三角形内角和教学设计

短文网

2025-08-26教案

短文网整理的三角形内角和教学设计(精选25篇),快来看看吧,希望对您有所帮助。

三角形内角和教学设计 篇1

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的`三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1、猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2、操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1、用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2、汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

3、课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

三角形内角和教学设计 篇2

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的`形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1、猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2、操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1、用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2、汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

3、课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

三角形内角和教学设计 篇3

一、教材分析

(一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。 “三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

(二)教学目标

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。

2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。

3、解决问题:会用三角形内角和解决一些实际问题。

4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。

(三)重难点的确立:

1、重点:“三角形的内角和等于180°”结论的探究与应用。

2、难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

二、学情分析

处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

基于以上的情况,我确立了本节课的教法和学法:

三、教法、学法

(一)教法

基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。

(二)学法

通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

四、教学过程

我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。

具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的.积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。

前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。

通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。

活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。

活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。

活动6的设计目的发挥学生主体意识,培养学生语言概括能力。

【教学设计说明】

1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用?问题情境——建立模型——解释、应用与拓展?的模式展开,让学生经历知识的形成与应用的过程…… ”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功、

2、体现自主学习、合作交流的新课程理念、无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用、

3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。

三角形内角和教学设计(集合15篇)

在教学工作者实际的教学活动中,很有必要精心设计一份教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。教学设计应该怎么写呢?以下是小编帮大家整理的三角形内角和教学设计,欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计 篇4

【教学资料】

《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页

【教学目标】

1、透过"量一量","算一算","拼一拼","折一折"的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、透过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想、

3、透过数学活动使学生获得成功的体验,增强自信心、培养学生的创新意识,探索精神和实践潜力、

【教学重难点】

理解并掌握三角形的内角和是180度

【教具学具准备】

多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。

【教学流程】

(一)创设情境,激发兴趣

此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)

师:请大家仔细观察,它把这条绳子围成了什么三角形?

(课件)

师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?

生答

师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)

【评析:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习了热情。】

(二)动手操作,探索新知

1、揭示“内角”和“内角和”的概念

(1)“内角”的概念

(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?

每人从学具筐中任选一个三角形,指出它的内角。

(2)“内角和”的概念

师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?

师小结:三角形的内角和就是三个内角的度数之和。

2、猜测内角和

(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?

(2)直角三角形与钝角三角形同上。

(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.

3、动手验证,汇报交流

(1)介绍学具筐

刘老师为每个小组准备了一个学具筐,里面有不同的学习了材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?

(2)生独立思考,动手操作

(3)组内交流

经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。

(4)全班汇报交流

师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。

A、测量法

活动记录表

三角形的形状每个内角的度数三个内角和

∠1∠2∠3

学生汇报测量结果。

师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?

生发表观点

师小结:看来采用测量的方法会有误差,学习了数学要用这种严谨的态度来对待,咱们再看看别的方法。

B、撕拼法

请用撕拼方法的学生上台展示撕拼的过程。

师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?

师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。

师:透过他们三个人的验证,你得到了什么结论?

C、其他方法

师:条条大路通罗马,还有别的验证方法吗?

如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。

师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?

【评析:《标准》指出:“教师应激发学生的用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的`过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”在教学设计中刘老师注意体现这一理念,允许学生根据已有的知识经验进行猜测,在猜测后先独立思考验证的方法,再进行小组交流。给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列实验活动中理解和掌握三角形内角和是180°这个图形性质。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习了,在活动中发展。】

4、科学验证方法

师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)

【评析:一方面使学生为自己猜想的结论能被证明而产生满足感;另一方面使学生体会到数学是严谨的,从小就就应让学生养成严谨、认真、实事求是的学习了态度。】

(三)课外拓展,积淀文化

师:明白三角形内角和的秘密最早是由谁发现的吗?(放课件)

师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。

【评析:适当的引入课外知识,它既能够激发学生的学习了兴趣,又有机的渗透了向帕斯卡学习了,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的构成与发展能起到了潜移默化的作用。】

(四)应用新知,解决问题

明白了这个结论能够帮忙我们解决那些问题呢?

1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?

师:大三角形的内角是哪些?指出来

师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?

师小结:三角形无论大小,内角和都是180°。

【评析:透过课件动态演示两个三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,使学生认识到三角形的内角和不因三角形的大小而改变。】

2、想一想,做一做

在一个三角形ABC中,已知A45°,B85o,求с的度数。

在一个直角三角形中,已知с52o,求Α的度数。

爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

【评析:将三角形内角和知识与三角形特征有机结合起来,使学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。】

3、思考:

你能画出一个有两个直角或两个钝角的三角形吗?为什么?

【评析:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。】

(五)全课小结,完善新知

1、学生谈收获

2、师小结

这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。

【评析:这样用谈话的方式进行总结,不仅仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。】

【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:

1、精心设计学习了活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习了材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。

2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习了态度和探究精神。

3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习了置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习了情感。

整节课的学习了资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长、

三角形内角和教学设计 篇5

教学内容:

人教版四年级下册第85面——87面。

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。

3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的发现过程。

教学准备:

教具:多媒体课件、三角板一个、两个完全一样的直角三角形。

学具:锐角三角形、直角三角形、钝角三角形各一个。

教学过程:

(一)创设情境,提出问题。

师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,今天老师还给大家带来了一个老朋友,请看,是什么?

生:三角形!

师:前面我们已经认识了三角形,谁能给大家介绍一下?

学生讲学过的三角形知识。

(学生叙述到部分主要内容即可)

师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)

师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?

师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。

师:有谁知道这个三角形三个内角的度数?

(FLASH:生说完后师点击出第二个三角形,边说边点出度数)

[U1]试一试,看谁算得快。

师:谁来说说自己的计算过程?

[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是180度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生:……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致,想不想验证一下你们的'猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

[U3]

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

(预设:如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师:那请你说一下你度量的结果好吗?

(生汇报度量结果)

师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?

生:180度。

师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

三角形内角和教学设计 篇6

教学目标:

1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:

探索和发现“三角形内角和是180°”。

教学难点:

验证“三角形内角和是180°,以及对这一知识的灵活运用。”

教具准备:

三角形,多媒体课中。

教学过程设计:

一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

二、探究新知:

(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

(二)、拼一拼

引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

引导学生得出:三角形内角和等于180°

(三)折一折

引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展

1、填一填

①直角形三角形的两个锐角和是()度。

②直角三角形的.一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()

2、火眼金晴

①钝角三角形的两个钝角和大于90°()。

②直角三角形的两个锐角之和正好等于90°()。

③淘气画了一个三个角分别是50°,70°,50°的三角形()

④两个锐角是60°的三角形是等边三角形()

⑤长方形的内角和等于360°()。

3、猜一猜:四边形的内角和是多少度?

五边形的内角和是多少度?

四、小结,今天学习了什么?你有什么收获?

三角形内角和教学设计 篇7

教学要求

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

教学重点

三角形的内角和是180°的规律。

教学难点

使学生理解三角形的内角和是180°这一规律。

教学用具

每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、出示预习提纲

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?

3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

二、展示汇报交流

1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4、指名学生汇报各组度量和计算的'结果。你有什么发现?

5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。

12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13、出示教材85页做一做。让学生试做。

14、指名汇报怎样列式计算的。两种方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

课后反思:

对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

三角形内角和教学设计 篇8

【教材分析】:

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

【教学目标】

知识与技能

1.理解和掌握三角形的内角和是180度。

2.运用三角形的内角和的知识解决实际问题。

过程与方法

经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。

情感态度与价值观

在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。

【教学重点】

重点:理解和掌握三角形的内角和是180度。

突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。

【教学难点】

用三角形的内角和解决实际问题。

突破方法:推理分析计算。运用推理,正确计算。

教法:质疑

【教学方法】

引导,演示讲解。

学法:实践操作,小组合作。

【教学准备】:

多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。

【教学时间】

一课时

【教学过程】

一.创设情境,引入新课

师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?

生:三类,分别为锐角三角形,直角三角形,钝角三角形。

师:嗯,真好,那么对边的分类呢?

生:俩类,分别为等腰三角形,等边三角形。

师:老师想让同学们帮老师画一个三角形,能做到吗?

生:能。

师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)

师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。

生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。

师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?

生:想。

师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)

(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)

二.探究新知

师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的'是什么样子的三角形。

生1:锐角三角形。

生2:直角三角形。

生3:钝角三角形。

师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?

生:里面的三个角,可以用角1,角2,角3来表示。

师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?

生:三角形的内角和是180度。

师:那么我们能不能一起用一些好的办法来验证一下呢?

生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。

师:还有其他的办法吗?

生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。

生3:我可以用折的方法,把三个角的度数折在一起。

师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。

(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)

三.总结任意三角形的内角和是180度并做适当练习。

四.板书设计

三角形的内角和

量一量锐角三角形:75度+48度+58度=181度

直角三角形:90度+45度+45度=180度

钝角三角形:120度+38度+22度=180度

拼一拼图形呈现

折一折图形呈现

三角形内角和教学设计 篇9

教学内容:

四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

教学目标:

1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

教学重点:

让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

教学难点:

探究和验证“三角形内角和等于180°”。

教学准备:

学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

教学过程:

一、创设情境,产生疑问

1、理解内角和含义。

2、故事激趣

提问:三兄弟围绕什么问题在争吵?你有什么看法?

二、自主学习,合作探究

1、提出猜想。

(1)计算三角板的内角和。

(2)提出猜想。

提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?

指出:“三角形的'内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

引导:需用更多的三角形验证。

2、进行验证。

(1)验证教师提供的三角形。

测量:任意三角形的内角和。

①小组合作:用量角器量出信封里不同三角形的内角和。

②交流测量结果。

③提问:根据测量结果,你能得出什么结论?

拼一拼:把一个三角形的三个角拼在一起。

①思考:除了量,还可以用什么方法验证呢?

②同桌合作:尝试把三个内角拼成一个平角。

③反馈不同的拼法。

④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

解释误差问题。

(2)验证学生自己画的三角形。

学生任意画一个三角形,用自己喜欢的方法去验证。

交流:自己画的三角形验证出来内角和是1800吗?有谁验证

出来不是1800的吗?

提问:你又能得到什么结论?还有怀疑吗?

3、得出结论。

指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

解决争吵:学生用三角形内角和的知识劝解三兄弟。

三、巩固应用,深刻感悟

1、算一算:求三角形中未知角的度数。

2、拼一拼:用两块相同的三角尺拼成一个三角形。

思考:拼成的三角形内角和是多少?

3、画一画:(1)你能画出一个有两个锐角的三角形吗?

(2)你能画出一个有两个直角的三角形吗?

(3)你能画出一个有两个钝角的三角形吗?

四、全课总结,课后延伸

1、学生自主总结一节课的收获。

2、介绍帕斯卡。

3、用三角形拼成四边形、五边形、六边形,引发新的问题。

三角形内角和教学设计 篇10

教学目标:

1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

教学难点:

通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"

教师准备:

4组学具、课件

学生准备:

量角器、练习本

教学过程:

一、兴趣导入,揭示课题

1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"

(生出示三角形并汇报各类三角形及特点)

2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

3、我们来帮帮它们好吗?

4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

你能标出三角形的三个角吗?(生快速标好)

数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)

"同学们,用什么方法能知道三角形的内角和?"

二、猜想验证,探究规律 (动手操作,探究新知)

1.量角求和法证明:

先听合作要求:拿出准备的一大一小的`两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人 量,一人记录,一人计算,看哪一小组完成的好?

(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。

(2)指名汇报各组度量和计算内角和的结果。

(3)观察:从大家量、算的结果中,你发现什么?

归纳:大家算出的三角形内角和都等于或接近180°。

(5)思考、讨论:

通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?

大家讨论讨论。

现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?

看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。

看老师最终把三个角拼成了一个什么角?平角。是多少角?

"180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180 度的平角就可以验证这个结论,对吗?"(课件3)

现在,我们可验证三角形的内角和是(180度)?

2、那么对任意三角形都是这个结论?请看大屏幕。

演示锐角三角形折角。 (三个顶点重合后是一个平角,折好后是一个长方形。)

你们想不想去试一试。

1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)

2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)

a、验证直角三角形的内角和

折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?

引导生归纳出:直角三角形的内角和是180°

折法2 我们还可以得出什么结论?

引导生归纳出:直角三角形中两个锐角的和是90°。

(即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)

b、验证锐角、钝角三角形的内角和。

归纳:锐角、钝角三角形的内角和也是180°。

放手发动学生独立完成 ,逐一种类汇报 师给予鼓励

三、总结规律

刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?

(三角形的内角和是180°。)

(教师板书:三角形的内角和是180°学生齐读一遍。)

为什么用测量计算的方法不能得到统一的结果呢?

(量的不准。有的量角器有误差。)

老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应

四、应用新知,知识升华。

(让学生体验成功的喜悦)

现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?

(课件5……)

在一个三角形中,有没有可能有两个钝角呢?

(不可能。)

追问:为什么?

(因为两个锐角和已经超过了180°。)

有两个直角的一个三角形

(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

问:那有没有可能有两个锐角呢?

(有,在一个三角形中最少有两个内角是锐角。)

1、 看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2、做一做:

在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数、

3、27页第3题(数学信息较为隐藏和生活中的实际问题)

4.思考题、

五、总结

今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。

板书设计:

三角形内角和

量一量 拼一拼 折一折

三角形内角和是180°

三角形内角和教学设计 篇11

三角形内角和教学设计

一、教学目标

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

二、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

三、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

四、教学过程:

一、创设情境揭示课题。

师:猜谜语形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

师:前面我们已经认识三角形,谁能给大家介绍一下?学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀?生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角?三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

今天我们就来研究有关三角形内角和的知识。(板书课题)

二、探索交流,解决问

(一)、大胆猜想,产生分歧

师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的意见,有的同学认为大三角形的'内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

(二)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形?生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊?生齐:180°。

师:那??其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊?生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度?生:180 °

师:(出示一个很小的三角形)它呢?生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

三、巩固应用,内化提高

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

四、回顾整理,反思提升

通过今天的学习,大家有什么收获?

拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

三角形内角和教学设计 篇12

【设计理念】

新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

教材内容】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

【学情分析】

1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

【教学目标】

1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

【教学重点】

探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

【教学难点】验证“三角形的内角和是180°”。

【教(学)具准备】

多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

【教学步骤】

一、复习旧知 引出课题

1、你已经知道有关三角形的哪些知识?

2、出示课题:三角形的内角和

设计意图:也自然导入新课。

二、提出问题 引发猜想

1、提出问题:看到这个课题,你有什么问题想问的?

预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?

(3)三角形的内角一共是多少度?

2、引发猜想

猜一猜:三角形的内角和是多少度?你是怎么猜的?

设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

三、操作验证 形成结论

1、交流验证方法:

(1)用什么方法证明三角形的内角和是180度呢?

预设: ①量算法 ②剪拼法 ③折拼法等

(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的'操作过程怎么分工才会做到省时又高效?

2、动手验证

3、全班汇报交流

4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

5、方法拓展

推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

6、形成结论:任意三角形的内角和是180 °。

设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

四、应用结论 解决问题

1、巩固新知:想一想,算一算。

2、解决问题:等腰三角形风筝的顶角是多少度?

3、辨析训练,完善结论。

五、课堂总结,归纳研究方法

今天这节课你学到了哪些知识?你是怎样得到这些知识的?

六、课后延伸:用今天所学的方法继续研究四边形的内角和。

七、板书设计:

三角形的内角和

猜测: 三角形的内角和是180°?

验证: 量 拼

结论: 任意三角形的内角和是180°

三角形内角和教学设计 篇13

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标: 让学生体会几何图形内在的结构美。

【教学过程】

一、 情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180°。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

……

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

实验报告单

实验名称

三角形内角和

实验目的

探究三角形内角和是多少度。

实验材料

尺子

剪刀

量角器

锐角三角形纸片

直角三角形纸片

钝角三角形纸片

我的方法

我的发现

我的表现

自评

互评

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和等于180°

(设计意图:各学习小组汇报自己的'验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

∠A=180°-30°-90°=60°。

生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方 法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

三角形内角和教学设计 篇14

【设计理念】

新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

教材内容】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

【学情分析】

1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

【教学目标】

1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

【教学重点】

探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

【教学难点】验证“三角形的内角和是180°”。

【教(学)具准备】

多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

【教学步骤】

一、复习旧知 引出课题

1、你已经知道有关三角形的哪些知识?

2、出示课题:三角形的内角和

设计意图:也自然导入新课。

二、提出问题 引发猜想

1、提出问题:看到这个课题,你有什么问题想问的?

预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?

(3)三角形的内角一共是多少度?

2、引发猜想

猜一猜:三角形的内角和是多少度?你是怎么猜的`?

设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

三、操作验证 形成结论

1、交流验证方法:

(1)用什么方法证明三角形的内角和是180度呢?

预设: ①量算法 ②剪拼法 ③折拼法等

(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

2、动手验证

3、全班汇报交流

4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

5、方法拓展

推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

6、形成结论:任意三角形的内角和是180 °。

设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

四、应用结论 解决问题

1、巩固新知:想一想,算一算。

2、解决问题:等腰三角形风筝的顶角是多少度?

3、辨析训练,完善结论。

五、课堂总结,归纳研究方法

今天这节课你学到了哪些知识?你是怎样得到这些知识的?

六、课后延伸:用今天所学的方法继续研究四边形的内角和。

七、板书设计:

三角形的内角和

猜测: 三角形的内角和是180°?

验证: 量 拼

结论: 任意三角形的内角和是180°

三角形内角和教学设计 篇15

教学目标:

1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:

探索和发现“三角形内角和是180°”。

教学难点:

验证“三角形内角和是180°,以及对这一知识的灵活运用。”

教具准备:

三角形,多媒体课中。

教学过程设计:

一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的.三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

二、探究新知:

(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

(二)、拼一拼

引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

引导学生得出:三角形内角和等于180°

(三)折一折

引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展

1、填一填

①直角形三角形的两个锐角和是()度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()

2、火眼金晴

①钝角三角形的两个钝角和大于90°()。

②直角三角形的两个锐角之和正好等于90°()。

③淘气画了一个三个角分别是50°,70°,50°的三角形()

④两个锐角是60°的三角形是等边三角形()

⑤长方形的内角和等于360°()。

3、猜一猜:四边形的内角和是多少度?

五边形的内角和是多少度?

四、小结,今天学习了什么?你有什么收获?

三角形内角和教学设计 篇16

设计思路

本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

学具:三角形

教学过程

一、引入

(一)认识三角形的内角及三角形的内角和

师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:……

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究三角形内角和

(一)猜一猜。

师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

(二)操作、验证三角形内角和是180°。

1、量一量三角形的内角

动手量一量自己手中的三角形的内角度数。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?

学生汇报结果。

师:请汇报自己测量的结果。

生1:180°。

生2:175°。

生3:182°。

……

2、拼一拼三角形的内角

学生操作

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?(学生操作)

生:把它们剪下来放在一起。

师:很好。

汇报验证结果。

师:通过拼合我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的`结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

3、折一折三角形的内角

师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

如果学生说不出来,教师便提示或示范。

学生操作

4、小结:三角形的内角和是180°。

三、解决疑问。

师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

师:在一个三角形中,有没有可能有两个钝角呢?

生:不可能。

师:为什么?

生:因为两个锐角和已经超过了180°。

师:那有没有可能有两个锐角呢?

生:有,在一个三角形中最少有两个内角是锐角。

四、应用三角形的内角和解决问题。

1、下面说法是否正确。

钝角三角形的内角和一定大于锐角三角形的内角和。()

在直角三角形中,两个锐角的和等于90度。()

在钝角三角形中两个锐角的和大于90度。()

④一个三角形中不可能有两个钝角。()

⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

3、游戏巩固。

由一个同学出题,其它同学回答。

(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

五、全课总结。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

反思:

在本节课的学习活动过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。再引导学生用折三角形的方法也能验证三角形的内角和是180°。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

但因为是借班上课,对学生了解不多,学生前面的内容(三角形的特性和分类)还没学好,所以有些练习学生就没有预想的那么得心应手,如:知道等腰三角形的顶角求底角的题,学生掌握比较困难。

三角形内角和教学设计 篇17

教学目标:

1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:

课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、课件出示三角形的争吵画面

锐角三角形:我的内角和度数最大。

直角三角形:不对,是我们直角三角形的内角和最大。

钝角三角形:你们别吵了,还是钝角三角形的内角和最大。

师:此时,你想对它们说点什么呢?

2、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和(课件)

师:内角和指的是什么?

生:三角形的三个内角的度数的和,就是三角形的内角和。

2、看一看,算一算。

师:算一算两个三角尺的内角和是多少度?(课件)

学生计算

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3、操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的.三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4、学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

师:此时,你想对争论的三个三角形说些什么呢?

5、小结。

三角形的内角和是180度。

三、解决相关问题

1、在能组成三角形的三个角后面画“√”(课件)

2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)

3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)

四、练习巩固

1、看图,求三角形中未知角的度数。(课件)

2、求三角形各个角的度数。(课件)

五、总结。

师:这节课你有什么收获?

六、板书设计:

三角形的内角和是180°

三角形内角和教学设计 篇18

教材内容:

北师大版义务课程标准实验教材四年级下册。

教学目标:

1、经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和180°。在实验活动中,体验探索的过程和方法。

2、掌握三角形内角和是180°这一性质,并能应用这一性质解决一些简单的问题。

3、经历探究过程,发展推理能力,感受数学的逻辑美。

教学难点、重点:经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和规律。

教具准备:直角三角形、锐角三角形、钝角三角形各3个,大三角形、小三角形各1个。

学具准备:直角三角形、锐角三角形、钝角三角形各3个。

教学设计意图:

“三角形的内角和180°”是三角形的一个重要性质,教材通过多种方法的操作实验,让学生确信这一个性质的正确性。根据学生已有的知识经验和教材的内容特点,本着“学生的数学学习过程是一个自主构建自己对数学知识的理解过程”的教学理念,采用探究式教学方式,让学生经历观察、猜想、实验、反思等数学活动,体验知识的形成过程。整个教学设计力求改变学生的学习方式,突出学生的主体性。在教师的组织引导下,让学生在开放的学习过程中,自始至终处于积极状态,主动参与学习过程,自主地进行探索与发现,多角度和多样化地解决问题,从而实现知识的自我建构,掌握科学研究的方法,形成实事求事的科学探究精神。

教学过程:

活动一:设疑激趣

师:我们已经认识了三角形,关于三角形你知道了什么?

生1:三角形有3条边、3个角。

生2:三角形按角分可以分为锐角三角形、直角三角形、钝角三角形;三角形按边分可以分为等腰三角形和不等边三角形。

生3:每种三角形都至少有两个锐角。

师:三角形有3个角,这3个角又叫三角形的内角。三角形按内角的不同分为锐角三角形、直角三角形、钝角三角形。

师:能不能画一个含有两个直角或两个钝角的三角形呢?为什么?

生1:我试着画过,画不出来。

生2:因为每个三角形至少有两个锐角,所以不可能画出含有两个直角或两个钝角的三角形。

生3:三角形的内角和是180°,两个直角的和已经是180°,所以不可能。

师:你能解释一下什么是“三角形的内角和”吗?你是怎样知道“三角形的内角和是180°”的?

生:把三角形的三个内角的度数相加就是三角形的内角和。“三角形的内角和是180°”我是从书上看到的。

师:你验证过了吗?

生:没有。

师:三角形的内角和是不是180°?咱们还没有认真地研究过,接下来,我们就一起来研究三角形的内角和。

设计意图:“我们已经认识了三角形,关于三角形你知道什么?”课一开始,教师就设计了一个空间容量比较大的问题,旨在让学生自主复习三角形的有关知识,引出三角形的内角概念。然后创设一个能激发学生探究欲望的问题:“能不能画出一个含有两个直角或两个钝角的三角形呢?”有的学生通过动手画,发现一个三角形中不可能有两个直角或两个钝角;有的学生认为三角形的内角和是180°,两个直角的和已是180°,所以不可能。这种认识可能来自于书本,也可能来自于家长的辅导,但学生对于“三角形的内角和是180°”的体验是没有的,学生对所学的知识仅仅还是一种机械的识记,因此“三角形的内角和是否为180°”就成了学生急切需要探究的问题。

活动二:自主探究

师:请同学们拿出课前准备的材料,自己想办法验证三角形的内角和是不是180。?

学生动手操作验证。

师:请大家静静地思考1分钟,将刚才的实验过程在脑中梳理一下。现在请把自己的研究过程、结果跟大家交流一下。

生1:我是用量角器测量的,我量的是直角三角形:

90。+ 42。+47。=179。

生2:我量的也是直角三角形:

90。+43。+48。=181。

生3:我量的是锐角三角形:

32。+65。+83。=180。

生4:我量的是钝角三角形:

120。+32。+30。=182。

生5:……

师:看到这些度量结果,你有什么想法?

生1:为什么他们测量的结果会不相同?

生2:也许我们测量的方法不精确。

生3:也许我们的量角器不标准。

生4:也可能三角形的内角和不一定都是180°。

师:是呀,用量角器度量容易出现误差,但这些度量的结果还是比较接近的,都在180°左右。

师:有没有没使用量角器来验证的呢?

生:我是用三个相同的三角形来接的(如图)。∠1、∠2、∠3刚好拼成一个平角,所以三角形的内角和是180°。

师:你怎么知道这三个角拼成的大角刚好是一个平角呢?有办法验证吗?

生1:用量角器测量不就知道了吗?

生2:用三角板的两个直角去拼来验证。

生3:因为平角的两条边成一条直线,所以可用直尺来检验。

生4:再拿三个相同的三角形按上面的方法进行拼,这样6个相同的三角形,中间就可以拼出一个周角(如图),周角的一半刚好是平角。

师:通过刚才的验证,可以说明∠1、∠2、∠3拼成的角是平角,那么锐角三角形的三个内角能拼成一个平角吗?钝角三角形呢?请大家试一试。师:如果现在只有一个三角形怎么办?

生:我是将锐角三角形的三个角分别撕下来,拼成一个平角,平角是180°所以锐角三角形的内角和是180°。

师:直角三角形、钝角三角形行吗?来试一试。

生1:老师,不剪下三角形的三个内角也可以验证。只要将三角形的三个内角折拼在一起,看看是不是拼成一个平角就可以了。

师:大家就用折拼的方法试一试。

学生操作验证。

师:刚才我们除了用量角器度量的方法,同学们还想出了其他一些方法:用三个相同的三角形拼、剪拼、折拼等方法,这些方法形式上看起来不一样,其实有共同点吗?

生:都是将三角形的`三个内角拼在一起,组成一个平角来验证三角形的内角和是不是180°。

师:通过上面的实验,你可以得出什么结论?

生:三角形的内角和是180。

师:是任意三角形吗?刚才我们才验证了几个三角形呀?怎么就可以说是任意三角形呢?

生:三角形按角分只有锐角三角形、直角三角形、钝角三角形三种,刚才我们都验证过了。

师:(出示一个大三角形)它的内角和是多少度?如果将这个三角形缩小(出示一个小三角形),它的内角和又是多少度?为什么?

生:三角形的三条边缩短了,可它的三个角的大小没变,所以它的内角和还是180。

师生小结:三角形不论形状、大小,它的内角和总是180。

设计意图:学生明确探究主题后,教师只为学生提供探究所需的材料,而不直接给出实验的方法和程序,激励学生自己想办法实验验证,获得结论。然后引导学生交流、评价、反思与提升。验证过程中较好地体现了解决同一问题思维方法,验证策略的多样性。促进了学生发散思维能力的提高,提升了思维品质。

活动三:应用拓展

1、计算下面各个三角形中的∠B的度数。

师:(图2)怎样求∠B?

生:180。-90。-55。=35。

师:还有不同的解法吗?

生:180。÷2-55。=35。,因为三角形的内角和是180。,其中一个直角是90。,另外两个锐角的和刚好是90。

师:是不是任意一个直角三角形的两锐角和都是90。呢?能验证一下吗?

生:因为任意三角形的内角和是180。,其中一个直角是90。,所以其他两个锐角的和肯定是90。

师:有没有反对意见或表示怀疑的?从中我们可以发现一条什么规律?

生:直角三角形的两个锐角和是90。

2、一个等腰三角形顶角是90。,两个底角分别是多少度?

3、等边三角形的每个内角是多少度?

师:现在你能解决为什么一个三角形里不能有两个直角或两个钝角吗?

生:略。

师:通过这节课的学习,你还有什么疑问或还想研究什么问题?

生:三角形有内角和,三角形有外角和吗?

师:你知道三角形的外角在哪儿吗?三角形有外角和,它的外角和是多少度呢?有兴趣的同学请课后研究。

课末,教师激励学生提出新的问题:通过这节课的学习,你还有什么疑问或者还想研究什么问题?培养学生的问题意识,同时让学生带着问题走出教室,拓展学生数学学习的时间和空间。

三角形内角和教学设计 篇19

教学内容:

四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

教学目标:

1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

教学重点:

让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

教学难点:

探究和验证“三角形内角和等于180°”。

教学准备:

学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

教学过程:

一、创设情境,产生疑问

1、理解内角和含义。

2、故事激趣

提问:三兄弟围绕什么问题在争吵?你有什么看法?

二、自主学习,合作探究

1、提出猜想。

(1)计算三角板的'内角和。

(2)提出猜想。

提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?

指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

引导:需用更多的三角形验证。

2、进行验证。

(1)验证教师提供的三角形。

测量:任意三角形的内角和。

①小组合作:用量角器量出信封里不同三角形的内角和。

②交流测量结果。

③提问:根据测量结果,你能得出什么结论?

拼一拼:把一个三角形的三个角拼在一起。

①思考:除了量,还可以用什么方法验证呢?

②同桌合作:尝试把三个内角拼成一个平角。

③反馈不同的拼法。

④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

解释误差问题。

(2)验证学生自己画的三角形。

学生任意画一个三角形,用自己喜欢的方法去验证。

交流:自己画的三角形验证出来内角和是1800吗?有谁验证

出来不是1800的吗?

提问:你又能得到什么结论?还有怀疑吗?

3、得出结论。

指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

解决争吵:学生用三角形内角和的知识劝解三兄弟。

三、巩固应用,深刻感悟

1、算一算:求三角形中未知角的度数。

2、拼一拼:用两块相同的三角尺拼成一个三角形。

思考:拼成的三角形内角和是多少?

3、画一画:(1)你能画出一个有两个锐角的三角形吗?

(2)你能画出一个有两个直角的三角形吗?

(3)你能画出一个有两个钝角的三角形吗?

四、全课总结,课后延伸

1、学生自主总结一节课的收获。

2、介绍帕斯卡。

3、用三角形拼成四边形、五边形、六边形,引发新的问题。

三角形内角和教学设计 篇20

一、教材分析

(一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。 “三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

(二)教学目标

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。

2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。

3、解决问题:会用三角形内角和解决一些实际问题。

4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。

(三)重难点的确立:

1、重点:“三角形的内角和等于180°”结论的探究与应用。

2、难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

二、学情分析

处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

基于以上的情况,我确立了本节课的教法和学法:

三、教法、学法

(一)教法

基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的'积极性和主动性,并提高课堂效率。

(二)学法

通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

四、教学过程

我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。

具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。

前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。

通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。

活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。

活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。

活动6的设计目的发挥学生主体意识,培养学生语言概括能力。

【教学设计说明】

1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用?问题情境——建立模型——解释、应用与拓展?的模式展开,让学生经历知识的形成与应用的过程…… ”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功、

2、体现自主学习、合作交流的新课程理念、无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用、

3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。

三角形内角和教学设计 篇21

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110,第三个内角是( )。

(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

(3)等边三角形的3个内角都是( )。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断

(1)一个三角形中最多有两个直角。()

(2)锐角三角形任意两个内角的和大于90。()

(3)有一个角是60的等腰三角形不一定是等边三角形。()

(4)三角形任意两个内角的和都大于第三个内角。()

(5)直角三角形中的两个锐角的和等于90。()

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

六、谈谈自己本节课的收获。

教学反思

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想研究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的'严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

三角形内角和教学设计13篇

作为一名无私奉献的老师,总不可避免地需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?下面是小编为大家整理的三角形内角和教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形内角和教学设计 篇22

教材内容:

北师大版义务教育课程标准实验教材四年级下册。

教学目标:

1、经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和180°。在实验活动中,体验探索的过程和方法。

2、掌握三角形内角和是180°这一性质,并能应用这一性质解决一些简单的问题。

3、经历探究过程,发展推理能力,感受数学的逻辑美。

教学难点、重点:经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和规律。

教具准备:直角三角形、锐角三角形、钝角三角形各3个,大三角形、小三角形各1个。

学具准备:直角三角形、锐角三角形、钝角三角形各3个。

教学设计意图:

“三角形的内角和180°”是三角形的一个重要性质,教材通过多种方法的操作实验,让学生确信这一个性质的正确性。根据学生已有的知识经验和教材的内容特点,本着“学生的数学学习过程是一个自主构建自己对数学知识的理解过程”的教学理念,采用探究式教学方式,让学生经历观察、猜想、实验、反思等数学活动,体验知识的形成过程。整个教学设计力求改变学生的学习方式,突出学生的主体性。在教师的组织引导下,让学生在开放的学习过程中,自始至终处于积极状态,主动参与学习过程,自主地进行探索与发现,多角度和多样化地解决问题,从而实现知识的自我建构,掌握科学研究的方法,形成实事求事的科学探究精神。

教学过程:

活动一:设疑激趣

师:我们已经认识了三角形,关于三角形你知道了什么?

生1:三角形有3条边、3个角。

生2:三角形按角分可以分为锐角三角形、直角三角形、钝角三角形;三角形按边分可以分为等腰三角形和不等边三角形。

生3:每种三角形都至少有两个锐角。

师:三角形有3个角,这3个角又叫三角形的内角。三角形按内角的不同分为锐角三角形、直角三角形、钝角三角形。

师:能不能画一个含有两个直角或两个钝角的三角形呢?为什么?

生1:我试着画过,画不出来。

生2:因为每个三角形至少有两个锐角,所以不可能画出含有两个直角或两个钝角的三角形。

生3:三角形的内角和是180°,两个直角的和已经是180°,所以不可能。

师:你能解释一下什么是“三角形的内角和”吗?你是怎样知道“三角形的内角和是180°”的?

生:把三角形的三个内角的度数相加就是三角形的内角和。“三角形的内角和是180°”我是从书上看到的。

师:你验证过了吗?

生:没有。

师:三角形的内角和是不是180°?咱们还没有认真地研究过,接下来,我们就一起来研究三角形的内角和。

设计意图:“我们已经认识了三角形,关于三角形你知道什么?”课一开始,教师就设计了一个空间容量比较大的问题,旨在让学生自主复习三角形的有关知识,引出三角形的内角概念。然后创设一个能激发学生探究欲望的问题:“能不能画出一个含有两个直角或两个钝角的三角形呢?”有的`学生通过动手画,发现一个三角形中不可能有两个直角或两个钝角;有的学生认为三角形的内角和是180°,两个直角的和已是180°,所以不可能。这种认识可能来自于书本,也可能来自于家长的辅导,但学生对于“三角形的内角和是180°”的体验是没有的,学生对所学的知识仅仅还是一种机械的识记,因此“三角形的内角和是否为180°”就成了学生急切需要探究的问题。

活动二:自主探究

师:请同学们拿出课前准备的材料,自己想办法验证三角形的内角和是不是180。?

学生动手操作验证。

师:请大家静静地思考1分钟,将刚才的实验过程在脑中梳理一下。现在请把自己的研究过程、结果跟大家交流一下。

生1:我是用量角器测量的,我量的是直角三角形:

90。+ 42。+47。=179。

生2:我量的也是直角三角形:

90。+43。+48。=181。

生3:我量的是锐角三角形:

32。+65。+83。=180。

生4:我量的是钝角三角形:

120。+32。+30。=182。

生5:……

师:看到这些度量结果,你有什么想法?

生1:为什么他们测量的结果会不相同?

生2:也许我们测量的方法不精确。

生3:也许我们的量角器不标准。

生4:也可能三角形的内角和不一定都是180°。

师:是呀,用量角器度量容易出现误差,但这些度量的结果还是比较接近的,都在180°左右。

师:有没有没使用量角器来验证的呢?

生:我是用三个相同的三角形来接的(如图)。∠1、∠2、∠3刚好拼成一个平角,所以三角形的内角和是180°。

师:你怎么知道这三个角拼成的大角刚好是一个平角呢?有办法验证吗?

生1:用量角器测量不就知道了吗?

生2:用三角板的两个直角去拼来验证。

生3:因为平角的两条边成一条直线,所以可用直尺来检验。

生4:再拿三个相同的三角形按上面的方法进行拼,这样6个相同的三角形,中间就可以拼出一个周角(如图),周角的一半刚好是平角。

师:通过刚才的验证,可以说明∠1、∠2、∠3拼成的角是平角,那么锐角三角形的三个内角能拼成一个平角吗?钝角三角形呢?请大家试一试。师:如果现在只有一个三角形怎么办?

生:我是将锐角三角形的三个角分别撕下来,拼成一个平角,平角是180°所以锐角三角形的内角和是180°。

师:直角三角形、钝角三角形行吗?来试一试。

生1:老师,不剪下三角形的三个内角也可以验证。只要将三角形的三个内角折拼在一起,看看是不是拼成一个平角就可以了。

师:大家就用折拼的方法试一试。

学生操作验证。

师:刚才我们除了用量角器度量的方法,同学们还想出了其他一些方法:用三个相同的三角形拼、剪拼、折拼等方法,这些方法形式上看起来不一样,其实有共同点吗?

生:都是将三角形的三个内角拼在一起,组成一个平角来验证三角形的内角和是不是180°。

师:通过上面的实验,你 可以得出什么结论?

生:三角形的内角和是180。

师:是任意三角形吗?刚才我们才验证了几个三角形呀?怎么就可以说是任意三角形呢?

生:三角形按角分只有锐角三角形、直角三角形、钝角三角形三种,刚才我们都验证过了。

师:(出示一个大三角形)它的内角和是多少度?如果将这个三角形缩小(出示一个小三角形),它的内角和又是多少度?为什么?

生:三角形的三条边缩短了,可它的三个角的大小没变,所以它的内角和还是180。

师生小结:三角形不论形状、大小,它的内角和总是180。

设计意图:学生明确探究主题后,教师只为学生提供探究所需的材料,而不直接给出实验的方法和程序,激励学生自己想办法实验验证,获得结论。然后引导学生交流、评价、反思与提升。验证过程中较好地体现了解决同一问题思维方法,验证策略的多样性。促进了学生发散思维能力的提高,提升了思维品质。

活动三:应用拓展

1、计算下面各个三角形中的∠B的度数。

师:(图2)怎样求∠B?

生:180。-90。-55。=35。

师:还有不同的解法吗?

生:180。÷2-55。=35。,因为三角形的内角和是180。,其中一个直角是90。,另外两个锐角的和刚好是90。

师:是不是任意一个直角三角形的两锐角和都是90。呢?能验证一下吗?

生:因为任意三角形的内角和是180。,其中一个直角是90。,所以其他两个锐角的和肯定是90。

师:有没有反对意见或表示怀疑的?从中我们可以发现一条什么规律?

生:直角三角形的两个锐角和是90。

2、一个等腰三角形顶角是90。,两个底角分别是多少度?

3、等边三角形的每个内角是多少度?

师:现在你能解决为什么一个三角形里不能有两个直角或两个钝角吗?

生:略。

师:通过这节课的学习,你还有什么疑问或还想研究什么问题?

生:三角形有内角和,三角形有外角和吗?

师:你知道三角形的外角在哪儿吗?三角形有外角和,它的外角和是多少度呢?有兴趣的同学请课后研究。

课末,教师激励学生提出新的问题:通过这节课的学习,你还有什么疑问或者还想研究什么问题?培养学生的问题意识,同时让学生带着问题走出教室,拓展学生数学学习的时间和空间。

三角形内角和教学设计 篇23

一、教学目标:

1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。

2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

3、在探索和发现三角形内角和的过程中获得成功的体验。

二、教学重、难点:

重点:探索并发现三角形内角和等于180°。

难点:运用三角形内角和等于180°的性质解决一些实际问题。

教具:课件、三角形若干。

学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。

三、教学过程

(一)创设情境,导入新课

我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?

教师放课件。

课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”

都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。

(板书课题:三角形内角和)

(二)自主探究,发现规律

1、探究三角形内角和的特点。

(1)检查作业,并提出要求:

昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。

小组活动记录表

小组成员的姓名

三角形的形状

每个内角的度数

三角形内角的和

(要求:填完表后,请小组成员仔细观察你发现了什么?)

②小组合作。

会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。

各组长进行汇报。发现了三角形的内角和都是180°左右。

师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。

2、验证推测。

那么同学们有没有什么办法知道三角形的.内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。

通过我们的验证我们可以得出三角形的内角和是180°。

板书:(三角形内角和等于180°。)

3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)

出示书28页,试一试第3题,并讲解。

说明:在直角三角形中一个锐角等于30°,求另一个锐角。

生独立做,再订正格式、以及强调不要忘记写度。

小结:同学们有没有不明白的地方?如果没有我们来做练习。

(三)巩固练习,拓展应用

1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?

完成,并填在书上。讲一讲直角三角形还有什么解法。

2、出示29页第2题。

说明:一个钝角三角形说:我的两个锐角之和大于90°。

一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。

3、画一画:

出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?

三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

(四)课堂总结

让学生说说在这节课上的收获!

三角形内角和教学设计 篇24

一、教材分析:

《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第二单元认识图形中的一个教学资料。这部分资料是在学生学习了了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习了的基础。教材透过实际操作,引导学生用实验的方法探索规律,概括出一般结论,即任意一个三角形,它的内角和都是180度。之后说明应用这一结论,在一个三角形中,已知两个角的度数,能够求出第三个角的度数。教材在编写上也深刻的体现出了让学生探究的特点,透过动手操作、小组合作探究,发现三角形内角和为180度。它的教学资料的核心思想体此刻,透过让学生透过直观操作,透过猜想―验证―结论的过程,来认识和体验三角形内角和的特点,在小组活动中,通量一量、拼一拼、折一折等进行猜想―验证数学的思想方法。

《三角形的内角和》在教学中,为解决数学思维的抽象性与小学生认知的矛盾,我为学生带给了足够探索的时间和空间,透过观察、操作、分析、推理、想像等活动来认识图形的特征,发展学生的空间观念和推理潜力,为学生进一步学习了打基础。

(1)首先透过“猜谜”即复习了了所学知识,又从中引出新课,有利于激发学生求知、探索的欲望,也调动了学生学习了的用心性。在得到,为什么同学们猜想的三角形和实际的三角形不同,提出了本节课所学重点知识――三角形内角和。透过猜想三角形内角和的度数,引发出要进行验证的数学思想。透过小组合作,利用不同类型的三角形进行实验。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。

(2)为了让学生深刻地理解三角形内角和的规律,设计了给出三角形两个角的角度,求第三个角;两块同样的三角尺拼成的一个大三角形的内角和又是多少呢并设计:拼成的是三个角都相等的三角形;拼成的是两个角相等,且有一个角是直角的三角形;拼成的是两个角相等,且有一个角是钝角的三角形。递进的两道题知识点应用的题目,把数学知识与生活紧密联系,培养了学生的求异思维,也感受到解决问题策略的多样性。拓展练习了:大三角形,剪下一个角也是一个(小三角形),剪下的小三形的内角和是多少度?那么剩下的图形是多少度?还原成一个大三角形又是多少度?及五边形、六边形等这些多边形的内角和你们能求出吗?进一步使学生加深对概念的理解,明确三角形的内角和是180度,这与它的大小开关无关。运用适度的延伸,激发学生广阔的想象空间,实践探索的欲望,做到让不同的学生学习了不同的数学。

二、学生分析:

(一)学生已有知识基础:(调查问卷,访谈)

1、学生已具备了角的度量,角的分类,三角形的认识,三角形的分类等知识。

2、明白等边三角形的每个角是60度,所以能算出“三角形内角和为180度。”学生明白三角形内角和是180度。但是不是所有的三角形都等于180度,学生还不肯定。

3、其中明白三角形内和是180度的学生有23人,占全班总人数的54、8%。

由此,我把自己的学习了目标设定为,让学生自己动手发现不同类型的三角形的内角和都是180度这个知识点上。

4、有少部分学生明白无论是大三角形还是小三角形,他们的内角和都等于180度。

(二)学生已有生活经验和已具备的潜力:学生具备了必须的动手操作潜力,和小组的合作交流潜力

(三)学生学习了该资料的困难:在小组合作过程中,由于中年级的孩子年龄不大,所以在动手操作过程中有的学生动作较慢,在小组合作谈论的过程中,有些学习了困难的学生小组合作潜力偏弱。(课堂中观察小组合作所得出)。

(四)学生学习了的兴趣(访谈):

1、自己动手发现三角形内角和为180度,对小组合作很感兴趣。

2、透过学习了,明白了三角形无论大小,它的内角和都是180度,对这个知识感到搞笑。

学习了方式和学法分析:主要是利用了小组合作学习了、伙伴交流

三、学习了目标:

1、让学生探索发现三角形的内角和是180°。

2、透过动作剪、摆、拼等活动提高学生的动手潜力和思维潜力,感受数学的转化思想;

3、培养学生主动探索、动手操作的潜力;发展学生的空间观念和初步的逻辑思维潜力;

过程与方法:(数学思考、解决问题)培养学生初步构成验证结论的意识及学生之间良好的合作学习了的习了惯。理解三角形的`内角和是180°,应用三角形内角和的知识解决实际问题。

4、情感态度价值观:渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神。

教学重点:让学生经历“三角形内角和是180度”这一知识的构成、发展和应用的全过程;明白三角形的内角和是180度并且能应用。

教学难点:三角形内角和是180度的探索和验证。

教学准备:学具准备:各种类型的三角形学具和学习了资料。

教具准备:各种类型的三角形教具、实物投影仪、FLASH动画课件。

四、教学过程:

一、创设情景,激发学生学习了兴趣(6分钟)

1、你们喜欢玩猜谜游戏么?我那里三个三角形,(贴出图形)

ABC

“你们能猜出这三个三角形分别是什么三角形么?”当学生猜A是锐角三角形时,教师拿去

彩色纸,

ABC

师质疑问:“怎样回事?”(只看到一个锐角不能判定是锐角三角形?要三个锐角才行。)

【“猜谜”即复习了了所学知识,又从中引出新课,有利于激发学生求知、探索的欲望,也调动了学生学习了的用心性。】

2、师:为什么看到一个直角或钝角就能够决定出是直角三角形或钝角三角形,而看到一个锐角却不能判定是锐角三角形,必须要三个锐角才能说是锐角三角形呢?(如果不能回答,请同学们看黑板上的这3个三角形都有什么共同点?任何一个三角形都有两个锐角。因为每一个三角形都有两个锐角,所以只看到一个锐角就不能决定它必须是锐角三角形。)

3、师:“既然每一个三角形都两个锐角,可不能够有两个直角或两个钝角呢?”,师:下面,请同学们画一个有两个直角的三角形。

师:你们画成功了吗?

师:你们想一想,为什么你们画不出?

师:看来,三角形的三个内角可能藏有必须的奥秘。这节课我们就来一齐研究三角形的内角和。(板书:三角形的内角和)

二、自主探索,合作交流(20分钟)

(一)看了这个课题,你想明白什么或者你有什么问题么?(什么是三角形的内角?内角和是什么意思?三角形的内角和是几度?学习了三角形的内角和有什么作用?)

1、理解“内角”。(2分钟)

师:什么是内角?谁想说说自己的想法?(学生说出自己的理解)

师:三角形的每个角都是三角形的内角(课件演示)。你明白一个三角形有几个内角呢?(三个)

2、理解“内角和”。(2分钟)

师:那我们再来想一想三角形的内角和指的是什么呢?能够和同桌说说自己的想法。(生说:就是把三角形的三个内角的度数加起来)为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它∠1、∠2、∠3,这三个角的度数和,就是这个三角形的内角和。

【扫清学生概念上存在的障碍,为深入理解三角形内角和打下了基础】

师:请同学们猜一猜,三角形的三个角加起来是多少度?(生180度),那么所有的三角形的内角和都是180度么?(教师补充板书:三角形内角和1800)(生不是很肯定),

(二)小组合作,探究学习了(16分钟)

师:老师在每个同学的桌子上都放了很多不同的三角形,还有量角器等学习了材料请同学们先独立思考采用什么方法来验证自己的猜想,再在小组里讨论,交流。

学生交流自己的想法,动手实践操作,验证自己的猜想。

(三)提出实验要求:

1、小组合作:

同学们能够用什么样的方法来证明三角形的内角和是1800,请同学们群众小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!

2、汇报交流。

谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是1800的?

生A:我们小组的方法是用量角器测量出三个内角的度数,求出和是1800。

师:你们的方法是分别测量三个内角的度数,那你测量的三个内角的度数分别是多少?(生汇报师板书)你觉得这个小组的方法怎样?(抽生评价)还有不同的方法吗?

生B:先假设是1800,测量出角1和角2的度数,算出第三个角的度数,再用量角器测量验证第三个角是否是算出的结果。(师:那你测量的两个角分别是多少度?怎样算出第三个角的度数,和量角器测量出的结果一样吗?)

师:这个小组的方法也巧妙,还有谁不同的方法?

生C:我是用剪拼的方法,是怎样剪拼的呢?上台来展示给我们大家瞧一瞧(投影仪)(生:把三角形的三个角剪下来后拼成一个平角)你剪的是什么三角形?那还有直角三角形、钝角三角形呢?请男同学拿出钝角三角形,女同学拿出直角三角形,迅速剪下三个角,看能否拼成一个平角。

能够拼成平角吗?那我们就说三角形的内角和是1800,还有同学在举手,请你说。

生D:折,将三角形的三个角折成一个平角。(你是怎样折的,快上来展示给我们大家瞧一瞧!

师:真是个心灵手巧的孩子,让我们把掌声送给他!动脑筋的同学真多,请你说。

生E:我是根据长方形的内角和是3600推理出三角形的内角和是1800。

师:能从不同的角度去思考问题,你真棒!

师小结:(课件演示)刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是1800,(师手指课题)你们真不错,在这句话后面加个什么号?加个感叹号!我为你们成功的学习了表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是1800”。(教师相应板书?改成!)

师:请同学们打开书27页,这就是我们这天学习了的一个新知识。

【透过小组合作中动手操作。加深对三角形内角和地认识,体验、发现三角形内角和性质的探索过程,透过同学之间的合作激发学生的学习了兴趣。】

〔点评〕让学生在猜测三角形的内角和是180度之后,用自己的方法予以验证,是本节课最重要的环节,主要有以下几个特点。

(1)、以知识为载体、过程与方法为媒介,把对学生情感态度价值观的培养落实在具体的学习了活动之中。学生对内角和的猜测缺乏必须的科学依据。在那里,教师要求学生用自己的方法进行验证,把知识的学习了与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。

(2)、知其然,还要知其所以然,让学生完整的经历学习了过程。教学透过学生动手量、折、剪、拼、计算、推理等多种方法,得出三角形的内角和是1800,不仅仅验证了自己的猜想,而且也充分第证明了给片面追求过程或者片面追求结果的教学行为以正确的引领,过程与结果是相互依靠,相互支持的整体。

(3)、面向全体学生,把学生是学习了的主体落在实处。小组合作是课程改革所倡导的一种新的学习了方式,但在具体采用这种方式却出现了一些偏差,往往片面追求形式,追求热热闹闹的场面,给教学造成了必须的负面影响。本节课,教师立足于学生的创新意识和实践潜力的培养,把学习了的时空还给学生,成功地开展了小组合作学习了,使学生在数学的海洋的遨游中展开思维的翅膀,用7种方法对三角形的内角和是180度进行了验证,也有效地培养了学生的发散思维潜力。

三、运用所学,解决问题(8分钟)

如果老师告诉你一个三角形的两个角的度数,你有本领说出还有一个角的度数吗?

1、求出下面各角的度数。(独立做在书上。)(3分钟)

2、(同桌伙伴活动)刚才同学们完成得都很好,下面我们一齐做一个拼三角形的游戏。

要求:用两个完全一样的三角尺(2组图片代替)拼成一个大三角形,并说出它的内角和是多少度?(5分钟)

(1)拼成的是三个角都相等的三角形。

(2)拼成的是两个角相等,且有一个角是直角的三角形。

(3)拼成的是两个角相等,且有一个角是钝角的三角形。―

反馈:那位同学愿意到前面来展示你的结果。

【设计意图:递进的两道题知识点应用的题目,把数学知识与生活紧密联系,培养了学生的求异思维,也感受到解决问题策略的多样性。】

四、拓展练习了。(机动)(4分钟)

1、那此刻同学们看我手中拿着的是一个什么图形(师手拿三角形)剪下一个角也是一个(小三角形),剪下的小三形的内角和是多少度?那么剩下的图形是多少度?还原成一个大三角形又是多少度?(2分钟)

【设计意图:旨在加深对概念的理解,进一步明确三角形的内角和是180度,这与它的大小开关无关】

2、运用三角形的内角和是180度,我们得到任意一个四边形的内角和是多少度(360度)那么(课件出示)五边形、六边形等这些多边形的内角和你们能求出吗?请同学们下去试一试。【让我们带着问题走进课堂,又带着问题走出课堂……】(2分钟)

[设计意图:适度的延伸,激发学生广阔的想象空间,实践探索的欲望,做到让不同的学生学习了不同的数学。]

五、总结(2分钟)

这天这节课你有什么收获?有什么遗憾?你还想明白些什么?

六、板书设计:

三角形内角和等于1800!

教学反思:三角形的内角和原本是初中一年级的资料,新课标把三角形的内角和作为四年级下册中三角形的一个重要组成部分,它是学生学习了三角形内角关系和其它多边形内角和的基础。很多学生已经明白了三角形的内角和是180度,但是为什么师80度,是不是所有的三角形内角和都是180度,就成为了学生学习了的重点与难点。因此让学生经历研究的过程,探索三角形内角和就成了本节课的重点。既让学生经历“再创造”————自己去发现、研究并创造出来。教师的任务不是把现成的东西灌输给学生,而是引导和帮忙学生去进行这种“再创造”的工作,最大限度调动其用心性并发挥学生能动作用,从而完成对新知识的构建和创造。本节课基本到达了要求,具体表此刻以下几个方面。

1、不断创设问题情景,激发了学生的探究兴趣。

对于小学生来说。学习了的用心性首先来源于兴趣,兴趣是学习了的最佳动力。如何让学生产生兴趣,要不活动本身搞笑,要不就是教师不断创设问题情景,呈现给学生“十分性”的问题,使学生感到奇异,激发学生参与学习了活动的欲望,并兴趣盎然的投入到学习了活动中去。本节课一开始透过一个“猜谜”的游戏让学生感觉搞笑,之后设置了一个悬念:为什么看到一个直角或钝角就能够决定出是直角三角形或钝角三角形,而看到一个锐角却不能判定是锐角三角形?在惊奇中产生了强烈的“要讨个说法”的学习了兴趣。当这个问题解决时,又一个问题随之而来“既然每一个三角形都两个锐角,那么为什么不会有两个直角或两个钝角呢?”给学生造成一种急切期盼的心理状态,具有强烈的诱惑力,激起学生探究和解决问题的浓厚兴趣,将学生自然的引入到对新知的探究中。

2、为学生营造了探究的情境。

学习了知识的最佳途径是由学生自己去发现,因为透过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应带给给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。上述教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生透过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。当学生验证掌握了三角形的内角和后,教师又及时提出:‘“你能研究出任意四边形、五边形、六边形甚至一百边形的内角和是多少度吗”,把课堂研究引向课外研究。

启示:

为了有效地上好课,教师无疑应当根据教学目标和课程资料,精心地设计教学过程。但是,这种设计不应当是铁定的限制教师教学框子,课堂上的教学操作也不应当是“教案剧”的照本上演。教学应对的是一个个活生生的、富有个性、具有独特生活经验的学生。课堂总是处于一种流变的状态,课堂上教学的情境无时不在变化,学生学习了的心态在变化,知识经验的积累状况也在变化,因此,我们教师在备课的过程中,要充分预计学生已有的知识水平,站在学生的角度来思考:如果自己是学生,我已懂了哪些知识?还有什么问题?教什么和怎样教,做到以“学”定“教”。在具体实施过程中,我们更应充分运用自己的教育机智,仔细倾听学生的发言,开放地吸纳各种信息,善于捕捉教育契机,及时调控自己的教学行为。只要坚持做到“为学习了而设计”、“为学生的发展而教”,那么我们的课堂将会更加生机勃勃,我们的学生就会产生智慧和欢乐,萌发出创造的火花。

附:《三角形内内角和》课前调查问卷

在你认为正确的答案后面“√”。

1、你明白有关三角形内角和的一些知识么?

A、明白B、不明白

我明白(知识)

2、三角形的内角和是()度。

3、所有的三角形的内角和都是相等的么?

A、相等B、不相等

三角形内角和教学设计 篇25

学习目标:

1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

4.能应用三角形内角和的性质解决一些简单的问题。

教具、学具准备:

课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中;一副三角板。

教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。

教学过程:

一、谈话导入

猜谜语:形状似座山,稳定性能坚

三竿首尾连,学问不简单

(打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)

师:就这么简单的一个三角形我们就得出了那么多的知识,你们

说数学知识神气不神奇?

今天我们还要继续研究三角形的新知识。

二、创设情境,引出课题,以疑激思

师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。

师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)

师:同学们,请你们给评评理:是这样吗?生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。

生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。

生3:当然是大三角形的内角和大了。

生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:

三角形的内角和)

三、动手操作,探究问题,以动启思

1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。

师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

(学生们能够很快求出每块三角尺的3个角的和都是180°)师:其他三角形的内角和也是180°吗?生A:其他三角形的内角和也是180°生B:其他三角形的内角和不是180°生C:不一定

2、小组合作探究:

师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的'报告”。

(1)、小组合作

,讨论验证方法(2)汇报验证方法、结果

师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎

样?

方法一:

生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)

生:不管什么三角形三个角都能拼成一个平角。

师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。

方法二:

生B:我们小组是用折的方法,同样得到三角形的内角和是180度。

师:请这位同学折来给大家看看。

生:3个角折成了一个平角。

师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)

师:说得真清楚。

方法三:

学生C:测量角的度数,再加起来。(填表)

师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)

问:你们发现了什么?

小结:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。

3、小结:

师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。

(出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)

四、自主练习,解决问题:

师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

1、第一关:下面每组中哪三个角能围成一个三角形?(1)70。

60。

30。

90。

(2)42。

54。

58。

80。

2、第二关:庐山真面目:求三角形中一个未知角的度数。

3、第三关:解决生活实际问题。

(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

(2)交通警示牌“让”为等边三角形,求其中一个角的度数。

4、第四关:变变变(拓展练习)

利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。

五、课堂总结

帕斯卡法是国著名的数学家、物理学家、哲学家、科学家,他12岁发现“任何三角形的三个内角和是1800!

帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害

且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。

帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!

大家都在看