不等式解集的表示方法 (1)用不等式表示 一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 . (2)用数轴表示 如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆. 如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈. 注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈. 一、素质 教育 目标 (一)知识 教学 点 1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集. 2.知道不等式的“解集”与方程“解”的不同点. (二)能力训练点 通过 教学 ,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示. (三)德育渗透点 通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点. (四)美育渗透点 通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美. 二、学法引导 1. 教学 方法:类比法、引导发现法、实践法. 2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈. 三、重点·难点·疑点及解决办法 (一)重点 1.不等式解集的概念. 2.利用数轴表示不等式的解集. (二)难点 正确理解不等式解集的概念. (三)疑点 弄不清不等式的解集与方程的解的区别、联系. (四)解决办法 弄清楚不等式的解与解集的概念. 四、课时安排 一课时. 五、教具学具准备 投影仪或电脑、自制胶片、直尺. 六、师生互动活动设计 (一)明确目标 本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集. (二)整体感知 通过枚举法来形象直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础. (三) 教学 过程 1.创设情境,复习引入 (1)根据不等式的基本性质,把下列不等式化成 或 的形式. ① ② (2)当 取下列数值时,不等式 是否成立? l,0,2,-2.5,-4,3.5,4,4.5,3. 学生活动:独立思考并说出答案:(1)① ② .(2)当 取1,0,2,-2.5,-4时,不等式 成立;当 取3.5,4,4.5,3时,不等式 不成立. 大家知道,当 取1,2,0,-2.5,-4时,不等式 成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式 不成立的数就不是不等式 的解. 对于不等式 ,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的分布有什么规律? 学生活动:思考讨论,尝试得出答案,指名板演如下: 【教法说明】启发学生用试验方法,结合数轴直观研究,把已说出的不等式 的解2,0,1,-2.5,-4用“实心圆点”表示,把不是 的解的数值3.5,4,4.5,3用“空心圆圈”表示,好像是“挖去了”. 师生归纳:观察数轴可知,用“实心圆点”表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式 的解,而大于或等于3的任何一个数都不是 的解.可以看出,不等式 有无限多个解,这无限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式 的无限多个解集中起来,就得到 的解的集会,简称不等式 的解集. 2.探索新知,讲授新课 (1)不等式的解集 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集. ①以方程 为例,说出一元一次方程的解的情况. ②不等式 的解的个数是多少?能一一说出吗? (2)解不等式 求不等式的解集的过程,叫做解不等式. 解方程 求出的是方程的解,而解不等式 求出的则是不等式的解集,为什么? 学生活动:观察思考,指名回答. 教师 归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有无限多个,无法一一列举出来,因而只能用不等式 或 揭示这些解的共同属性,也就是求出不等式的解集.实际上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 . 【教法说明】学生对一元一次方程的'解印象较深,而不等式与方程的相同点较多,因而易将“不等式的解集”与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清“不等式的解集”与“方程的解”的关系. (3)在数轴上表示不等式的解集 ①表示不等式 的解集:( ) 分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集 .注意未知数 的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下: ②表示 的解集:( ) 学生活动:独立思考,指名板演并说出分析过程. 分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示: 注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点. 【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现. 教学 时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键. 3.尝试反馈,巩固知识 (1)不等式的解集 与 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来. (2)在数轴上表示下列不等式的解集. ① ② ③ ④ (3)指出不等式 的解集,并在数轴上表示出来. 师生活动:首先学生在练习本上完成,然后 教师 抽查,最后与出示投影的正确答案进行对比. 【教法说明】 教学 时,应强调2.(4)题的正确表示为: 我们已经能够在数轴上准确地表示出不等式的解集,反之若给出数轴上的某部分数集,还要会写出与之对应的不等式的解集来. 4.变式训练,培养能力 (1)用不等式表示图中所示的解集. 【教法说明】强调“· ”“ °”在使用、表示上的区别. (2)单项选择: ①不等式 的解集是() A. B. C. D. ②不等式 的正整数解为() A.1,2B.1,2,3C.1D.2 ③用不等式表示图中的解集,正确的是() A. B. C. D. ④用数轴表示不等式的解集 正确的是() 学生活动:分析思考,说出答案.( 教师 给予纠正或肯定) 【教法说明】此题以抢答形式茁现,更能激发学生探索知识的热情. (四)总结、扩展 学生小结, 教师 完善: 1.? 本节重点: (1)了解不等式的解集的概念. (2)会在数轴上表示不等式的解集. 2.注意事项: 弄清“ · ”还是“ °”,是“左边部分”还是“右边部分”. 七、布置作业 教学目标: 1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。 2、收集统计在生活中应用的例子,整理收集数据的方法。 3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。 教学过程: 一、课前预习,出示预习提纲: 1、我们学习了哪几种统计图? 2、这几种统计图各有什么特点? 3、概率的知识有哪些? 二、展示与交流 (一)提出问题 1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答) 2、师:先独立列出几个你想调查的问题。(写在练习本上) 3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理) 4、接着全班汇报交流(师罗列在黑板上) 师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理) (二)收集数据和整理数据 1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。 2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么? (三)开展调查 1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。 2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报) 3、全班汇总、整理、归纳各小组数据。(板书) 4、师:分析上面的数据,你能得到哪些信息? 5、师:根据整理的数据,想一想绘制什么统计图比较好呢? 6、师:根据这些信息,你还能提出什么数学问题? (四)回顾统计活动 1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗? 师板书:提出问题——收集数据——整理数据——分析数据——作出决策。 2、收集在生活中应用统计的例子,并说说这些例子中的`数据告诉人们哪些信息。(全班交流) 指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息? 3、结合生活中的例子说说收集数据有哪些方法? (1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来 的实例)来说说自己的方法。 (2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。 4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识? 把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 一、教材内容分析 本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。 二、教学目标: 1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则 2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。 3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。 三、学情分析 针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。 四、教学重点:利用移项解一元一次方程。 五、教学难点:移项法则的探究过程。 六、教学过程: (一)情景引入 引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( ) A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨 设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项 (二)出示学习目标 1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。 2.会建立方程解决简单的实际问题。 设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。 (三)导教导学 1.出示自学指导 自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题) 2.学生自学 学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。 3.交流展示(小组合作展示) (合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢? 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生? 1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。 2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书) 3)根据等量关系列方程: 3x+20 = 4x-25(板书) 【总结提升】解决“分配问题”应用题的列方程的基本要点: A.找出能贯穿应用题始终的一个不变的量. B.用两个不同的式子去表示这个量. C.由表示这个不变的量的两个式子相等列出方程. 设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。 (变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数 (只设列即可) (变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少? 设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。 (合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。 (板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。 《解一元一次方程——移项》教学设计(魏玉英) 师:为什么等式(方程)可以这样变形?依据什么? (出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式. 师:解一元一次方程中“移项”起了什么作用? (出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想) (基础训练)抢答:判断下列移项是否正确,如有错误,请修改 《解一元一次方程——移项》教学设计(魏玉英) 设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。 【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1 (综合训练) 解下列方程(任选两题) 设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。 (中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为 设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。 (四)我总结、我提高: 通过本节课的学习我收获了。 设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。 (五)当堂检测(50分) 1.下列方程变形正确的是( ) A.由-2x=6, 得x=3 B.由-3=x+2, 得x=-3-2 C.由-7x+3=x-3, 得(-7+1)x=-3-3 D.由5x=2x+3, 得x=-1 2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可) 3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。 (师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。 (六)实践活动 请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。 设计意图: 让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。 一、教学目标 知识与技能:使学生了解正数与负数是从实际需要中产生的; 过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量; 情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力 二、教学重点和难点 负数的引入和意义 三、教学过程 创设情景,生活实例引入,观察猜想,合作探究 (一)、从学生原有的认知结构提出问题 大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数? 学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。 为了表示一个人、两只手、……,我们用到整数1,2,…… 为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、…… 为了表示“没有人”、“没有羊”、……我们要用到0。 但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。 (二)、师生共同研究形成正负数概念 某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。 它们是具有相反意义的两个量。 现实生活中,像这样的相反意义的量还有很多。 例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 又如,某仓库昨天运进货物吨,今天运出货物吨,“运进”和“运出”,其意义是相反的。 同学们能举例子吗? 学生回答后,教师提出:怎样区别相反意义的量才好呢? 现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量筒明地表示出来了。 让学生用同样的方法表示出前面例子中具有相反意义的量: 高于海平面8848米,记作+8848米;低于海平面155米,记作—155米; 运进纲物吨,记作+;运出货物吨,记作—。 教师讲解:什么叫做正数?什么叫做负数。 强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的`数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号 (三)、运用举例变式练习 例1所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里: —11,4,8,+73,—2,7,,,—8,12,—; 正数集合负数集合 此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用圈表示集合,也可以用大括号表示集合 课堂练习 任意写出6个正数与6个负数,并分别把它们填入相应的大括号里: 正数集合:{…}, 负数集合:{…} 四、课堂小结 由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“—”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃ 五、作业布置 1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度 2、在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着—392,这表明死海的湖面与海平面相比的高度是怎样的? 3、在下列各数中,哪些是正数?哪些是负数? —16,0,004,+,—,,25,8,—3,6,—4,9651,—0,1。 4、如果—50元表示支出50元,那么+200元表示什么? 5、河道中的水位比正常水位低0。2米记作—0.2米,那么比正常水位温0.1米记作什? 6、如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么? 7、一物体可以左右移动,设向右为正,问: (1)向左移动12米应记作什么? (2)“记作8米”表明什么? 1.知识结构 2.重点和难点分析 重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件: 一个是夹在两条平行线间; 一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调. 难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化. 3.教法建议 (1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维. (2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质. (3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化. 平行四边形及其性质第一课时 一、素质教育目标 (一)知识教学点 1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念. 2.掌握平行四边形的性质定理1、2. 3.并能运用这些知识进行有关的证明或计算. (二)能力训练点 1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想. 2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力. (三)德育渗透点 通过要求学生书写规范,培养学生科学严谨的学风. (四)美育渗透点 通过学习,渗透几何方法美和几何语言美及图形内在美和结构美 二、学法引导 阅读、思考、讲解、分析、转化 三、重点·难点·疑点及解决办法 1.教学重点:平行四边形性质定理的应用 2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识. 3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题. 四、课时安排 2课时 五、教具学具准备 教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具 六、师生互动活动设计 教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习 第一课时 七、教学步骤 【复习提问】 1.什么叫做四边形?什么叫四边形的一组对边? 2.四边形的两组对边在位置上有几种可能? (教师随着学生回答画出图1) 图1 【引入新课】 在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题). 【讲解新课】 1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质. 2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形 ,记作“ ”. align=middle> 图1 3.平行四边形的性质 讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的. 平行四边形性质定理1:平行四边形的对角相等. 平行四边形性质定理2:平行四边形对边相等. (教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2) 图2如图3 所以四边形是平行四边形,所以.由此得到 推论:夹在两条平行线间的平行线段相等. 图3 要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4 4.平行线间的距离 从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5. 我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离. 图5 注意:(1)两相交直线无距离可言. (2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系. 例1 已知:如图1, 学习目标: 1.理解平行线的意义两条直线的两种位置关系; 2.理解并掌握平行公理及其推论的内容; 3.会根据几何语句画图,会用直尺和三角板画平行线; 学习重点: 探索和掌握平行公理及其推论. 学习难点: 对平行线本质属性的理解,用几何语言描述图形的性质 一、学习过程:预习提问 两条直线相交有几个交点? 平面内两条直线的位置关系除相交外,还有哪些呢? (一)画平行线 1、 工具:直尺、三角板 2、 方法:一"落";二"靠";三"移";四"画"。 3、请你根据此方法练习画平行线: 已知:直线a,点B,点C. (1)过点B画直线a的平行线,能画几条? (2)过点C画直线a的'平行线,它与过点B的平行线平行吗? (二)平行公理及推论 1、思考:上图中,①过点B画直线a的平行线,能画 条; ②过点C画直线a的平行线,能画 条; ③你画的直线有什么位置关系? 。 ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么? 二、自我检测: (一)选择题: 1、下列推理正确的是 ( ) A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c 2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个 (二)填空题: 1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。 2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系: (1)L1与L2 没有公共点,则 L1与L2 ; (2)L1与L2有且只有一个公共点,则L1与L2 ; (3)L1与L2有两个公共点,则L1与L2 。 3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。 4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。 三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°. (一)教材分析 1、知识结构 2、重点、难点分析 重点: 找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础. 难点: 找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果那么”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点. (二)教学建议 1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假. 2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解: (1)假命题可分为两类情况: ①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题. ②题设有多种情形,其中至少有一种情形的结论是错误的. 例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形: 第一种情形是两个内错角都等于90°,这时两直线平行; 第二种情形是两个内错角不都等于90°,这时两直线不平行. 整体说来,这是错误的命题. (2)是否是命题: 命题的定义包括两层涵义: ①命题必须是一个完整的句子; ②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成. 另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的'平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题. (3)命题的组成 每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果,那么”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论. 有些命题,没有写成“如果,那么”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果那么”的形式. 另外命题的题设(条件)部分,有时也可用“已知”或者“若”等形式表述;命题的结论部分,有时也可用“求证”或“则”等形式表述. 教学目标 1.理解二元一次方程及二元一次方程的解的概念; 2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解; 3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示; 4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。 教学重点、难点 重点:二元一次方程的意义及二元一次方程的解的概念. 难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程. 教学过程 1.情景导入: 新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2. 2.新课教学: 引导学生观察方程80a+150b=902880与一元一次方程有异同? 得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程. 3.合作学习: 给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的`系数为多少时,计算y最为简便? 4.课堂练习: 1)已知:5xm-2yn=4是二元一次方程,则m+n=; 2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_ 5.课堂总结: (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式); (2)二元一次方程解的不定性和相关性; (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式. 作业布置 本章的课后的方程式巩固提高练习。初中数学教案 篇3
初中数学教案 篇4
初中数学教案 篇5
初中数学教案 篇6
初中数学教案 篇7
初中数学教案 篇8
初中数学教案 篇9
初中数学教案 篇10
初中数学教案 篇11
初中数学教案 篇12
初中数学教案 篇13
初中数学教案 篇14
初中数学教案 篇15
初中数学教案 篇16
初中数学教案 篇17
初中数学教案 篇18
初中数学教案 篇19
初中数学教案 篇20
初中数学教案 篇21
初中数学教案 篇22
初中数学教案 篇23
初中数学教案 篇24
初中数学教案 篇25