短文网整理的因式分解教案(精选25篇),快来看看吧,希望对您有所帮助。
因式分解教案 篇1
一、教学目标
(一)、知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程
教学环节:
活动1:复习引入
看谁算得快:用简便方法计算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
设计意图:
如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题
P165的探究(略);
2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知
看谁算得准:
计算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根据上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知
比较以下两种运算的联系与区别:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
因式分解教案 篇2
教学目标
1.知识与技能
了解因式分解的意义,以及它与整式乘法的关系.
2.过程与方法
经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.
3.情感、态度与价值观
在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.
重、难点与关键
1.重点:了解因式分解的意义,感受其作用.
2.难点:整式乘法与因式分解之间的关系.
3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.
教学方法
采用“激趣导学”的教学方法.
教学过程
一、创设情境,激趣导入
【问题牵引】
请同学们探究下面的2个问题:
问题1:720能被哪些数整除?谈谈你的想法.
问题2:当a=102,b=98时,求a2-b2的值.
二、丰富联想,展示思维
探索:你会做下面的填空吗?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.
三、小组活动,共同探究
【问题牵引】
(1)下列各式从左到右的变形是否为因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括号里,填上适当的项,使等式成立.
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、随堂练习,巩固深化
课本练习.
【探研时空】计算:993-99能被100整除吗?
五、课堂总结,发展潜能
由学生自己进行小结,教师提出如下纲目:
1.什么叫因式分解?
2.因式分解与整式运算有何区别?
六、布置作业,专题突破
选用补充作业.
板书设计
15.4.1 因式分解
1、因式分解 例:
练习:
15.4.2 提公因式法
教学目标
1.知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式.
2.过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.
3.情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.
重、难点与关键
1.重点:掌握用提公因式法把多项式分解因式.
2.难点:正确地确定多项式的最大公因式.
3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
教学方法
采用“启发式”教学方法.
教学过程
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
问题:
1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由.
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.
二、小组合作,探究方法
【教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
三、范例学习,应用所学
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.
【教师活动】引导学生观察并分析怎样计算更为简便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本P167练习第1、2、3题.
【探研时空】
利用提公因式法计算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、课堂总结,发展潜能
1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.
六、布置作业,专题突破
课本P170习题15.4第1、4(1)、6题.
板书设计
15.4.2 提公因式法
1、提公因式法 例:
练习:
15.4.3 公式法(一)
教学目标
1.知识与技能
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法
采用“问题解决”的教学方法,让学生在问题的`牵引下,推进自己的思维.
教学过程
一、观察探讨,体验新知
【问题牵引】
请同学们计算下列各式.
(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【学生活动】动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学
【例1】把下列各式分解因式:(投影显示或板书)
(1)x2-9y2; (2)16x4-y4;
(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
【学生活动】分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、随堂练习,巩固深化
课本P168练习第1、2题.
【探研时空】
1.求证:当n是正整数时,n3-n的值一定是6的倍数.
2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.
四、课堂总结,发展潜能
运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
五、布置作业,专题突破
课本P171习题15.4第2、4(2)、11题.
板书设计
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 练习:
15.4.3 公式法(二)
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.
因式分解教案 篇3
课型 复习课 教法 讲练结合
教学目标(知识、能力、教育)
1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).
2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力
教学重点 掌握用提取公因式法、公式法分解因式
教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。
教学媒体 学案
教学过程
一:【 课前预习】
(一):【知识梳理】
1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.
2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的`方法叫做提公因式法.
⑵运用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步骤:
(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
(二):【课前练习】
1.下列各组多项式中没有公因式的是( )
A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3
C.mxmy与 nynx D.aba c与 abbc
2. 下列各题中,分解因式错误的是( )
3. 列多项式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三题用了 公式
二:【经典考题剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为1
③注意 ,
④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
2. 分解因式:(1) ;(2) ;(3)
分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
3. 计算:(1)
(2)
分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,
5. (1)在实数范围内分解因式: ;
(2)已知 、 、 是△ABC的三边,且满足 ,
求证:△ABC为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,
从已知给出的等式结构看出,应构造出三个完全平方式 ,
即可得证,将原式两边同乘以2即可。略证:
即△ABC为等边三角形。
三:【课后训练】
1. 若 是一个完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多项式 因式分解的结果是( )
A. B. C. D.
3. 如果二次三项式 可分解为 ,则 的 值为( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 计算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 满足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 观察下列等式:
想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。
10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程:
解:由 得:
①
②
即 ③
△ABC为Rt△。 ④
试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。
四:【课后小结】
布置作业 地纲
因式分解教案 篇4
学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.
学习重点:同底数幂乘法运算性质的推导和应用.
学习过程:
一、创设情境引入新课
复习乘方an的意义:an表示个相乘,即an=.
乘方的结果叫a叫做,n是
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
列式为,你能利用乘方的意义进行计算吗?
二、探究新知:
探一探:
1根据乘方的意义填空
(1)23×24=(2×2×2)×(2×2×2×2)=2();
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?
说一说:你能用语言叙述同底数幂的乘法法则吗?
同理可得:amanap=(m、n、p都是正整数)
三、范例学习:
【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.计算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的'形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、学以致用:
1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
⑷-4444=⑸22n22n+1=⑹y5y2y4y=
2.判断题:判断下列计算是否正确?并说明理由
⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.计算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答题:
(1)已知xm+nxm-n=x9,求m的值.
(2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?
因式分解教案 篇5
学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.
学习重点:同底数幂乘法运算性质的推导和应用.
学习过程:
一、创设情境引入新课
复习乘方an的意义:an表示个相乘,即an=.
乘方的结果叫a叫做,n是
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
列式为,你能利用乘方的`意义进行计算吗?
二、探究新知:
探一探:
1根据乘方的意义填空
(1)23×24=(2×2×2)×(2×2×2×2)=2();
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?
说一说:你能用语言叙述同底数幂的乘法法则吗?
同理可得:amanap=(m、n、p都是正整数)
三、范例学习:
【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.计算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、学以致用:
1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
⑷-4444=⑸22n22n+1=⑹y5y2y4y=
2.判断题:判断下列计算是否正确?并说明理由
⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.计算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答题:
(1)已知xm+nxm-n=x9,求m的值.
(2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?
因式分解教案 篇6
教材分析
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点
重点: 灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
因式分解教案 篇7
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的`右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
因式分解教案 篇8
教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab
3、根据乘法公式进行计算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)= (2)= (3)=
(二)想一想,议一议: 观察下面的公式:
=(a+b)(a—b)(
这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的'数或式写成幂的形式吗?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
因式分解教案 篇9
学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.
学习重点:同底数幂乘法运算性质的推导和应用.
学习过程:
一、创设情境引入新课
复习乘方an的意义:an表示个相乘,即an=.
乘方的结果叫a叫做,n是
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
列式为,你能利用乘方的意义进行计算吗?
二、探究新知:
探一探:
1根据乘方的意义填空
(1)23×24=(2×2×2)×(2×2×2×2)=2();
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?
说一说:你能用语言叙述同底数幂的乘法法则吗?
同理可得:amanap=(m、n、p都是正整数)
三、范例学习:
【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.计算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的.形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、学以致用:
1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
⑷-4444=⑸22n22n+1=⑹y5y2y4y=
2.判断题:判断下列计算是否正确?并说明理由
⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.计算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答题:
(1)已知xm+nxm-n=x9,求m的值.
(2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?
因式分解教案 篇10
教学目标
①在掌握了解因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解。
②在运用公式法进行因式分解的同时培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力。
③进一步体验“整体”的思想,培养“换元”的意识。
教学重点与难点
重点:运用完全平方公式法进行因式分解。
难点:观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解。
教学准备
要求学生对完全平方公式准确理解。
教学设计
问题:你能将多项式a2+2ab+b2和a2-2ab+b2因式分解吗?这两个多项式有什么特点?
建议:由于受到前面用平方差公式分解因式的影响,学生对于这两个多项式因式分解比较容易想到用完全平方公式,学生容易接受,教师要把重点放在研究公式的特征上来。
注:可采用让学生自主讨论的方式进行教学,引导学生从多项式的项数、每项的特点、整个多项式的特点等几个方面进行研究。然后交流各自的体会。
把多项式向公式的方向变形和转化。
例5分解因式
(1)16x2+24x+9 (2)-x2+4x-42
注:训练学生运用完全平方公式分解因式,要尽可能地让学生说和做,引导学生把多项式与公式进行比较找出不同点,把多项式向公式的.方向转化。
例6分解因式
(1)3ax2+6ax+3a2
(2)(a+b)2-12(a+b)+36
注:学生仔细观察多项式的特点,教师适当提醒和指导,要从公式的形式和特点上进行比较。(可把a+b看作一个整体,设a+b=)
第2小题注意渗透换整体和换元的思想。
巩固练习
教科书第170页的练习题。
小结提高
1、举一个例子说说应用完全平方公式分解因式的多项式应具有怎样的特征。
2、谈谈多项式因式分解的思考方向和分解的步骤。
3、谈谈多项式因式分解的注意点。
注:对这些问题进行回顾和小结能从大的方面把握因式分解的方向和培养观察能力。
布置作业
1、必做题:教科书第171页习题15.4第4题,第5题;
2、选做题:教科书第171页第10题;
因式分解教案 篇11
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的'右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
因式分解教案范文汇总5篇
作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。教案要怎么写呢?下面是小编收集整理的因式分解教案5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
因式分解教案 篇12
一、教材分析
1、教材的地位与作用
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的`基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。
2、教学目标
(1)会推导乘法公式
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(4)了解因式分解的一般步骤。
(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。
3、重点、难点和关键
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
二、本单元教学的方法和策略:
1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.
2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.
3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.
4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.
三、课时安排:
2.1平方差公式 1课时
2.2完全平方公式 2课时
2.3用提公因式法进行因式分解 1课时
2.4用公式法进行因式分解 2课时
有关因式分解教案3篇
作为一位优秀的人民教师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写呢?下面是小编帮大家整理的因式分解教案3篇,仅供参考,大家一起来看看吧。
精选因式分解教案3篇
作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。来参考自己需要的教案吧!下面是小编帮大家整理的因式分解教案3篇,希望对大家有所帮助。
因式分解教案 篇13
学习目标
1、 学会用公式法因式法分解
2、综合运用提取公式法、公式法分解因式
学习重难点 重点:
完全平方公式分解因式.
难点:综合运用两种公式法因式分解
自学过程设计
完全平方公式:
完全平方公式的逆运用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序号)
3.下列因式分解正确的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.计算:20062-40102006+20052=___________________.
6.若x+y=1,则 x2+xy+ y2的值是_________________.
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________________________________________________________ 预习展示一:
1.判别下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
应用探究:
1、用简便方法计算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y关系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。
因式分解教案 篇14
课型 复习课 教法 讲练结合
教学目标(知识、能力、教育)
1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).
2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力
教学重点 掌握用提取公因式法、公式法分解因式
教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。
教学媒体 学案
教学过程
一:【 课前预习】
(一):【知识梳理】
1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.
2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
⑵运用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步骤:
(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
(二):【课前练习】
1.下列各组多项式中没有公因式的是( )
A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3
C.mxmy与 nynx D.aba c与 abbc
2. 下列各题中,分解因式错误的是( )
3. 列多项式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三题用了 公式
二:【经典考题剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为1
③注意 ,
④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
2. 分解因式:(1) ;(2) ;(3)
分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
3. 计算:(1)
(2)
分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:对于四项或四项以上的多项式的`因式分解,一般采用分组分解法,
5. (1)在实数范围内分解因式: ;
(2)已知 、 、 是△ABC的三边,且满足 ,
求证:△ABC为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,
从已知给出的等式结构看出,应构造出三个完全平方式 ,
即可得证,将原式两边同乘以2即可。略证:
即△ABC为等边三角形。
三:【课后训练】
1. 若 是一个完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多项式 因式分解的结果是( )
A. B. C. D.
3. 如果二次三项式 可分解为 ,则 的 值为( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 计算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 满足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 观察下列等式:
想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。
10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程:
解:由 得:
①
②
即 ③
△ABC为Rt△。 ④
试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。
四:【课后小结】
布置作业 地纲
因式分解教案模板汇编五篇
作为一位优秀的人民教师,时常需要编写教案,教案有助于学生理解并掌握系统的知识。教案应该怎么写才好呢?以下是小编收集整理的因式分解教案5篇,欢迎阅读与收藏。
因式分解教案 篇15
(一)学习目标
1、会用因式分解进行简单的多项式除法
2、会用因式分解解简单的方程
(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。
难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。
(三)教学过程设计
看一看
1.应用因式分解进行多项式除法.多项式除以多项式的`一般步骤:
①________________②__________
2.应用因式分解解简单的一元二次方程.
依据__________,一般步骤:__________
做一做
1.计算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成课后练习题
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________
(四)预习检测
1.计算:
2.先请同学们思考、讨论以下问题:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列结论中哪个正确( )
①A、B同时都为零,即A=0,
且B=0;
②A、B中至少有一个为零,即A=0,或B=0;
(五)应用探究
1.解下列方程
2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清练习
1.计算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x
因式分解教案 篇16
教学目标:
1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.
教学重、难点:用提公因式法和公式法分解因式.
教具准备:多媒体课件(小黑板)
教学方法:活动探究法
教学过程:
引入:在整式的变形中,有时需要将一个多项式写成几个整式的.乘积的形式,这种变形就是因式分解.什么叫因式分解?
知识详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
【说明】 (1)因式分解与整式乘法是相反方向的变形.
例如:
(2)因式分解是恒等变形,因此可以用整式乘法来检验.
怎样把一个多项式分解因式?
知识点2 提公因式法
多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究交流
下列变形是否是因式分解?为什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.
典例剖析 师生互动
例1 用提公因式法将下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.
小结 运用提公因式法分解因式时,要注意下列问题:
(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.
(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数).
(3)因式分解最后如果有同底数幂,要写成幂的形式.
学生做一做 把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知识点3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
探究交流
下列变形是否正确?为什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.
例2 把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本题旨在考查用完全平方公式分解因式.
学生做一做 把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
综合运用
例3 分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本题旨在考查综合运用提公因式法和公式法分解因式.
小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.
探索与创新题
例4 若9x2+kxy+36y2是完全平方式,则k= .
分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).
学生做一做 若x2+(k+3)x+9是完全平方式,则k= .
课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题.
各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。
自我评价 知识巩固
1.若x2+2(m-3)x+16是完全平方式,则m的值等于( )
A.3 B.-5 C.7. D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )
A.2 B.4 C.6 D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多项式1-x2+2xy-y2分解因式
思考题 分解因式(x4+x2-4)(x4+x2+3)+10.
因式分解教案汇编5篇
作为一位不辞辛劳的人民教师,总归要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么你有了解过教案吗?下面是小编精心整理的因式分解教案5篇,欢迎大家借鉴与参考,希望对大家有所帮助。
因式分解教案 篇17
整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的.法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
因式分解教案 篇18
(一)学习目标
1、会用因式分解进行简单的多项式除法
2、会用因式分解解简单的方程
(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。
难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。
(三)教学过程设计
看一看
1.应用因式分解进行多项式除法.多项式除以多项式的.一般步骤:
①________________②__________
2.应用因式分解解简单的一元二次方程.
依据__________,一般步骤:__________
做一做
1.计算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成课后练习题
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________
(四)预习检测
1.计算:
2.先请同学们思考、讨论以下问题:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列结论中哪个正确( )
①A、B同时都为零,即A=0,
且B=0;
②A、B中至少有一个为零,即A=0,或B=0;
(五)应用探究
1.解下列方程
2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清练习
1.计算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x
因式分解教案范文合集5篇
作为一名教师,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?下面是小编为大家收集的因式分解教案5篇,欢迎阅读与收藏。
因式分解教案 篇19
教学目标:
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:
灵活运用因式分解解决问题
教学难点:
灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的'概念以及与乘法的关系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解
(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法
(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法
(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。
分解因式要注意以下几点:
(1)分解的对象必须是多项式。
(2)分解的结果一定是几个整式的乘积的形式。
(3)要分解到不能分解为止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
试一试把下列各式因式分解:
(1)1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例题讲解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=
2、(a—b)(x—y)—(b—a)(x+y)=
3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知识应用
1、(4x2—9y2)÷(2x+3y)
2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?
五、拓展应用
1、计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。
五、课堂小结
今天你对因式分解又有哪些新的认识?
精选因式分解教案(通用9篇)
作为一位杰出的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的因式分解教案,供大家参考借鉴,希望可以帮助到有需要的朋友!
因式分解教案 篇20
第1课时
1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.
2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.
自主探索,合作交流.
1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.
2.通过对因式分解的教学,培养学生“换元”的意识.
【重点】 因式分解的概念及提公因式法的应用.
【难点】 正确找出多项式中各项的公因式.
【教师准备】 多媒体.
【学生准备】 复习有关乘法分配律的知识.
导入一:
【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.
解法1:这块场地的面积=×+×+×=++==2.
解法2:这块场地的面积=×+×+×=×=×4=2.
从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
导入二:
【问题】 计算×15-×9+×2采用什么方法?依据是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
一、提公因式法分解因式的概念
思路一
[过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.
如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).
大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解.
由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.
由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.
总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.
[设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.
思路二
[过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来.
多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢?
结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?
结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.
[设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.
二、例题讲解
[过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【学生活动】 通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.
总结:提取公因式的步骤:(1)找公因式;(2)提公因式.
容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.
教师提醒:
(1)各项都含有的字母的最低次幂的积是公因式的字母部分;
(2)因式分解后括号内的多项式的项数与原多项式的项数相同;
(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;
(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.
[设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式.
2.提公因式法分解因式的'关键在于发现多项式的公因式.
3.找公因式的一般步骤:
(1)若各项系数是整系数,则取系数的最大公约数;
(2)取各项中相同的字母,字母的指数取最低的;
(3)所有这些因式的乘积即为公因式.
1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.
2.下列用提公因式法分解因式正确的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.
3.下列多项式中应提取的公因式为5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多项式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)计算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1课时
一、教材作业
【必做题】
教材第96页随堂练习.
【选做题】
教材第96页习题4.2.
二、课后作业
【基础巩固】
1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.
【答案与解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).
本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.
由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.
随堂练习(教材第96页)
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
习题4.2(教材第96页)
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).
提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.
已知方程组求7(x-3)2-2(3-x)3的值.
〔解析〕 将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程组可得原式=12×6=6.
因式分解教案 篇21
教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab
3、根据乘法公式进行计算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)= (2)= (3)=
(二)想一想,议一议: 观察下面的公式:
=(a+b)(a—b)(
这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的数或式写成幂的`形式吗?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
因式分解教案 篇22
第十五章 整式的乘除与因式分解
根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的'项和次数.
15.1.2 整式的加减
(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)
四、提高练习:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?
2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。
3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:
试化简:│a│-│a+b│+│c-a│+│b+c│
小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
作 业:课本P14习题1.3:1(2)、(3)、(6),2。
《课堂感悟与探究》
因式分解教案 篇23
(一)学习目标
1、会用因式分解进行简单的多项式除法
2、会用因式分解解简单的方程
(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。
难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。
(三)教学过程设计
看一看
1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:
①________________②__________
2.应用因式分解解简单的一元二次方程.
依据__________,一般步骤:__________
做一做
1.计算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成课后练习题
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________
(四)预习检测
1.计算:
2.先请同学们思考、讨论以下问题:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列结论中哪个正确()
①A、B同时都为零,即A=0,
且B=0;
②A、B中至少有一个为零,即A=0,或B=0;
(五)应用探究
1.解下列方程
2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清练习
1.计算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x
因式分解教案 篇24
一、教学目标
【知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点
【教学重点】
运用平方差公式分解因式。
【教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
三、教学过程
(一)引入新课
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?
大家先观察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
因式分解教案 篇25
教学目标
1.知识与技能
了解因式分解的意义,以及它与整式乘法的关系.
2.过程与方法
经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.
3.情感、态度与价值观
在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.
重、难点与关键
1.重点:了解因式分解的意义,感受其作用.
2.难点:整式乘法与因式分解之间的关系.
3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.
教学方法
采用“激趣导学”的教学方法.
教学过程
一、创设情境,激趣导入
【问题牵引】
请同学们探究下面的2个问题:
问题1:720能被哪些数整除?谈谈你的想法.
问题2:当a=102,b=98时,求a2-b2的值.
二、丰富联想,展示思维
探索:你会做下面的填空吗?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.
三、小组活动,共同探究
【问题牵引】
(1)下列各式从左到右的变形是否为因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括号里,填上适当的项,使等式成立.
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、随堂练习,巩固深化
课本练习.
【探研时空】计算:993-99能被100整除吗?
五、课堂总结,发展潜能
由学生自己进行小结,教师提出如下纲目:
1.什么叫因式分解?
2.因式分解与整式运算有何区别?
六、布置作业,专题突破
选用补充作业.
板书设计
15.4.1 因式分解
1、因式分解 例:
练习:
15.4.2 提公因式法
教学目标
1.知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式.
2.过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.
3.情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.
重、难点与关键
1.重点:掌握用提公因式法把多项式分解因式.
2.难点:正确地确定多项式的最大公因式.
3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
教学方法
采用“启发式”教学方法.
教学过程
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
问题:
1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由.
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.
二、小组合作,探究方法
【教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的.公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
三、范例学习,应用所学
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.
【教师活动】引导学生观察并分析怎样计算更为简便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本P167练习第1、2、3题.
【探研时空】
利用提公因式法计算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、课堂总结,发展潜能
1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.
六、布置作业,专题突破
课本P170习题15.4第1、4(1)、6题.
板书设计
15.4.2 提公因式法
1、提公因式法 例:
练习:
15.4.3 公式法(一)
教学目标
1.知识与技能
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.
教学过程
一、观察探讨,体验新知
【问题牵引】
请同学们计算下列各式.
(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【学生活动】动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学
【例1】把下列各式分解因式:(投影显示或板书)
(1)x2-9y2; (2)16x4-y4;
(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
【学生活动】分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、随堂练习,巩固深化
课本P168练习第1、2题.
【探研时空】
1.求证:当n是正整数时,n3-n的值一定是6的倍数.
2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.
四、课堂总结,发展潜能
运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
五、布置作业,专题突破
课本P171习题15.4第2、4(2)、11题.
板书设计
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 练习:
15.4.3 公式法(二)
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.