短文网整理的初中数学教学教案(精选25篇),快来看看吧,希望对您有所帮助。
初中数学教学教案 篇1
学习目标:
【知识与技能】
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式作出中心对称的图形.
【过程与方法】
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
【情感、态度与价值观】
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
【重点】
中心对称的`性质及初步应用.
【难点】
中心对称与旋转之间的关系.
学习过程:
一、自主学习
(一)复习巩固
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋 转后的三角形,并写出简要作法.
作法:(1)
(2)
(3)
(4)
即:△DEF就是所求作的三角形,如图所示.
(二)自主探究
1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描出其中的一部分,用大头针固定在O处。旋转180°后,你有什么发现?
(1) (2) (3)
发现:把一个图形绕着某一个 旋转 ,如果他们能够与另一个图形 ,那么就说这 个图形 或 ,这个点叫做 ,这两个图形中的 叫做关于中心的 .
2、组内交流
在图5中,我们通过实验知四边形A B C D和四边形A'B'C'D'关于点O对称。
(1)你知道它的对称中心、对称点吗?
(2)连接A A'、 B B' 、C C' 、D D'你有什么发现?
(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?
(三)、归纳总结:
1、默写中心对称的概念:
2、中心对称的性质:
1)
2)
(四)自我尝试:
(1)、已知点A和点O,画出点A关于点O的对称点A'。
(2)、已知如图△ABC和点O,画出与△ABC关于点O的对称图形A'B'C'。
二、教师点拔
1、 中心对称与图形旋转的关系?
2、中心对称与轴对称的区别:
轴对称中心对称
有一条对称轴---( )有一个对称中心---( )
图形沿对称轴 (翻折180°)后重合图形绕对称中心 后重合
对称点的连线被对称轴 对称点连线经过 ,且被对称
中心
三、堂检测
1、已知下列命题:① 关于中心对称的两个图形一定不全等; ②关于中心对称的两个图形一定全等; ③两个全等的图形一定成中心对称,其中真命题的个数是( )
A、0 B、1 C、2 D、3
2、下列图形即是轴对称又是中心对称的是( )
A B C C
3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。
4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
4题图
5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'
四、外拓展
1、如图,在△ABC中,B=90°,C=30°,AB=1 ,将△ABC绕定点A旋转180°,点C落在C'处,求CC'的长为多少?
2、如图,已知AD是△ABC的中线:
1)画出与△ACD关于D点成中心对称的三角形;
2)找出与AC相等的线段;
3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
4)若AB=5、AC=3,则线段AD的取值范围为多少?
初中数学教学教案 篇2
一、教材内容分析
本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标:
1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则
2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点:利用移项解一元一次方程。
五、教学难点:移项法则的探究过程。
六、教学过程:
(一)情景引入
引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )
A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨
设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项
(二)出示学习目标
1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。
2.会建立方程解决简单的实际问题。
设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。
(三)导教导学
1.出示自学指导
自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)
2.学生自学
学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的'成果展示。
3.交流展示(小组合作展示)
(合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。
2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)
3)根据等量关系列方程: 3x+20 = 4x-25(板书)
【总结提升】解决“分配问题”应用题的列方程的基本要点:
A.找出能贯穿应用题始终的一个不变的量.
B.用两个不同的式子去表示这个量.
C.由表示这个不变的量的两个式子相等列出方程.
设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。
(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数
(只设列即可)
(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?
设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。
(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。
(板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。
《解一元一次方程——移项》教学设计(魏玉英)
师:为什么等式(方程)可以这样变形?依据什么?
(出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.
师:解一元一次方程中“移项”起了什么作用?
(出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)
(基础训练)抢答:判断下列移项是否正确,如有错误,请修改
《解一元一次方程——移项》教学设计(魏玉英)
设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。
【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1
(综合训练) 解下列方程(任选两题)
设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。
(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为
设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。
(四)我总结、我提高:
通过本节课的学习我收获了。
设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。
(五)当堂检测(50分)
1.下列方程变形正确的是( )
A.由-2x=6, 得x=3
B.由-3=x+2, 得x=-3-2
C.由-7x+3=x-3, 得(-7+1)x=-3-3
D.由5x=2x+3, 得x=-1
2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)
3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。
(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。
(六)实践活动
请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。
设计意图:
让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。
初中数学教学教案 篇3
教学目标:
1、初步体会从不同方向观察同一物体可能看到不同的图形;
2、能识别简单物体的三视图,体会物体三视图的合理性;
3、会画立方体及其简单组合的三视图;
过程与方法
1、 在“观察”的活动过程中,积累数学活动经验,发展空间观念;
2、 能在与他人交流的过程中,合理清晰地表达自己的'思维过程;
3、 渗透多侧面观察分析的思维方法;
情感与态度
通过系列学生感兴趣的活动,形成学习数学的积极情感,激发对空间与图形学习的好奇心,逐渐形成与他人合作交流的意识.
教学重、难点:
重点:体会从不同方向看同一物体可能看到不同的结果.
难点:能画立方体及简单组合的三视图.
教法学法:
①发现式教学法
②动手实践与思考相结合法
教学过程设计:
一、创设情境,引入新课
1. 看录像;
2. 从学生熟悉的古诗入手,观察庐山;
3. 房屋的房型图.
二、观察体验、探索结论
活动1:观察一组图片,找出结论.
活动2:观察图片,注意这些图片的拍摄角度,你能挑出一组三视图的图片吗?
活动3:猜猜看:通过从不同角度拍摄的图片来猜测实物是什么?
活动4:观察下图
如果分别从正面、左面、上面看着三个几何体,分别得到什么平面图形?
三.学画简单几何体的三视图
给出由4个小正方体形成的组合图形, 从正面、左面、上面观察并画出相应的平面图形.
如: 从上面看
从左面看
从正面看 从左面看 从上面看
从正面看
做一做:以小组为单位,用6个小立方体块搭出不同的几何体,然后根据搭建的几何体画出从正面、左面、上面观察得到的平面图形,并在小组内交流验证,看谁画的图最标准。而后,全班同学根据某小组画的三视图来组合立体图形.
四、小结与反思:
1.本节课研究的主要内容是什么?
2.本节课数学知识对平时的学习生活有何作用?
五、练习与作业:
能力作业:画出我校教学楼的三视图(以面向南为“从正面看”),或者画出你家的房屋(或设计)的平面图.
初中数学教学教案 篇4
圆柱、圆锥、圆台和球
总 课 题
空间几何体
总课时
第2课时
分 课 题
圆柱、圆锥、圆台和球
分课时
第2课时
目标
了解圆柱、圆锥、圆台和球的有关概念.认识圆柱、圆锥、圆台和球及其简单组合体的机构特征.
重点难点
圆柱、圆锥、圆台和球的概念的理解.
1引入新课
1.下面几何体有什么共同特点或生成规律?
这些几何体都可看做是一个平面图形绕某一直线旋转而成的.
2.圆柱、圆锥、圆台和球的有关概念.
3.圆柱、圆锥、圆台和球的表示.
4.旋转体的有关概念.
1例题剖析
例1
如图,将直角梯形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的.?
例2 指出图 、图 中的几何体是由哪些简单的几何体构成的.
图 图
例3
直角三角形 中, ,将三角形 分别绕边 , , 三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?
1巩固练习
1.指出下列几何体分别由哪些简单几何体构成.
2.如图,将平行四边形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
3.充满气的车轮内胎可以通过什么图形旋转生成?
1课堂小结
圆柱、圆锥、圆台和球的有关概念及图形特征.1课后训练
一 基础题
1.下列几何体中不是旋转体的是( )
2.图中的几何体可由一平面图形绕轴旋转 形成,该平面图形是( )
ABCD
3.用平行与圆柱底面的平面截圆柱,截面是_____________________________________.
4._____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体.
5.用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________.
6.如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的.
二 提高题
7.请指出图中的几何体是由哪些简单几何体构成的.
三 能力题
8.如图,将直角梯形 绕 、 边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?
ADCB图1A图2DBC
初中数学教学教案 篇5
一、教材内容
人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点
认识负数的意义。
四、教学过程
(一)谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
(二)教学新知
1.表示相反意义的量
(1)引入实例
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
(3)展示交流
2.认识正、负数
(1)引入正、负数
谈话:刚才,有同学在6的`前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
①同桌交流。
②全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:……)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”
(1)看一看、读一读
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨:-18℃~-5℃
北京:-6℃~6℃
深圳:15℃~25℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说
我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12℃、-3℃吗?
(3)提升认识
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
5.练一练
读一读,填一填。
6.出示课题
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
初中数学教学教案 篇6
教学目标:
1、初步体会从不同方向观察同一物体可能看到不同的图形;
2、能识别简单物体的三视图,体会物体三视图的合理性;
3、会画立方体及其简单组合的三视图;
过程与方法
1、 在“观察”的活动过程中,积累数学活动经验,发展空间观念;
2、 能在与他人交流的过程中,合理清晰地表达自己的思维过程;
3、 渗透多侧面观察分析的思维方法;
情感与态度
通过系列学生感兴趣的活动,形成学习数学的积极情感,激发对空间与图形学习的好奇心,逐渐形成与他人合作交流的意识.
教学重、难点:
重点:体会从不同方向看同一物体可能看到不同的结果.
难点:能画立方体及简单组合的三视图.
教法学法:
①发现式教学法 ②动手实践与思考相结合法
教学过程设计:
一、创设情境,引入新课
1. 看录像;
2. 从学生熟悉的古诗入手,观察庐山;
3. 房屋的房型图.
二、观察体验、探索结论
活动1:观察一组图片,找出结论.
活动2:观察图片,注意这些图片的拍摄角度,你能挑出一组三视图的.图片吗?
活动3:猜猜看:通过从不同角度拍摄的图片来猜测实物是什么?
活动4:观察下图
如果分别从正面、左面、上面看着三个几何体,分别得到什么平面图形?
三.学画简单几何体的三视图
给出由4个小正方体形成的组合图形, 从正面、左面、上面观察并画出相应的平面图形.
如: 从上面看
从左面看
从正面看 从左面看 从上面看
从正面看
做一做:以小组为单位,用6个小立方体块搭出不同的几何体,然后根据搭建的几何体画出从正面、左面、上面观察得到的平面图形,并在小组内交流验证,看谁画的图最标准.而后,全班同学根据某小组画的三视图来组合立体图形.
四、小结与反思:
1.本节课研究的主要内容是什么?
2.本节课数学知识对平时的学习生活有何作用?
五、练习与作业:
1. 能力作业:画出我校教学楼的三视图(以面向南为“从正面看”),或者画出你家的房屋(或设计)的平面图.
初中数学教学教案 篇7
教学目标
知识技能
1.通过观察实验,使学生理解圆的对称性.
2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题.
过程方法1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.
2.经历探索垂径定理及其推论的过程,进一步和理解研究几何图形的各种方法.
情感态度
激发学生观察、探究、发现数学问题的兴趣和欲望.
教学重点
垂径定理及其运用.
教学难点
发现并证明垂径定理
教学过程设计
教学程序及教学内容师生行为设计意图
一、导语:直径是圆中特殊的弦,研究直径是研究圆的重要突破口,这节课我们就从对直径的研究开始来研究圆的性质.
二、探究新知
(一)圆的对称性
沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发现什么结论?
得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
(二)、垂径定理
完成课本思考
分析:1.如何说明图24.1-7是轴对称图形?
2.你能用不同方法说明图中的线段相等,弧相等吗?
?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
即:直径CD垂直于弦AB则CD平分弦AB,并且平分弦AB所对的两条弧.
推理验证:可以连结OA、OB,证其与AE、BE构成的两个全等三角形,进一步得到不同的等量关系.
分析:垂径定理是由哪几个已知条件得到哪几条结论?
即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所对的优弧,平分弦所对的劣弧.
?垂径定理推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
思考:1.这条推论是由哪几个已知条件得到哪几条结论?
2.为什么要求“弦不是直径”?否则会出现什么情况?
?垂径定理的进一步推广
思考:类似推论的`结论还有吗?若有,有几个?分别用语言叙述出来.
归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦所对的优弧,平分弦所对的劣弧.”中的两个条件,就可以得到另外三个结论.
(三)、垂径定理、推论的应用
完成课本赵州桥问题
分析:1.根据桥的实物图画出的几何图形应是怎样的?
2.结合所画图形思考:圆的半径r、弦心距d、弦长a,弓形高h有怎样的数量关系?
3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径,作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的半径r、弦心距d、弦长a的一半之间的关系式:
三、课堂训练
完成课本88页练习
补充:
1.如图,一条公路的转弯处是一段圆弧,点O是圆心,其中CD=600m,E为圆O上一点,OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.
2.有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由.(当水面距拱顶3米以内时需要采取紧急措施)
四、小结归纳
1. 垂径定理和推论及它们的应用
2. 垂径定理和勾股定理相结合,将圆的问题转化为直角三角形问题.
3.圆中常作辅助线:半径、过圆心的弦的垂线段
五、作业设计
作业:课本94页 1,95页 9,12
补充:已知:在半径为5?的⊙O中,两条平行弦AB,CD分别长8?,6?.求两条平行弦间的距离.教师从直径引出课题,引起学生思考
学生用纸剪一个圆,按教师要求操作,观察,思考,交流,尝试发现结论.
学生观察图形,结合圆的对称性和相关知识进行思考,尝试得出垂径定理,并从不同角度加以解释.再进行严格的几何证明.
师生分析,进一步理解定理,析出定理的题设和结论.
教师引导学生类比定理独立用类似的方法进行探究,得到推论
学生根据问题进行思考,更好的理解定理和推论,并弄明白它们的区别与联系
学生审题,尝试自己画图,理清题中的数量关系,并思考解决方法,由本节课知识想到作辅助线办法,
教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,方法,规律.
引导学生分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.
让学生尝试归纳,,发言,体会,反思,教师点评汇总
通过学生亲自动手操作发现圆的对称性,为后续探究打下基础
通过该问题引起学生思考,进行探究,发现垂径定理,初步感知培养学生的分析能力,解题能力.
为继续探究其推论奠定基础
培养学生解决问题的意识和能力
全面的理解和掌握垂径定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.
体会转化思想,化未知为已知,从而解决本题,同时把握一类题型的解题方法,作辅助线方法.
运用所学知识进行应用,巩固知识,形成做题技巧
让学生通过练习进一步理解,培养学生的应用意识和能力
归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯
巩固深化提高
板 书 设 计
课题
垂径定理垂径定理的进一步推广
赵州桥问题归纳
初中数学教学教案 篇8
教学目标:
1、 使学生会列一元一次方程解有关应用题。
2、 培养学生分析解决实际问题的能力。
复习引入:
1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:
(1)__________ (2)_________ (3)_________
人们常规定工程问题中的工作总量为______。
2、由以上公式可知:一件工作,甲用a小时完成,则甲的'工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。
讲授新课:
1、例题讲解:
一件工作,甲单独做20小时完成,乙单独做12小时完成。
问:甲乙合做,需几小时完成这件工作?
(1)首先由一名至两名学生阅读题目。
(2)引导
Ⅰ:这道题目的已知条件是什么?
Ⅱ:这道题目要求什么问题?
Ⅲ:这道题目的相等关系是什么?
(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
2、练习:
有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?
此题的处理方法:
Ⅰ:先由一名学生阅读题目;
Ⅱ:然后由两名学生板演;
初中数学教学教案 篇9
教学目标知识目标:
1.理解平行线分三角形两边成比例定理;
2.进一步熟悉平行线分三角形两边成比例定理的应用;
能力目标:
培养学生的观察、分析、概括能力;
德育目标:
了解特殊与一般的辩证关系;
教学重点定理的`推导与应用
教学难点成比例的线段中比例线段的确认
教具学具多媒体 三角板
教学方法讲练结合
过程教学内容学生活动设计意图
一、复习提问 引入新课
问题:
1、三角形中位线定理的推论是什么?
2、如何用几何语言描述?
3、定理结论用比例尺如何表述?
二、新课
1、议一议
如图DE∥BC
(1)如果 ,那么 等于多少?为什么?
学生定理内容,用几何语言描述定理并用比例表示
学生进行讨论,通过教师引导,得出对应结论。为新课作铺垫
培养学生的观察、分析能力
(2)如果 ,是否也有 呢?为什么?
(3)如果把条件改为 那么 是否还与 相等?为什么?
教师进行简单说明。
2、由此我们可以得到什么样的结论?如何描述?
这个比例关系还可以怎么表示?为什么?
平行线分三角形两边成比例定理:
平行于三角形一边的直线截其他两边,所得的对应线段成比例。
例1已知:如图,在△ABC中,DE∥BC,AD=4,DB=3,AC=10,求AE、EC的长。
学生概括用几何语言表示:
DE∥BC
应用比例性质完成比例变式
学生完成一步推理:
DE∥BC
学生思考,自己尝试解题
复习比例性质,灵活运用定理
帮助记忆、加深印象
加深定理理解
解题过程:略
练习:
选择课后习题练习
学生练习
灵活运用定理
小结平行线分三角形两边成比例定理;
注意把对应线段写在对应位置
板书设计平行线分三角形两边成比例
1、定理 2、例1 3、练习
布置作业同步练习节选
课后自评
初中数学教学教案 篇10
一、内容和内容解析
(一)内容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集、
(二)内容解析
现实生活中存在大量的相等关系,也存在大量的不等关系、本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望、再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念、前面学过方程、方程的解、解方程的概念、通过类比教学、不等式、不等式的解、解不等式几个概念不难理解、但是对于初学者而言,不等式的解集的理解就有一定的难度、因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助、
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上、
二、目标和目标解析
(一)教学目标
1、理解不等式的概念
2、理解不等式的解与解集的意义,理解它们的区别与联系
3、了解解不等式的概念
4、用数轴来表示简单不等式的解集
(二)目标解析
1、达成目标1的标志是:能正确区别不等式、等式以及代数式、
2、达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合、
3、达成目标3的标志是:理解解不等式是求不等式解集的.一个过程、
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具、操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右、
三、教学问题诊断分析
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度、因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、
四、教学支持条件分析
利用多媒体直观演示课前引入问题,激发学生的学习兴趣、
五、教学过程设计
(一)动画演示情景激趣
多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣、
(二)立足实际引出新知
问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果、最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
1、从时间方面虑:2、从行程方面:<>50
3、从速度方面考虑:x>50÷
设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解、老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力、
(三)紧扣问题概念辨析
1、不等式
设问1:什么是不等式?
设问2:能否举例说明?由学生自学,老师可作适当补充、比如:是不等式、
2、不等式的解
设问1:什么是不等式的解?
设问2:不等式的解是唯一的吗?
由学生自学再讨论、
老师点拨:由x>50÷得x>75
说明x任意取一个大于75的数都是不等式3、不等式的解集
设问1:什么是不等式的解集?<,>50的解、<,>50,x>50÷都
设问2:不等式的解集与不等式的解有什么区别与联系?
由学生自学后再小组合作交流、
老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合、
4、解不等式
设问1:什么是解不等式?
由学生回答、
老师强调:解不等式是一个过程、
设计意图:培养学生的自学能力,进一步培养学生合作交流的意识、遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识、老师再适当点拨,加深理解、
(四)数形结合,深化认识
问题1:由上可知,x>75既是不等式的解集、那么在数轴上如何表示x>75呢?
问题2:如果在数轴上表示x≤ 75,又如何表示呢?
由老师讲解,注意规范性,准确性、
老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式、比如x≤ 75就是不等式、
设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想、
(五)归纳小结,反思提高
教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题
1、什么是不等式?
<的解集,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它与不等式的解有什么区别与联系?
4、用数轴表示不等式的解集要注意哪些方面?
设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验、
(六)布置作业,课外反馈
教科书第119页第1题,第120页第2,3题、
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整、
六、目标检测设计
1、填空
下列式子中属于不等式的有___________________________
①x +7>
②②x≥ y + 2 = 0④ 5x + 7
设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念、
2、用不等式表示
① a与5的和小于7
② a的与b的3倍的和是非负数
③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件
设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义、
初中数学教学教案 篇11
学习目标:
【知识与技能】
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式作出中心对称的图形.
【过程与方法】
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
【情感、态度与价值观】
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
【重点】
中心对称的性质及初步应用.
【难点】
中心对称与旋转之间的关系.
学习过程:
一、自主学习
(一)复习巩固
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋 转后的三角形,并写出简要作法.
作法:(1)
(2)
(3)
(4)
即:△DEF就是所求作的三角形,如图所示.
(二)自主探究
1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描出其中的一部分,用大头针固定在O处。旋转180°后,你有什么发现?
(1) (2) (3)
发现:把一个图形绕着某一个 旋转 ,如果他们能够与另一个图形 ,那么就说这 个图形 或 ,这个点叫做 ,这两个图形中的 叫做关于中心的 .
2、组内交流
在图5中,我们通过实验知四边形A B C D和四边形A'B'C'D'关于点O对称。
(1)你知道它的对称中心、对称点吗?
(2)连接A A'、 B B' 、C C' 、D D'你有什么发现?
(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?
(三)、归纳总结:
1、默写中心对称的概念:
2、中心对称的性质:
1)
2)
(四)自我尝试:
(1)、已知点A和点O,画出点A关于点O的对称点A'。
(2)、已知如图△ABC和点O,画出与△ABC关于点O的对称图形A'B'C'。
二、教师点拔
1、 中心对称与图形旋转的关系?
2、中心对称与轴对称的区别:
轴对称中心对称
有一条对称轴---( )有一个对称中心---( )
图形沿对称轴 (翻折180°)后重合图形绕对称中心 后重合
对称点的连线被对称轴 对称点连线经过 ,且被对称
中心
三、堂检测
1、已知下列命题:① 关于中心对称的两个图形一定不全等; ②关于中心对称的.两个图形一定全等; ③两个全等的图形一定成中心对称,其中真命题的个数是( )
A、0 B、1 C、2 D、3
2、下列图形即是轴对称又是中心对称的是( )
A B C C
3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。
4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
4题图
5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'
四、外拓展
1、如图,在△ABC中,B=90°,C=30°,AB=1 ,将△ABC绕定点A旋转180°,点C落在C'处,求CC'的长为多少?
2、如图,已知AD是△ABC的中线:
1)画出与△ACD关于D点成中心对称的三角形;
2)找出与AC相等的线段;
3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
4)若AB=5、AC=3,则线段AD的取值范围为多少?
初中数学教学教案 篇12
教学目标
1.会通过列方程解决“配套问题”;
2.掌握列方程解决实际问题的一般步骤;
3.通过列方程解决实际问题的过程,体会建模思想。
教学重点 建立模型解决实际问题的一般方法。
教学难点 建立模型解决实际问题的一般方法。
学情分析
1、 在前面已学过一元一次方程的解法,能够简单的运用一元一次方程解决实际问题。
2、 培养学生分析、解决问题的能力及逻辑思维能力。
学法指导 自学互帮导学法
教 学过程
教学内容 教师活动 学生活动 效果预测( 可能出现的问题) 补救措施 修改意见
一、复习与回顾
问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?
1. 审:审题,分析题目中的数量关系;
2. 设:设适当的未知数,并表示未知量;
3. 列:根据题目中的数量关系列方程;
4. 解:解这个方程;
5. 答:检验 并答话。
二、应用与探究
问题2:应用回顾的步骤解决以下问题。
例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母。 1个螺钉 需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人 各多少名?
三、课堂练习
1:一套仪器由一个A部件和三个B部件构成。 用1 m3钢材可以做40个A部件或240个B部件。 现要用6 m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材 做B部件,恰好配成这种仪器多少套?
2:某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼。制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉。 现共有面粉4500kg,制作两种月饼 应各用多少面粉,才能生产最多的.盒装月饼?
四、小结与归纳
问题4:用一元一次方程解决实际问题的基本过程有几个步骤? 分别是什么?
五、课后作业
教科书第106页习题3.4 第2、3、7题;
1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。
2、教师展示例题,并 巡视学生独立完成情况,引导学生分析问题并解决问题。
3、教师展示练习题,引导学生分析问题并解决问题,并巡视。
4、教师通过提问,让学生进行归纳小结。
1、学生回忆并独立回答。
2、学生先观看课件,先独立思考,再合作交流解决问题 。
3、学生先观看课件并解决问题。
4、学生自主归纳本节课所学内容。
不能解决问题。
教师展示解答过程。
初中数学教学教案 篇13
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
1教学目标的制定
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
2教法学法的制定
制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
3教学重难点的制定
教学重难点的制定也应结合各层次学生的具体情况而定。
4教学过程的设计
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
5练习与作业的设计
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的'题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
初中数学教学教案 篇14
学习目标:
【知识与技能】
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式作出中心对称的图形.
【过程与方法】
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
【情感、态度与价值观】
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
【重点】
中心对称的性质及初步应用.
【难点】
中心对称与旋转之间的关系.
学习过程:
一、自主学习
(一)复习巩固
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋 转后的三角形,并写出简要作法.
作法:(1)
(2)
(3)
(4)
即:△DEF就是所求作的三角形,如图所示.
(二)自主探究
1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描出其中的一部分,用大头针固定在O处。旋转180°后,你有什么发现?
(1) (2) (3)
发现:把一个图形绕着某一个 旋转 ,如果他们能够与另一个图形 ,那么就说这 个图形 或 ,这个点叫做 ,这两个图形中的 叫做关于中心的' .
2、组内交流
在图5中,我们通过实验知四边形A B C D和四边形A'B'C'D'关于点O对称。
(1)你知道它的对称中心、对称点吗?
(2)连接A A'、 B B' 、C C' 、D D'你有什么发现?
(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?
(三)、归纳总结:
1、默写中心对称的概念:
2、中心对称的性质:
1)
2)
(四)自我尝试:
(1)、已知点A和点O,画出点A关于点O的对称点A'。
(2)、已知如图△ABC和点O,画出与△ABC关于点O的对称图形A'B'C'。
二、教师点拔
1、 中心对称与图形旋转的关系?
2、中心对称与轴对称的区别:
轴对称中心对称
有一条对称轴---( )有一个对称中心---( )
图形沿对称轴 (翻折180°)后重合图形绕对称中心 后重合
对称点的连线被对称轴 对称点连线经过 ,且被对称
中心
三、堂检测
1、已知下列命题:① 关于中心对称的两个图形一定不全等; ②关于中心对称的两个图形一定全等; ③两个全等的图形一定成中心对称,其中真命题的个数是( )
A、0 B、1 C、2 D、3
2、下列图形即是轴对称又是中心对称的是( )
A B C C
3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。
4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.
4题图
5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'
四、外拓展
1、如图,在△ABC中,B=90°,C=30°,AB=1 ,将△ABC绕定点A旋转180°,点C落在C'处,求CC'的长为多少?
2、如图,已知AD是△ABC的中线:
1)画出与△ACD关于D点成中心对称的三角形;
2)找出与AC相等的线段;
3)探索:三角形中AB与AC的和与中线AD之间的关系,并说明理由;
4)若AB=5、AC=3,则线段AD的取值范围为多少?
初中数学教学教案 篇15
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2、x的值是否可以任意取?有限定范围吗?
3、我们发现,当AB的长(x)确定后,矩形的`面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,
对于1.可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 二、提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答: 1、商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3、若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)] 4、x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5、若设该商品每天的利润为y元,求y与x的函数关系式。 [y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=x(20-2x)(0 y=-2x2+20x(0 三、观察;概括 1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2、二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项. 四、课堂练习 1、(口答)下列函数中,哪些是二次函数? (1)y=5x+1(2)y=4x2-1 (3)y=2x3-3x2(4)y=5x4-3x+1 2、P3练习第1,2题。 五、小结 1、请叙述二次函数的定义. 2、许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。 六、作业:略 设计思想: 这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。 目标: 1.知识与技能 初步认识二次函数; 掌握二次函数的表达式,体会二次函数的意义; 会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化; 会画二次函数,能利用二次函数求一元二次方程的近似解; 利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。 2.过程与方法 通过利用二次函数的图像解决问题,体会数形结合的数学方法; 在学习探索的过程中逐步体会和认识二次函数。 3.情感、态度与价值观 体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别; 树立主动参与积极探索尝试、猜想和发现的精神; 注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。 教学重点:二次函数的图像和性质。 教学难点:二次函数y= 的图像及性质;二次函数的应用。 教学方法:讨论法、引导式。 教学安排:1课时。 教学媒体:幻灯片。 教学过程: Ⅰ.知识复习 师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片) 观看这章的知识整体框架,思考下面的问题: 1.你能用二次函数的知识解决哪些问题? 2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子? 3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题? 同学们,想想你们学习本章的收获是__________。 同学们相互讨论,然后师生互动共同探讨上面的问题。 Ⅱ.典型例题 例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息? 要求:(1)请提供四条信息;(2)不必求函数的解析式。 解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。 (注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可) 讨论: 生:对于这类问题,我常感到无从下手。 师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。 例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 求 关于 的函数关系式,并求出 的`最小值。 解: 是等边三角形, 。 不合题意,舍去, 即 又 , 又 ∽ 设 则 当 ,即 为 的重点时, 有最小值6。 讨论: 生:这个题目包含的内容较多,我感到难度很大。 师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。 生:对于这样的题目如何入手呢? 师:要认真分析题目,明确每一条件的用处。 例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m。 (1)建立如图2-3的平面直角坐标系,问此球能否准确投中? (2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功? 解:(1) 根据题意:球出手点、最高点和蓝圈的坐标分别为 。 设二次函数的解析式 代入 两点坐标为 将 点坐标代入解析式;左=右;所以一定能投中。 (2)将 代入解析式: 盖帽能获得成功。 讨论: 生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。 师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。 例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米。 (1)球在空中运行的最大高度为多少米? (2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少? 解:(1) 抛物线 的顶点坐标为(0,3.5)。 ∴球在空中运行的最大高度为3.5米。 (2)在 中,当 时, 又 。 当 时, 又 故运动员距离篮框中心水平距离为 米。 讨论: 生:我对运动员距离篮框中心水平距离有点迷惑。 师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。 例5:已知抛物线 。 (1)证明抛物线顶点一定在直线 上。 (2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。 (3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 与 轴交于点 ,点 为抛物线对称轴上一动点,过点 作 ⊥ ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。 解:(1) , ∴顶点坐标为( )∴顶点在直线 上 (2)∵抛物线与 轴交于 两点,∴ 。 即 ,解得 。 ∵ 或 当 时, (与 矛盾,舍去), 。 当 时, 或 。 (3)∵抛物线与 轴交点在原点的上方,∴ ∵直线 与 轴交于点 ∴设 ,则 解得 。 当 时, 当 时, ∴ 或 讨论: 生:抛物线顶点在直线 上如何证明? 师:抛物线的顶点坐标可以求出吧? 生:只要用公式即可。 师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。 Ⅲ.课堂小结 我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。 板书设计: 小结与复习 一、知识回顾 例2 例3 二、典型例题 例4 例5 课题:12.3等腰三角形(第一课时) 教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时 任课教师:东湾中学李晓伟 设计理念: 教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。 ㈠教材的地位和作用分析 等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。 另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。 ㈡教学内容的分析 本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。 在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。 二、目标及其解析 ㈠教学目标: 知识技能: 1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明; 3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。 数学思考: 1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观; 2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力. 解决问题: 1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验; 2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性. 情感态度: 1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心; 2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用; 3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益. ㈡教学重点: 等腰三角形的性质及应用。 ㈢教学难点: 等腰三角形性质的证明。 ㈣解析 本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线; 2.经历探究等腰三角形性质的`过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明; 3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。 三、问题诊断分析 1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。 2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。 3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计 课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。 四、教法、学法: 教法: 常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。 本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。 学法: 学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。 五、教学支持条件分析 在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。 六、教学基本流程 七、教学过程设计 教学目标 1.会通过列方程解决“配套问题”; 2.掌握列方程解决实际问题的一般步骤; 3.通过列方程解决实际问题的过程,体会建模思想。 教学重点 建立模型解决实际问题的一般方法。 教学难点 建立模型解决实际问题的一般方法。 学情分析 1、 在前面已学过一元一次方程的解法,能够简单的运用一元一次方程解决实际问题。 2、 培养学生分析、解决问题的能力及逻辑思维能力。 学法指导 自学互帮导学法 教 学过程 教学内容 教师活动 学生活动 效果预测( 可能出现的问题) 补救措施 修改意见 一、复习与回顾 问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤? 1. 审:审题,分析题目中的数量关系; 2. 设:设适当的`未知数,并表示未知量; 3. 列:根据题目中的数量关系列方程; 4. 解:解这个方程; 5. 答:检验 并答话。 二、应用与探究 问题2:应用回顾的步骤解决以下问题。 例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母。 1个螺钉 需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人 各多少名? 三、课堂练习 1:一套仪器由一个A部件和三个B部件构成。 用1 m3钢材可以做40个A部件或240个B部件。 现要用6 m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材 做B部件,恰好配成这种仪器多少套? 2:某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼。制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉。 现共有面粉4500kg,制作两种月饼 应各用多少面粉,才能生产最多的盒装月饼? 四、小结与归纳 问题4:用一元一次方程解决实际问题的基本过程有几个步骤? 分别是什么? 五、课后作业 教科书第106页习题3.4 第2、3、7题; 1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。 2、教师展示例题,并 巡视学生独立完成情况,引导学生分析问题并解决问题。 3、教师展示练习题,引导学生分析问题并解决问题,并巡视。 4、教师通过提问,让学生进行归纳小结。 1、学生回忆并独立回答。 2、学生先观看课件,先独立思考,再合作交流解决问题 。 3、学生先观看课件并解决问题。 4、学生自主归纳本节课所学内容。 不能解决问题。 教师展示解答过程。 设计思想: 这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。 目标: 1.知识与技能 初步认识二次函数; 掌握二次函数的表达式,体会二次函数的意义; 会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化; 会画二次函数,能利用二次函数求一元二次方程的近似解; 利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。 2.过程与方法 通过利用二次函数的图像解决问题,体会数形结合的数学方法; 在学习探索的过程中逐步体会和认识二次函数。 3.情感、态度与价值观 体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别; 树立主动参与积极探索尝试、猜想和发现的精神; 注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。 教学重点:二次函数的图像和性质。 教学难点:二次函数y= 的图像及性质;二次函数的'应用。 教学方法:讨论法、引导式。 教学安排:1课时。 教学媒体:幻灯片。 教学过程: Ⅰ.知识复习 师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片) 观看这章的知识整体框架,思考下面的问题: 1.你能用二次函数的知识解决哪些问题? 2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子? 3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题? 同学们,想想你们学习本章的收获是__________。 同学们相互讨论,然后师生互动共同探讨上面的问题。 Ⅱ.典型例题 例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息? 要求:(1)请提供四条信息;(2)不必求函数的解析式。 解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。 (注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可) 讨论: 生:对于这类问题,我常感到无从下手。 师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。 例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 求 关于 的函数关系式,并求出 的最小值。 解: 是等边三角形, 。 不合题意,舍去, 即 又 , 又 ∽ 设 则 当 ,即 为 的重点时, 有最小值6。 讨论: 生:这个题目包含的内容较多,我感到难度很大。 师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。 生:对于这样的题目如何入手呢? 师:要认真分析题目,明确每一条件的用处。 例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m。 (1)建立如图2-3的平面直角坐标系,问此球能否准确投中? (2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功? 解:(1) 根据题意:球出手点、最高点和蓝圈的坐标分别为 。 设二次函数的解析式 代入 两点坐标为 将 点坐标代入解析式;左=右;所以一定能投中。 (2)将 代入解析式: 盖帽能获得成功。 讨论: 生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。 师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。 例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米。 (1)球在空中运行的最大高度为多少米? (2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少? 解:(1) 抛物线 的顶点坐标为(0,3.5)。 ∴球在空中运行的最大高度为3.5米。 (2)在 中,当 时, 又 。 当 时, 又 故运动员距离篮框中心水平距离为 米。 讨论: 生:我对运动员距离篮框中心水平距离有点迷惑。 师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。 例5:已知抛物线 。 (1)证明抛物线顶点一定在直线 上。 (2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。 (3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 与 轴交于点 ,点 为抛物线对称轴上一动点,过点 作 ⊥ ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。 解:(1) , ∴顶点坐标为( )∴顶点在直线 上 (2)∵抛物线与 轴交于 两点,∴ 。 即 ,解得 。 ∵ 或 当 时, (与 矛盾,舍去), 。 当 时, 或 。 (3)∵抛物线与 轴交点在原点的上方,∴ ∵直线 与 轴交于点 ∴设 ,则 解得 。 当 时, 当 时, ∴ 或 讨论: 生:抛物线顶点在直线 上如何证明? 师:抛物线的顶点坐标可以求出吧? 生:只要用公式即可。 师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。 Ⅲ.课堂小结 我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。 板书设计: 小结与复习 一、知识回顾 例2 例3 二、典型例题 例4 例5 目标 1联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。 2.在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。 重点难点 理解轴对称图形的基本特征 教具 准备 剪刀、纸(含平行四边形、字母N S)、教学挂图、直尺 教学方法 手段 观察、比较、讨论、动手操作 教学过程 一。新课 1.教师取一个门框上固定门的`铰连让学生观察是不是左右对称? 2.出示教学挂图:天安门、飞机、奖杯的实物图片 将实物图片进一步抽象为平面图形,对折以后问学生发现了什么? 生:对折后两边能完全重合。 师;对折后能完全重合的图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 教师先示范,让学生认识天安门城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。 3.练习题:(出示小黑板) (1)P57“试一试” 判断哪几个图形是轴对称图形?试着画出对称轴。 估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。 (2)用剪刀和纸剪一个轴对称图形。 教学 过程 二。练习 1.出示挂图:(p58“想想做做”第1题) 判断哪些图形是轴对称图形? 生:竖琴图、轿车图、五角星图、铁锚图、科技标志图、中国农业银行标志图 师:钥匙图和紫荆花图为什么不是? 生:因为对折以后两部分没有完全重合。 2.看书p58“想想做做”第2题 判断哪些英文字母是轴对称图形? 生:A、C、T、M、X(有可能有的学生没有选C,还有可能有的学生选N、S、Z) 师:没有选C的同学除了竖着对折,看看横着、斜着对折你有没有去试一试?认为N、S、Z是轴对称图形的我请两个学生到讲台前用表示字母N、S的纸对折一下,看看对折以后两部分有没有完全重合? 学生试完以后会发现两部分没有完全重合。 教师再将字母N横过来就变成了字母Z,同样道理,两部分也不会完全重合。 一.学习目标: 1.掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用; 2.正确运用二次根式的性质及运算法则进行二次根式的混合运算. 二.学习重点:正确运用二次根式的性质及运算法则进行二次根式的混合运算. 学习难点:二次根式计算的`结果要是最简二次根式. 三.过程 知识准备 1.满足下列条的二次根式是最简二次根式. 2.回忆有理数,整式混合运算的顺序. 3.回忆并整理整式的乘法公式. 方法探究1 ⑴(512+23)×15 ⑵(3+10)(2-5) 归纳: . 尝试练习: ⑴(3+22)×6 ⑵(827-53)6 ⑶(6-3+1)×23 ⑷(3-22)(33-2) ⑸(22-3)(3+2) ⑹(5-6)(3+2) 方法探究2 ⑴(3+2)(3-2) ⑵(3+25)2 归纳: . 尝试练习: ⑴(5+1)(5-1) ⑵(7+5)(5-7) ⑶(25-32)(25+32) ⑷(a+b)(a-b) ⑸(3-2)2 ⑹(32-45)2 ⑺(3-22)(22-3) ⑻(a-b)2 ⑼(1-23)(1+23)-(1+3)2 ⑽(3+2-5)(3?2?5) 例题解析 1. 计算:(22-3)20xx( 22+3)20xx. 2. 若x=10-3,求代数式x2+6x+11的值. 3. 若x=11+72, y=11—72,求代数式x2-xy+y2的值. 内反馈 1. 计算12(2-3)= . 2. 计算⑴(2+3)(2-3)= ; ⑵(5-2)20xx( 5+2)20xx= . 3. 计算: ⑴12(75+313-48) ⑵(1327-24-323)12 ⑶(23-5)(2+3) ⑷(5-3+2)(5+3-2) ⑸(312-213+48)÷23 4. 已知a=3+2 ,b=3-2,求下列各式的值. ⑴a2-b2 ⑵1a-1b ⑶a2-ab+b2 5. 若x=3+1,求代数式x2-2x-3的值. 知识技能 会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。 数学思考 1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。 2.通过一元一次方程的学习,体会方程模型思想和化归思想。 解决问题 能在具体情境中从数学角度和方法解决问题,发展应用意识。 经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。 情感态度 经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。 教学重点 建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。 教学难点 分析实际问题中的相等关系,列出方程。 教学过程 活动一知识回顾 解下列方程: 1. 3x+1=4 2. x-2=3 3. 2x+0.5x=-10 4. 3x-7x=2 提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算? 教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。 出示问题(幻灯片)。 学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。 教师提问:(略) 教师追问:变形的依据是什么? 学生独立思考、回答交流。 本次活动中教师关注: (1)学生能否准确理解运用等式性质和合并同列项求解方程。 (2)学生对解一元一次方程的变形方向(化成x=a的形式)的.理解。 通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。 活动二问题探究 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生? 教师:出示问题(投影片) 提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做? (学生尝试提问) 学生:读题,审题,独立思考,讨论交流。 1.找出问题中的已知数和已知条件。(独立回答) 2.设未知数:设这个班有x名学生。 3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流) 4.找相等关系: 这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问) 总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢? 教师提问1:这个方程与我们前面解过的方程有什么不同? 学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25). 教师提问2:怎样才能使它向x=a的形式转化呢? 学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。 教师提问3:以上变形依据是什么? 学生回答:等式的性质1。 归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。 师生共同完成解答过程。 设问4:以上解方程中“移项”起了什么作用? 学生讨论、回答,师生共同整理: 通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。 教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系? 学生思考回答。 教师关注: (1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚? 在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。 活动三解法运用 例2解方程 3x+7=32-2x 教师:出示问题 提问:解这个方程时,第一步我们先干什么? 学生讲解,独立完成,板演。 提问:“移项”是注意什么? 学生:变号。 教师关注:学生“移项”时是否能够注意变号。 通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。 一、内容和内容解析 (一)内容 概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集、 (二)内容解析 现实生活中存在大量的相等关系,也存在大量的不等关系、本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望、再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念、前面学过方程、方程的解、解方程的概念、通过类比教学、不等式、不等式的解、解不等式几个概念不难理解、但是对于初学者而言,不等式的解集的理解就有一定的难度、因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助、 基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上、 二、目标和目标解析 (一)教学目标 1、理解不等式的概念 2、理解不等式的解与解集的意义,理解它们的区别与联系 3、了解解不等式的概念 4、用数轴来表示简单不等式的解集 (二)目标解析 1、达成目标1的标志是:能正确区别不等式、等式以及代数式、 2、达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合、 3、达成目标3的标志是:理解解不等式是求不等式解集的`一个过程、 4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具、操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右、 三、教学问题诊断分析 本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度、因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、 四、教学支持条件分析 利用多媒体直观演示课前引入问题,激发学生的学习兴趣、 五、教学过程设计 (一)动画演示情景激趣 多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢? 设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣、 (二)立足实际引出新知 问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件? 小组讨论,合作交流,然后小组反馈交流结果、最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充) 1、从时间方面虑:2、从行程方面:<>50 3、从速度方面考虑:x>50÷ 设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解、老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力、 (三)紧扣问题概念辨析 1、不等式 设问1:什么是不等式? 设问2:能否举例说明?由学生自学,老师可作适当补充、比如:是不等式、 2、不等式的解 设问1:什么是不等式的解? 设问2:不等式的解是唯一的吗? 由学生自学再讨论、 老师点拨:由x>50÷得x>75 说明x任意取一个大于75的数都是不等式3、不等式的解集 设问1:什么是不等式的解集?<,>50的解、<,>50,x>50÷都 设问2:不等式的解集与不等式的解有什么区别与联系? 由学生自学后再小组合作交流、 老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合、 4、解不等式 设问1:什么是解不等式? 由学生回答、 老师强调:解不等式是一个过程、 设计意图:培养学生的自学能力,进一步培养学生合作交流的意识、遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识、老师再适当点拨,加深理解、 (四)数形结合,深化认识 问题1:由上可知,x>75既是不等式的解集、那么在数轴上如何表示x>75呢? 问题2:如果在数轴上表示x≤ 75,又如何表示呢? 由老师讲解,注意规范性,准确性、 老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式、比如x≤ 75就是不等式、 设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想、 (五)归纳小结,反思提高 教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题 1、什么是不等式? <的解集,也是不等式>50 2、什么是不等式的解? 3、什么是不等式的解集,它与不等式的解有什么区别与联系? 4、用数轴表示不等式的解集要注意哪些方面? 设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验、 (六)布置作业,课外反馈 教科书第119页第1题,第120页第2,3题、 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整、 六、目标检测设计 1、填空 下列式子中属于不等式的有___________________________ ①x +7> ②②x≥ y + 2 = 0④ 5x + 7 设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念、 2、用不等式表示 ① a与5的和小于7 ② a的与b的3倍的和是非负数 ③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件 设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义、 设计思想: 这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。 目标: 1.知识与技能 初步认识二次函数; 掌握二次函数的表达式,体会二次函数的意义; 会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化; 会画二次函数,能利用二次函数求一元二次方程的近似解; 利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。 2.过程与方法 通过利用二次函数的图像解决问题,体会数形结合的数学方法; 在学习探索的过程中逐步体会和认识二次函数。 3.情感、态度与价值观 体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别; 树立主动参与积极探索尝试、猜想和发现的精神; 注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。 教学重点:二次函数的图像和性质。 教学难点:二次函数y= 的图像及性质;二次函数的应用。 教学方法:讨论法、引导式。 教学安排:1课时。 教学媒体:幻灯片。 教学过程: Ⅰ.知识复习 师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片) 观看这章的知识整体框架,思考下面的问题: 1.你能用二次函数的知识解决哪些问题? 2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子? 3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题? 同学们,想想你们学习本章的收获是__________。 同学们相互讨论,然后师生互动共同探讨上面的问题。 Ⅱ.典型例题 例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息? 要求:(1)请提供四条信息;(2)不必求函数的解析式。 解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。 (注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可) 讨论: 生:对于这类问题,我常感到无从下手。 师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。 例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 求 关于 的函数关系式,并求出 的最小值。 解: 是等边三角形, 。 不合题意,舍去, 即 又 , 又 ∽ 设 则 当 ,即 为 的重点时, 有最小值6。 讨论: 生:这个题目包含的内容较多,我感到难度很大。 师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。 生:对于这样的题目如何入手呢? 师:要认真分析题目,明确每一条件的用处。 例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的`轨迹为抛物线,篮圈距地面3m。 (1)建立如图2-3的平面直角坐标系,问此球能否准确投中? (2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功? 解:(1) 根据题意:球出手点、最高点和蓝圈的坐标分别为 。 设二次函数的解析式 代入 两点坐标为 将 点坐标代入解析式;左=右;所以一定能投中。 (2)将 代入解析式: 盖帽能获得成功。 讨论: 生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。 师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。 例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米。 (1)球在空中运行的最大高度为多少米? (2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少? 解:(1) 抛物线 的顶点坐标为(0,3.5)。 ∴球在空中运行的最大高度为3.5米。 (2)在 中,当 时, 又 。 当 时, 又 故运动员距离篮框中心水平距离为 米。 讨论: 生:我对运动员距离篮框中心水平距离有点迷惑。 师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。 例5:已知抛物线 。 (1)证明抛物线顶点一定在直线 上。 (2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。 (3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 与 轴交于点 ,点 为抛物线对称轴上一动点,过点 作 ⊥ ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。 解:(1) , ∴顶点坐标为( )∴顶点在直线 上 (2)∵抛物线与 轴交于 两点,∴ 。 即 ,解得 。 ∵ 或 当 时, (与 矛盾,舍去), 。 当 时, 或 。 (3)∵抛物线与 轴交点在原点的上方,∴ ∵直线 与 轴交于点 ∴设 ,则 解得 。 当 时, 当 时, ∴ 或 讨论: 生:抛物线顶点在直线 上如何证明? 师:抛物线的顶点坐标可以求出吧? 生:只要用公式即可。 师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。 Ⅲ.课堂小结 我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。 板书设计: 小结与复习 一、知识回顾 例2 例3 二、典型例题 例4 例5 一、教材内容 人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。 二、教学目标 1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。 2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。 3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。 三、教学重、难点 认识负数的意义。 四、教学过程 (一)谈话交流 谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗? (二)教学新知 1.表示相反意义的量 (1)引入实例 谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。 ①六年级上学期转来6人,本学期转走6人。 ②张阿姨做生意,二月份盈利1500元,三月份亏损200元。 ③与标准体重比,小明重了2.5千克,小华轻了1.8千克。 ④一个蓄水池夏季水位上升米,冬季水位下降米。 指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。) (2)尝试 怎样用数学方式来表示这些相反意义的量呢? 请同学们选择一例,试着写出表示方法。 (3)展示交流 2.认识正、负数 (1)引入正、负数 谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。 介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。 “-”,在这里有了新的`意义和作用,叫“负号”。“+”是正号。 像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。 (2)试一试 请你用正、负数来表示出其它几组相反意义的量。 写完后,交流、检查。 3.联系实际,加深认识 (1)说一说存折上的数各表示什么?(教学例2。) (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。 ①同桌交流。 ②全班交流。根据学生发言板书。 这样的正、负数能写完吗?(板书:……) 强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。 4.进一步认识“0” (1)看一看、读一读 谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。 哈尔滨:-18℃~-5℃ 北京:-6℃~6℃ 深圳:15℃~25℃ 温度中有正数也有负数,请把负数读出来。 (2)找一找、说一说 我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么? 你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么? 现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。) 说一说,你怎么这么快就找到了? (课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。) 你能很快找到12℃、-3℃吗? (3)提升认识 请学生观察温度计,说一说有什么发现? 在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。) “0”是正数,还是负数呢? 在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。 (4)总结归纳 如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类: 5.练一练 读一读,填一填。 6.出示课题 同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗? 根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。初中数学教学教案 篇16
初中数学教学教案 篇17
初中数学教学教案 篇18
初中数学教学教案 篇19
初中数学教学教案 篇20
初中数学教学教案 篇21
初中数学教学教案 篇22
初中数学教学教案 篇23
初中数学教学教案 篇24
初中数学教学教案 篇25