《方程》教案

短文网

2025-09-01教案

短文网整理的《方程》教案(精选23篇),快来看看吧,希望对您有所帮助。

《方程》教案 篇1

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:理解等式的性质,理解方程的.意义。

教学难点:利用等式性质和方程的意义列出方程。

教学准备:多媒体课件

教学过程:

一、情景引入

1、出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100 (板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100 x+50=150

X+50<200 x+x=200

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”。

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练。

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计:

方程

等式 50+50=100 x+50>100 x+50=150

方程 X+50<200 x+x=200

《方程》教案 篇2

教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察潜力,提高他们分析问题和解决问题的潜力;

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并透过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们明白方程是一个内含未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中带给的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就透过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原先有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)

3.若设原先面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原先有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42500,

所以x=50000.

答:原先有50000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)

教师应指出:(1)这两种相等关系的表达形式与“原先重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,能够任意选取其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的.方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.那里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有好处.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

(设第一小组共摘了x个苹果,则依题意,得)

三、课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款到达3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

四、师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些资料?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答状况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选取变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数。

《方程》教案 篇3

教学目标:

知识目标:

通过练习,使学生进一步理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。

能力目标:

培养学生分析问题、解答问题的能力。

态度、情感、价值观:

培养学生认真细致的学习习惯。

教学重点:

理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。

教学难点:

理解数量关系。

教学过程:

一、基本练习(5 分钟)

1.列方程

(1)某数的5 倍加上它的2 倍和是42,求这个数。

(2)X 的5 倍减去它的2 倍差是1.2,求X。

2.育民小学四五年级共植树600 棵,五年级植树是四年级的3 倍。两个年级各植树多少棵?

(1)画图,找等量关系。

(2)列方程解应用题。

二、层次练习(15 分钟)

1.育民小学四五年级同学植树,五年级植树是四年级的3 倍,五年级比四年级多植300 棵。四五年级各植多少棵?

(1)这道题与上题有哪些相同点和不同点?

(2)你会解答这道题吗?试做

(3)订正:

解:设四年级植X 棵,五年级植3X 棵。

3X-X=300

2X=300

X=150

3X=3150=450

答:四年级植150 棵,五年级植450 棵。

2.试一试:妈妈的年龄是女儿的4 倍,妈妈比女儿大27 岁,妈妈和女儿各多少岁?

学生独立做

3.小结:解答时,要抓住有倍的'那句话设出未知数。看一看是求它们的和还是差,列出方程。

三、巩固练习(15 分钟)

1.看图列方程125 页3 题。

完成后交流

2.对比练习

(1)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,经过1.6 小时相遇。李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行多少千米?

(2)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,二人经过几小时相遇?

(3)张叔叔骑自行车,李叔叔骑摩托车。二人同时从两地出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,经过1.6 小时相遇。两地相距多少千米?

独立完成后交流。

四、总结交流(5 分钟)

说说你有什么收获?

《方程》教案 篇4

教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

教学目标:

1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

教学过程:

一、练习与应用

1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)

二、探索与实践

1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的.值呢?5个连续偶数的和有这样的规律吗?试试看。

2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨

三、与反思

在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

四、阅读“你知道吗”可以再查找资料,详细了解。

五、课堂这节课我们复习了哪些内容?你有了哪些收获?

《方程》教案 篇5

一.教学目标:

1.认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2.能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3.情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二.教学重难点

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三.教学过程

(一)创设情景,引入课题

1.本班共有40人,请问能确定男女生各几人吗?为什么?

(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

(2)这是什么方程?根据什么?

2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少?

3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4.点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

(二)探究新知,练习巩固

1.二元一次方程组的概念

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)

2.二元一次方程组的解的概念

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

方程x+y=0的解,方程2x+3y=2的解,方程组的解。

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知是方程组的解,求a,b的值。

(三)合作探索,尝试求解

现在我们一起来探索如何寻找方程组的解呢?

1.已知两个整数x,y,试找出方程组的解.

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的`解。

由学生独立完成,并分析讲解。

3.例 已知方程3X+2Y=10

⑴当X=2时,求所对应的Y 的值;

⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;

⑶用含X的代数式表示Y;

⑷用含Y 的代数式表示X;

⑸当X=-2,0 时,所对应的Y值是多少;

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

(四)课堂小结,布置作业

1.这节课学哪些知识和方法?

2.你还有什么问题或想法需要和大家交流?

3.教材P82

教学设计说明:

1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

《方程》教案 篇6

教学目标:

知识目标:

通过练习,使学生进一步理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。

能力目标:

培养学生分析问题、解答问题的能力。

态度、情感、价值观:

培养学生认真细致的学习习惯。

教学重点:

理解数量关系,掌握用方程解应用题的`方法,能正确运用方程解答应用题。

教学难点:

理解数量关系。

教学过程:

一、基本练习(5 分钟)

1.列方程

(1)某数的5 倍加上它的2 倍和是42,求这个数。

(2)X 的5 倍减去它的2 倍差是1.2,求X。

2.育民小学四五年级共植树600 棵,五年级植树是四年级的3 倍。两个年级各植树多少棵?

(1)画图,找等量关系。

(2)列方程解应用题。

二、层次练习(15 分钟)

1.育民小学四五年级同学植树,五年级植树是四年级的3 倍,五年级比四年级多植300 棵。四五年级各植多少棵?

(1)这道题与上题有哪些相同点和不同点?

(2)你会解答这道题吗?试做

(3)订正:

解:设四年级植X 棵,五年级植3X 棵。

3X-X=300

2X=300

X=150

3X=3150=450

答:四年级植150 棵,五年级植450 棵。

2.试一试:妈妈的年龄是女儿的4 倍,妈妈比女儿大27 岁,妈妈和女儿各多少岁?

学生独立做

3.小结:解答时,要抓住有倍的那句话设出未知数。看一看是求它们的和还是差,列出方程。

三、巩固练习(15 分钟)

1.看图列方程125 页3 题。

完成后交流

2.对比练习

(1)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,经过1.6 小时相遇。李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行多少千米?

(2)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,二人经过几小时相遇?

(3)张叔叔骑自行车,李叔叔骑摩托车。二人同时从两地出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,经过1.6 小时相遇。两地相距多少千米?

独立完成后交流。

四、总结交流(5 分钟)

说说你有什么收获?

《方程》教案 篇7

课前准备

教师准备 多媒体课件

教学过程

⊙谈话揭题

1.谈话导入。

我们学过了关于方程的哪些知识?(结合学生的回答板书)

预设

生1:方程的意义。

生2:方程与等式的关系。

生3:解方程的方法。

生4:用方程知识解决实际问题。

……

2.揭示课题。

同学们说得很全面,这节课我们就来系统地复习有关方程的知识。(板书课题:方程)

⊙回顾与整理

1.方程。

(1)什么是方程?它与算术式有什么不同?

明确:

①含有未知数的等式叫作方程。

②算术式是一个式子,由运算符号和已知数组成。方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。

(2)什么是方程的解?

使方程左右两边相等的未知数的值,叫作方程的解。

(3)什么是解方程?

求方程的解的过程叫作解方程。

(4)解方程的依据是什么?

①等式的性质。

②加减法和乘除法各部分之间的互逆关系。

(5)课件出示教材80页“回顾与交流”3题。

①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。

②指名到黑板前进行板演。

③全班交流并说一说自己是怎么解的。

2.列方程解决实际问题。

(1)列方程解应用题的步骤。

学生小组交流并集体汇报,然后教师明确:

①弄清题意,确定未知数并用x表示;

②找出题中数量间的相等关系;

③列方程,解方程;

④检验并写出答语。

(2)列方程解应用题的关键及找等量关系的方法。

①列方程解应用题的关键是什么?

列方程解应用题的`关键是找出题中的等量关系,根据等量关系列方程解答。

②你知道哪些找等量关系的方法?

预设

生1:根据关键性词语找等量关系。

生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。

生3:根据常见的数量关系找等量关系。

生4:根据计算公式找等量关系。

(3)课件出示教材80页“回顾与交流”4题。

教师引导学生先找出各题的等量关系,再列方程自主解决问题。

《方程》教案 篇8

教学目标:

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程

教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

教学过程:

(一)、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

探索研究:

(二)、探索研究:

确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

化简可得:②

引导学生自己证明为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究

例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点与圆的关系的判断方法:

(1)>,点在圆外

(2)=,点在圆上

(3)<,点在圆内

解:

例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的'外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

解:

例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

解:

总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程。

②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

(四)、课堂练习(课本P120练习1,2,3,4)

归纳小结:

1、圆的标准方程。

2、点与圆的位置关系的判断方法。

3、根据已知条件求圆的标准方程的方法。

作业布置:课本习题4。1A组第2,3,4题。

课后记:

《方程》教案 篇9

教学目标:

1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

2、会用方程表示简单的等量关系,会列方程解决简单问题。

3、感受式与方程在解决问题中的价值,培养初步的代数思想。

教学重点:

明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

教学难点:

找等量关系式,用方程解决实际问题。

教学过程:

一、导入

我们都记得这首儿歌

一只青蛙一张嘴,两只眼睛四条腿;

两只青蛙两张嘴,四只眼睛八条腿;

请你来接下句

三只青蛙_________;

五只青蛙呢?

N只青蛙呢?

一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

二、进行复习

1、用字母表示数

(1)同学们想一想,在数学中有哪些地方常用字母来表示?

生列举:数量关系(路程、速度、时间 即s=vt)

计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

运算定律(加法结合律:a+b+c=a+(b+c)等)

(2)请同桌之间相互举两个这样的例子。

(3)你们知道为什么用字母表示数吗?

(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

算法有两种:其一:算术方法:160÷(5+3)=20

依据:总插秧数量÷时间=单位时间量

其二:列方程:x(5+3)=160

依据:单位时间量×时间=总插秧数量

观察比较:以上两种解法有哪些相同点和不同点?

相同点:都是根据数量间的相等关系列式。

不同点:解法一:以已知推出未知,是算术法。

解法二:把未知数用x表示,列出含有未知数的等式,即方程。

同学们想一想,等式和方程有什么联系和区别?

方程有哪些性质呢?(等式 、含有未知数)

2、方程

(1)判断下列哪些是方程(说明理由)

7+8=3×5 4a+5b a+12=89

4x=y 3+100>25+y 6+x=0.5×3

(2)你会解方程吗?从中选择一个试一试。

(3)如何判断方程的解是否正确?

(4)列方程解应用题的解题步骤是怎样的?

讨论后得出:①弄清题意,找出未知数,并用x表示;

②找出应用题中数量之间的相等关系,列方程;

③解方程;

④检验,写出答案。

3、列方程解决问题

(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

(3)练习

①练一练1

②师展示习题:说出下面每组数量之间的相等关系。

(1)女生人数,男生人数,全班人数;

(2)苹果的重量,梨的重量,梨比苹果少的重量。

(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

③课本练一练5

三、小结

说一说你今天的收获在哪里?

《方程》教案 篇10

教学内容:

教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)

(含有未知数的等式是方程。)

(等式性质:)

(求方程中未知数的值的过程叫做解方程。)

3、。

同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂

通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

《方程》教案 篇11

教学目标:

1.知识与技能:结合具体的问题,使同学们学会用解方程和用方程解决具体的问题。

2.过程与方法:结合课本内容和实际问题来使同学们形成用方程解决问题的观念。

3.情感态度价值观:在学习方程解决问题的过程中培养同学们对于学习数学的兴趣,培养同学们克服困难的品质,培养同学们探索新知的勇气和信心。

教学过程:

一、回顾与交流。

1.复习方程概念。

什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

判断下面是不是方程:

3X+5

6+8=14

6X=15

7X+315

(通过这个教学使学生充分理解方程的定义)

让学生先独立解课本P61.T1.两道解方程的题目再让学生说说是怎样解的。

通过这里的两道练习复习小学所学习的解方程的方法(即根据等式的性质来解。)

2.解简易方程。

复习61页第二题

首先让学生找出这三个题的等量关系,让学生分小组讨论讨论,在小组内说一说怎样找的等量关系。然后请学生在班内汇报一下。再请三位同学演板,并请演板的同学解释自己的`做法。

(在这个过程中,让学生首先学会找出题目的等量关系,再根据等量关系去列方程,使学生养成用方程解决问题的时候,要懂得方程是根据等量关系列出的。)

集体订正:解(1)方程是怎样想的,检查解方程时每一步依据什么做的。(2)方程与(1)有什么不同,解方程时有什么不同? 师生共同小结解方程的一般步骤(略)。怎样检验方程的解对不对? 增加找数量关系练习。

1.六一班有50人,其中男生有28人,女生有多少人?

2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?

首先让学生独立找出题目中的等量关系,然后让同桌2人互相说一说,然后再解答。

二、巩固与应用。

引导学生做课本巩固练习题

1.解方程。组织学生独立完成,然后让学生上去讲一讲解题的方法。

2.看图列出方程,并求出方程的解。首先让学生在小组内说一说解决的方法,再请学生汇报交流。

3.看图理解题意,引导学生分析数量关系,再列方程解答。请学生演板,演板后组织学生讨论。

4.理解文字题,根据数量关系列出方程并求解。请学生找出题中的等量关系,再让学生完成。

三、总结提高。

通过这节课的学习,你解决了那些问题,还有那些困惑?

(通过学生的汇报,查漏补缺,找出这节课可能没有涉及到的问题加以解决。)

四、习题设计。

1.课本62页第5题。这里的两个小题,第1小题是用字母表示,学生要想用字母表示出来,必须先找出题目的等量关系。第2小题是用方程解决问题,除了要找出等量关系外还要列出方程并解答。

2.课本62页第6题。这是一道拓展性的习题,是数与形的结合,通过这道题的练习,除了锻炼学生用方程解决问题的能力,同时也复习了有关几何的知识。

《方程》教案 篇12

教学目标:

1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

2、会用方程表示简单的等量关系,会列方程解决简单问题。

3、感受式与方程在解决问题中的价值,培养初步的代数思想。

教学重点:

明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

教学难点:

找等量关系式,用方程解决实际问题。

教学过程:

一、导入

我们都记得这首儿歌

一只青蛙一张嘴,两只眼睛四条腿;

两只青蛙两张嘴,四只眼睛八条腿;

请你来接下句

三只青蛙_________;

五只青蛙呢?

N只青蛙呢?

一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的'课就围绕用“字母表示的数”来展开。

二、进行复习

1、用字母表示数

(1)同学们想一想,在数学中有哪些地方常用字母来表示?

生列举:数量关系(路程、速度、时间 即s=vt)

计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

运算定律(加法结合律:a+b+c=a+(b+c)等)

(2)请同桌之间相互举两个这样的例子。

(3)你们知道为什么用字母表示数吗?

(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

算法有两种:其一:算术方法:160÷(5+3)=20

依据:总插秧数量÷时间=单位时间量

其二:列方程:x(5+3)=160

依据:单位时间量×时间=总插秧数量

观察比较:以上两种解法有哪些相同点和不同点?

相同点:都是根据数量间的相等关系列式。

不同点:解法一:以已知推出未知,是算术法。

解法二:把未知数用x表示,列出含有未知数的等式,即方程。

同学们想一想,等式和方程有什么联系和区别?

方程有哪些性质呢?(等式 、含有未知数)

2、方程

(1)判断下列哪些是方程(说明理由)

7+8=3×5 4a+5b a+12=89

4x=y 3+100>25+y 6+x=0.5×3

(2)你会解方程吗?从中选择一个试一试。

(3)如何判断方程的解是否正确?

(4)列方程解应用题的解题步骤是怎样的?

讨论后得出:①弄清题意,找出未知数,并用x表示;

②找出应用题中数量之间的相等关系,列方程;

③解方程;

④检验,写出答案。

3、列方程解决问题

(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

(3)练习

①练一练1

②师展示习题:说出下面每组数量之间的相等关系。

(1)女生人数,男生人数,全班人数;

(2)苹果的重量,梨的重量,梨比苹果少的重量。

(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

③课本练一练5

三、小结

说一说你今天的收获在哪里?

《方程》教案 篇13

教学内容:

教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)

(含有未知数的.等式是方程。)

(等式性质:)

(求方程中未知数的值的过程叫做解方程。)

3、。

同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂

通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

《方程》教案七篇

作为一名为他人授业解惑的教育工作者,时常需要用到教案,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?以下是小编为大家整理的《方程》教案7篇,希望能够帮助到大家。

《方程》教案 篇14

课题:2.3.2.3直线的一般式方程

课型:新授课

教学目标:

1、知识与技能

(1)明确直线方程一般式的形式特征;

(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;

(3)会把直线方程的点斜式、两点式化为一般式。

2、过程与方法:学会用分类讨论的思想方法解决问题。

3、情态与价值观

(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。

教学重点:直线方程的一般式。

教学难点:对直线方程一般式的理解与应用

教学过程:

问题

设计意图

师生活动

1、(1)平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?

(2)每一个关于的二元一次方程(A,B不同时为0)都表示一条直线吗?

使学生理解直线和二元一次方程的关系。

教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。为此要对B分类讨论,即当时和当B=0时两种情形进行变形。然后由学生去变形判断,得出结论:

关于的二元一次方程,它都表示一条直线。

教师概括指出:由于任何一条直线都可以用一个关于的二元一次方程表示;同时,任何一个关于的二元一次方程都表示一条直线。

我们把关于关于的二元一次方程(A,B不同时为0)叫做直线的一般式方程,简称一般式(generalform).

2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?

使学生理解直线方程的一般式的与其他形

学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:

问题

设计意图

师生活动

式的不同点。

直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与轴垂直的直线。

3、在方程中,A,B,C为何值时,方程表示的直线

(1)平行于轴;(2)平行于轴;(3)与轴重合;(4)与重合。

使学生理解二元一次方程的系数和常数项对直线的位置的影响。

教师引导学生回顾前面所学过的与轴平行和重合、与轴平行和重合的直线方程的形式。然后由学生自主探索得到问题的答案。

4、例5的教学

已知直线经过点A(6,-4),斜率为,求直线的点斜式和一般式方程。

使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点。

学生独立完成。然后教师检查、评价、反馈。指出:对于直线方程的一般式,一般作如下约定:一般按含项、含项、常数项顺序排列;项的系数为正;,的系数和常数项一般不出现分数;无特加要时,求直线方程的结果写成一般式。

5、例6的教学

把直线的`一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上的截距,并画出图形。

使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法。

先由学生思考解答,并让一个学生上黑板板书。然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率的和直线在轴上的截距。求直线与轴的截距,即求直线与轴交点的横坐标,为此可在方程中令=0,解出值,即为与直线与轴的截距。

在直角坐标系中画直线时,通常找出直线下两个坐标轴的交点。

6、二元一次方程的每一个解与坐标平面中点的有什么关系?直线与二元一次方程的解之间有什么关系?

使学生进一步理解二元一次方程与直线的关系,体会直解坐标系把直线与方程联系起来。

学生阅读教材第105页,从中获得对问题的理解。

7、课堂练习

巩固所学知识和方法。

学生独立完成,教师检查、评价。

问题

设计意图

师生活动

8、小结

使学生对直线方程的理解有一个整体的认识。

(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。

(2)比较各种直线方程的形式特点和适用范围。

(3)求直线方程应具有多少个条件?

(4)学习本节用到了哪些数学思想方法?

巩固课堂上所学的知识和方法。

学生课后独立思考完成。

归纳小结:

(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。

(2)比较各种直线方程的形式特点和适用范围。

(3)求直线方程应具有多少个条件?

(4)学习本节用到了哪些数学思想方法?

作业布置:第101页习题3.2第10,11题

课后记:

《方程》教案 篇15

教学内容:

第8页第5-10题

教学目标:

1、进一步理解并掌握如ax±b=c、ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯;获得一些成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

教学重点、难点:

经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

教学对策:

提供基本题和拓展题,让不同程度的学生在原有基础上得到不同的发展。

教学准备:

投影片或小黑板

教学过程:

一、基本练习

1、解方程。

8.2X-7.4=9 2X+52X=162

32+6X=50 10.5X-7.5X=0.9

学生独立解答,投影四位学生的解题过程,教师及时讲评,学生集体订正。

2、看图列方程并求出X。(第8页第5题)

(图略)学生独立思考后列方程解答,然后交流,同桌之间互相检查解题情况,互相评价。

3、列方程解决实际问题。(第8页第6-10题)

(1)第6题。

学生独立思考数量关系列出方程,组织学生交流自己的思考过程,教师及时评价。

(2)第7、8、10题。

学生独立思考并列出方程,指名学生说说数量关系和列出的方程,教师及时评价。

将第7、8、10题与第6题进行比较,请学生说说两题的分析和解题过程有什么不同。

(3)第9题。

提问:根据题中提供的信息,你想到了哪些数量关系?你觉得用什么方法解决这个问题较简便?

鼓励学生用不同的方法来解决这一问题,然后请学生交流自己的想法,让学生感受方程的思想方法及价值。

二、拓展练习

1、小明的储蓄罐里一共有87.5元,都是1元和5角的硬币。如果1元硬币的枚数是5角硬币的3倍。1元和5角的硬币各有多少枚?

学生认真读题后思考题中的数量关系,请学生交流。

在理解数量关系后组织学生正确列出方程并解答。

教师巡视学生练习情况,结合学生实际及时讲评。

2、甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是甲队的2倍。问甲、乙两队原有汽车各多少辆?

启发学生:两个车队的汽车总数没有发生变化,因此数量关系式为:甲车队汽车辆数+乙车队汽车辆数=180辆,然后再思考怎样用含有字母的式子来表示这两个未知的'数量。

学生独立解答后组织交流,教师及时评价学生交流情况。

3、书上第8页的“思考题”。

在学生认真读题的基础上,教师引导学生理解“取了若干次后,红球正好取完,白球还有10个”,说明取出的红球比白球多10个。根据这样的数量关系来列出方程,解决本题。

三、全课总结

同桌之间互相检查本课练习情况,互相评价学习情况,再请几位学生全班交流。

四、布置作业

第8页第5、6、8、9题。

课后反思:

今天的练习课中,我主要借助教材上提供的一些实际问题和补充了一些练习题,想通过这些练习,帮助学生进一步提高分析数量关系的能力,能正确、熟练地运用列方程的方法来解决一些实际问题。我还参考了同一年级两位老师的“课前思考”,在课中根据学生实际情况对教学活动稍做调整,适当降低了练习难度,尽可能考虑到全体学生的发展。

练习课上,我也选用了高教导设计的一组有关行程问题的对比题,课中注意了对数量关系的分析,给学生较多的时间来思考、分析和交流。课堂上学习效果还不错,所以,我将教材上第8页的第5、6、7、8题作为课内作业,让学生独立完成。批完两个班学生的作业后,我发现自己对学生学习情况还没有摸透,特别是这学期刚接手的六二班。六二班中有接近1/3的学生在列方程解第5题时出现错误,分析错误原因主要是对于三角形面积计算公式和长方形周长计算公式已遗忘,列出错误的方程,因而造成错误,另一原因是在解这两个稍复杂的方程时,有些学生解方程有困难,胡乱计算。这两题虽然是有关几何图形面积和周长的计算,但由于数量关系式的不同,也可以列出不同的方程。而且有些方程可能较简单,更便于解答。看来,这一题还得重视起来,明天的练习课上,我要再组织学生来解答,更好地掌握用列方程的方法来解决有关几何图形的问题。

《方程》教案8篇

作为一位优秀的人民教师,往往需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写呢?以下是小编为大家整理的《方程》教案8篇,仅供参考,希望能够帮助到大家。

《方程》教案 篇16

教学内容:

教科书P12练习二第9~15题

教学目标:

1.渗透数学中的语感训练,使学生能熟练找出问题中相等关系的量,根据其数量关系列出方程。

2.使学生掌握应用等式的性质解两步解的方程。

3.注重联系生活实际,获得成功体验。

教学重点:

学生能熟练根据其数量关系列出方程。

教学难点:

注重联系生活实际,获得成功体验。

教学过程:

一、 复习导入

找出下列句中的数量关系

松树和杨树一共56棵

学校的建筑面积是总面积的一半

底楼高3.4米,其余三层平均每层高2.8米,这幢楼高多少米?

小亮现在的身高比出生时的3倍高0.04米

三瓶墨水的价钱比一个文件夹便宜2.8元

二、巩固练习

1.练习二第9题

指名板演,其余生独立完成在自备本上后集体校对。

说说注意点和解两步方程的步骤。

2. 练习二第10题

先要求学生只列出方程,校对所列方程根据的`等量关系后再解方程。

3. 练习二第11题

生理解题意,找出数量关系,独立列方程解答,集体交流。

4. 练习二第12题

生理解题意,并独立完成在自备本上。校对,说说题目的意思,注意要求两问。

5. 练习二第13题

生理解题意,让学生找准对应的量,提醒学生有2问。集体交流。

6. 练习二第14题

生独立完成后校对,其中12题的物品有“文件夹”和“墨水”,各一个与12瓶,总价25.10元。

7. 练习二第15题

学生利用公式独立列式计算,集体交流时让学生说说是怎样计算的?

三、总结

师:今天在解方程的过程中,你有哪些进步?

四、作业

补充习题

《方程》教案 篇17

教学目标:

1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

2、会用方程表示简单的等量关系,会列方程解决简单问题。

3、感受式与方程在解决问题中的价值,培养初步的代数思想。

教学重点:

明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

教学难点:

找等量关系式,用方程解决实际问题。

教学过程:

一、导入

我们都记得这首儿歌

一只青蛙一张嘴,两只眼睛四条腿;

两只青蛙两张嘴,四只眼睛八条腿;

请你来接下句

三只青蛙_________;

五只青蛙呢?

N只青蛙呢?

一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

二、进行复习

1、用字母表示数

(1)同学们想一想,在数学中有哪些地方常用字母来表示?

生列举:数量关系(路程、速度、时间 即s=vt)

计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

运算定律(加法结合律:a+b+c=a+(b+c)等)

(2)请同桌之间相互举两个这样的例子。

(3)你们知道为什么用字母表示数吗?

(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

算法有两种:其一:算术方法:160÷(5+3)=20

依据:总插秧数量÷时间=单位时间量

其二:列方程:x(5+3)=160

依据:单位时间量×时间=总插秧数量

观察比较:以上两种解法有哪些相同点和不同点?

相同点:都是根据数量间的相等关系列式。

不同点:解法一:以已知推出未知,是算术法。

解法二:把未知数用x表示,列出含有未知数的等式,即方程。

同学们想一想,等式和方程有什么联系和区别?

方程有哪些性质呢?(等式 、含有未知数)

2、方程

(1)判断下列哪些是方程(说明理由)

7+8=3×5 4a+5b a+12=89

4x=y 3+100>25+y 6+x=0.5×3

(2)你会解方程吗?从中选择一个试一试。

(3)如何判断方程的解是否正确?

(4)列方程解应用题的解题步骤是怎样的?

讨论后得出:①弄清题意,找出未知数,并用x表示;

②找出应用题中数量之间的相等关系,列方程;

③解方程;

④检验,写出答案。

3、列方程解决问题

(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

(3)练习

①练一练1

②师展示习题:说出下面每组数量之间的相等关系。

(1)女生人数,男生人数,全班人数;

(2)苹果的重量,梨的重量,梨比苹果少的重量。

(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

③课本练一练5

三、小结

说一说你今天的收获在哪里?

《方程》教案 篇18

教学内容:

教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的.?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)

(含有未知数的等式是方程。)

(等式性质:)

(求方程中未知数的值的过程叫做解方程。)

3、。

同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂

通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

《方程》教案 篇19

教学目的:

1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、提高分析数量关系的能力,培养学生思维的灵活性。

3、在积极参与数学活动的过程中,树立学好数学的信心。

教学重点、难点:

引导学生独立分析问题,找出题目中的等量关系。

教学对策:

在积极参与数学活动的过程中,树立学好数学的信心。

教学准备:

教学光盘

教学过程:

一、复习准备

1、解方程(练习一第6题的第1、3小题)

4x+12=50 2.3x-1.02=0.36

学生独立完成,再指名学生板演并讲评,集体订正。

二、尝试练习

师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

出示:30x÷2=360

学生独立尝试完成,全班交流。

指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

三、巩固练习

1、出示练习一第7题。

(1)分析数量关系

提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

(2)学生独立计算,并检验答案是否正确,全班核对。

小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

2、练习一第8题。

学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

3、练习一第9题。

学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

学生独立解方程再集体订正。

4、练习一第10题。

教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

5、练习一第11题。

学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

6、练习一第12题。

提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

学生独立列方程解答,同桌同学互相检查,再集体订正。

7、练习一第13题。

学生阅读第13题,理解后独立解决问题,再交流。

教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

四、全课小结

说一说你这一节课的学习收获及还有什么问题。

五、布置作业

完成配套习题。

教后反思:

本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的题目是:(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。

通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。

《方程》教案 篇20

教学内容:

第8页第5-10题

教学目标:

1、进一步理解并掌握如ax±b=c、ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯;获得一些成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

教学重点、难点:

经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

教学对策:

提供基本题和拓展题,让不同程度的学生在原有基础上得到不同的发展。

教学准备:

投影片或小黑板

教学过程:

一、基本练习

1、解方程。

8.2X-7.4=9 2X+52X=162

32+6X=50 10.5X-7.5X=0.9

学生独立解答,投影四位学生的解题过程,教师及时讲评,学生集体订正。

2、看图列方程并求出X。(第8页第5题)

(图略)学生独立思考后列方程解答,然后交流,同桌之间互相检查解题情况,互相评价。

3、列方程解决实际问题。(第8页第6-10题)

(1)第6题。

学生独立思考数量关系列出方程,组织学生交流自己的思考过程,教师及时评价。

(2)第7、8、10题。

学生独立思考并列出方程,指名学生说说数量关系和列出的方程,教师及时评价。

将第7、8、10题与第6题进行比较,请学生说说两题的分析和解题过程有什么不同。

(3)第9题。

提问:根据题中提供的信息,你想到了哪些数量关系?你觉得用什么方法解决这个问题较简便?

鼓励学生用不同的方法来解决这一问题,然后请学生交流自己的想法,让学生感受方程的思想方法及价值。

二、拓展练习

1、小明的储蓄罐里一共有87.5元,都是1元和5角的硬币。如果1元硬币的枚数是5角硬币的3倍。1元和5角的硬币各有多少枚?

学生认真读题后思考题中的数量关系,请学生交流。

在理解数量关系后组织学生正确列出方程并解答。

教师巡视学生练习情况,结合学生实际及时讲评。

2、甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是甲队的2倍。问甲、乙两队原有汽车各多少辆?

启发学生:两个车队的汽车总数没有发生变化,因此数量关系式为:甲车队汽车辆数+乙车队汽车辆数=180辆,然后再思考怎样用含有字母的式子来表示这两个未知的数量。

学生独立解答后组织交流,教师及时评价学生交流情况。

3、书上第8页的“思考题”。

在学生认真读题的基础上,教师引导学生理解“取了若干次后,红球正好取完,白球还有10个”,说明取出的红球比白球多10个。根据这样的数量关系来列出方程,解决本题。

三、全课总结

同桌之间互相检查本课练习情况,互相评价学习情况,再请几位学生全班交流。

四、布置作业

第8页第5、6、8、9题。

课后反思:

今天的练习课中,我主要借助教材上提供的一些实际问题和补充了一些练习题,想通过这些练习,帮助学生进一步提高分析数量关系的能力,能正确、熟练地运用列方程的方法来解决一些实际问题。我还参考了同一年级两位老师的'“课前思考”,在课中根据学生实际情况对教学活动稍做调整,适当降低了练习难度,尽可能考虑到全体学生的发展。

练习课上,我也选用了高教导设计的一组有关行程问题的对比题,课中注意了对数量关系的分析,给学生较多的时间来思考、分析和交流。课堂上学习效果还不错,所以,我将教材上第8页的第5、6、7、8题作为课内作业,让学生独立完成。批完两个班学生的作业后,我发现自己对学生学习情况还没有摸透,特别是这学期刚接手的六二班。六二班中有接近1/3的学生在列方程解第5题时出现错误,分析错误原因主要是对于三角形面积计算公式和长方形周长计算公式已遗忘,列出错误的方程,因而造成错误,另一原因是在解这两个稍复杂的方程时,有些学生解方程有困难,胡乱计算。这两题虽然是有关几何图形面积和周长的计算,但由于数量关系式的不同,也可以列出不同的方程。而且有些方程可能较简单,更便于解答。看来,这一题还得重视起来,明天的练习课上,我要再组织学生来解答,更好地掌握用列方程的方法来解决有关几何图形的问题。

《方程》教案 篇21

教学内容:

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与整理

1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的'?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

《方程》教案 篇22

解一元一次方程

【教学任务分析】教学目标知识技能

1.用一元一次方程解决“数字型”问题;

2.能熟练的通过合并,移项解一元一次方程;

3.进一步学习、体会用一元一次方程解决实际问题.

过程

方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想.

情感

态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义.

重点建立一元一次方程解决实际问题的模型.

难点探索并发现实际问题中的等量关系,并列出方程.

【教学环节安排】

环节教学问题设计教学活动设计

入牵线搭桥,解下列方程:

(1)-5x+5=-6x;(2);

(3)0.5x+0.7=1.9x;

总结解“ax+b=cx+d”类型的一元一次方程的步骤方法.

引出问题即课本例3

问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求.

学生:独立完成,根据讲评核对、自我评价,了解掌握情况.

探究一:数字问题

例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

【分析】1.引导学生观察这列数有什么规律?

①数值变化规律?②符号变化规律?

结论:后面一个数是前一个数的-3倍.

2.怎样求出这三个数?

①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?

②列出方程:根据三个数的和是-1701列出方程.

③解略

变式:你能设其它的数列方程解出吗?试一试.比比较哪种设法简单.

探究二:百分比问题(习题3.2第8题)

【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?

【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因为今年的人均收入比去年的'1.5倍少1200元,所以今年的收入又可以表示为_________元.

③根据“表示同一个量的两个式子相等”可以列出方程为________________________.

解答略教师:引导学生分析.

2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题.

学生:观察、讨论、阐述自己的发现,并互相交流.

根据分析列出方程并解出,求出所求三个数.

备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决.

变换设法,列出方程,比较优劣、阐述发现和体会.

教师:出示题目,引导学生,让学生尝试分析,多鼓励.

学生:根据引导思考、回答、阐述自己的观点和认识.

根据共同的分析,列出方程并解出,

(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)

尝试应用

1、填空

(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.

(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.

(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.

2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础.

通过(3)题理解连续数的表示法,并感受怎么表示最简单.

通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式.

教师:结合完成题目,汇总讲解,重点在于解法.

成果

展示1.通过本节所学你有哪些收获?

2.谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会.学生自我阐述,教师评价鼓励、补充总结.

补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.

2.下面给出的是20xx年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).

A.69B.54C.27D.40

通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题.

题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高.

根据学生完成情况灵活设置问题.

作业

设计作业:

必做题:课本4、5、第94页6题.

选做题:同步探究.教师布置作业,并提出要求.

学生课下独立完成,延续课堂.

授课教师:

20xx年10月31日

《方程》教案 篇23

教学目标:

1.知识与技能:结合具体的问题,使同学们学会用解方程和用方程解决具体的问题。

2.过程与方法:结合课本内容和实际问题来使同学们形成用方程解决问题的观念。

3.情感态度价值观:在学习方程解决问题的过程中培养同学们对于学习数学的兴趣,培养同学们克服困难的品质,培养同学们探索新知的勇气和信心。

教学过程:

一、回顾与交流。

1.复习方程概念。

什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

判断下面是不是方程:

3X+5

6+8=14

6X=15

7X+315

1.两道解方程的题目再让学生说说是怎样解的。

通过这里的两道练习复习小学所学习的解方程的方法(即根据等式的性质来解。)

2.解简易方程。

复习61页第二题

首先让学生找出这三个题的等量关系,让学生分小组讨论讨论,在小组内说一说怎样找的等量关系。然后请学生在班内汇报一下。再请三位同学演板,并请演板的同学解释自己的做法。

(在这个过程中,让学生首先学会找出题目的等量关系,再根据等量关系去列方程,使学生养成用方程解决问题的时候,要懂得方程是根据等量关系列出的。)

集体订正:解(1)方程是怎样想的,检查解方程时每一步依据什么做的。(2)方程与(1)有什么不同,解方程时有什么不同? 师生共同小结解方程的一般步骤(略)。怎样检验方程的解对不对? 增加找数量关系练习。

1.六一班有50人,其中男生有28人,女生有多少人?

2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?

首先让学生独立找出题目中的等量关系,然后让同桌2人互相说一说,然后再解答。

二、巩固与应用。

引导学生做课本巩固练习题

1.解方程。组织学生独立完成,然后让学生上去讲一讲解题的方法。

2.看图列出方程,并求出方程的解。首先让学生在小组内说一说解决的方法,再请学生汇报交流。

3.看图理解题意,引导学生分析数量关系,再列方程解答。请学生演板,演板后组织学生讨论。

4.理解文字题,根据数量关系列出方程并求解。请学生找出题中的等量关系,再让学生完成。

三、总结提高。

通过这节课的学习,你解决了那些问题,还有那些困惑?

(通过学生的汇报,查漏补缺,找出这节课可能没有涉及到的问题加以解决。)

四、习题设计。

1.课本62页第5题。这里的两个小题,第1小题是用字母表示,学生要想用字母表示出来,必须先找出题目的等量关系。第2小题是用方程解决问题,除了要找出等量关系外还要列出方程并解答。

2.课本62页第6题。这是一道拓展性的习题,是数与形的结合,通过这道题的练习,除了锻炼学生用方程解决问题的能力,同时也复习了有关几何的知识。

《方程》教案范文汇总七篇

作为一位不辞辛劳的人民教师,编写教案是必不可少的,借助教案可以提高教学质量,收到预期的教学效果。那么你有了解过教案吗?以下是小编为大家收集的《方程》教案7篇,欢迎阅读,希望大家能够喜欢。

大家都在看