短文网整理的比的应用教学设计(精选24篇),快来看看吧,希望对您有所帮助。
比的应用教学设计 篇1
【教材分析】
《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
【教学目标】
1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;
2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
【教具准备】
课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。
课上准备:有关课件、黄、蓝色颜料、量杯等。
【教学重点】 理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
【教学难点】 理解按比分配的实际意义,沟通比与分数之间的联系。
【教学设计】
一、情境导入
情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)
看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)
现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)
【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】
情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)
【策略说明:根据武秀华老师的建议“尽量简约,尽量直奔主题,不要做过多的渲染”,开门见山,直奔主题。】
二、实验操作
1、动手操作,调配绿色
师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)
要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。
(学生动手操作,老师进行指导。)
配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。
【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】
2、观察发现,得出结论
(1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)
师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。
学生调配的绿色可能会出现如下情况:
① 所有的小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。
② 有两组或两组以上的数据完全相同,则这几组配出来的绿色完全一样。这种情况也分为两种,一种是每组所取的黄色与蓝色同样多,如20ml的黄色和20ml的蓝色,即黄色与蓝色的比为1:1,还有一种是每组取得黄色是相同的,蓝色也是相同的,如每组都取20ml和黄色和30ml和蓝色。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?
③ 有两组或两组以上的数据不同,但配出来的绿色完全一样,即每组所取黄色与蓝色的比相同。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?
(2)得出结论。师:用什么办法使各组能配出非常接近甚至是一样的绿色呢?
根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是 1:3,就可以调配出完全一样的绿色来。
(3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。
师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的`体积比为1:1。
【策略说明:这一过程,必须结合课堂上出现的情况进行教学,学生调配出来的绿色不可能是完全一样的,这一矛盾会极大的刺激学生各种感官,引出学生的探究欲望,并得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。学习的目的性加强了,孩子的学习兴趣被激发出来,由被动接受知识到主动去探究知识,对按比分配的实际意义有了深切的感悟。】
3、再次调配黄色与蓝色的比为3:2的绿色。
(1)动手操作。师:我们需要调配出这种绿色(拿出事先调好的绿色),黄与蓝的比是3:2(板书),从3:2中你能得到什么数学信息?
学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。
【策略说明:主要目的复习旧知,沟通比与分数的关系,为学习新知进行铺垫。】
师:现在我们再来配一次绿色,所需要的黄色与蓝色的比为3:2,怎么配?
(2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。
【策略说明:在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。】
三、动笔计算
1、出示问题:我配的绿色是120ml,黄色与蓝色的体积比为3:2,算一算我用的黄、蓝色各是多少ml?请一学生重复问题,教师在黑板上出示习题:用黄色和蓝色颜料调配出120ml的绿色,黄色与蓝色的体积比是3:2,黄色与蓝色各需多少ml?
2、学生独立试做,并交流不同的算法。学生可能出现的算法:
方法1:3+2=5 120×3/5=72ml 120×2/5=48ml
师:2/5和3/5各表示什么?说给同桌听一听。
方法2:3+2=5 120÷5×3=72ml 120÷5×2=48ml
师:谁能说说他是怎么想的?
方法3:解:设一份量为xml。
3x+2x=120
5x=120
x=24
3x=24×3=72
2x=24×2=48
方法4:3+2=5 120÷5/2=48ml 120÷5/3=72ml
3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把 120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)
4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。
【策略说明:我认为,通过计算解决按比分配的问题是学生应该掌握的,这一环节的设置主要是要让学生在解决问题的过程中体会同一问题可以从不同角度去思考,得到不同的解决策略,这有利于学生思维的广度发展。其次,强化了用分数乘除法解题,因为用分数的方法有利于加强知识间的联系,使孩子的思维不仅仅局限于整数乘除法范畴,又上升了一个新的高度。再次书中的习题都是给出总量求部分量的题,而最后一题是已知部分量根据比求另一个部分量,因为这种问题在实际生活中很常见,虽然有一定难度,但由于数量简单,因此学生并不难解决】
三、小结
像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)
【策略说明:此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。同时,学生搜集到的资料能够被老师所用,对学生来说也会感到很自豪,对学生的激励作用不言而喻。教师必须提前掌握学生搜集的资料,也可以为学生提供一些资料。】
四、巩固应用
1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。
师:一顿饭一个孩子大约需要100g菜,这100g菜中各类食物应该是多少克呢?你能用分数的方法解决这个问题吗?(做完同学在小组长的带领下,组内互相检查,并交流各自的做法。)教师再次提问:“你认为这道题最关键的环节是什么?”
2、同学们正是长身体的时候,饮食上要合理,不要挑食。如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)
老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。
咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。
(反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)
你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)
【策略说明:巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;其次,这些内容都是学生身边的事,和他们的生活息息相关,同时又是学生感兴趣的,学生在学习时不仅不会感到枯燥,同时他们用今天学过的知识解决了身边的数学问题,会有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种突冗的陌生感,反之具备了一种似曾相识的接纳心理。】
四、总结。
1、刚才我们根据2:13这个比解决了几个问题?这两个问题有什么不同?不管是给出部分量,根据比求总量,还是给出总量,根据比求部分量,都属于比的应用的问题。解决这类问题可以采取什么策略?
2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。
比的应用教学设计 篇2
教学内容:小学教学第二册第33--34页的例2和例3,练习九中的第1--3题。
教学目的:1、使学生初步学会解答求一个数比另一个数多几的应用题。
2、培养学生理解能力,分析问题能力。
教学重点难点:求一个数比另一个多几的应用题。
教具准备:投影片
教学过程:
一、复习
1、口算(6道) 2、看图比多少?(2道)
二、新课
(一)教学例2
(1)出示投影片()
(2)哪个多些,哪个少些?找出同样多的部分。
(3)指出△比○多几?
(4)看33页例2,△和○图,再填空。
2、完成33页“做一做”题目
(二)教学例3
(1)读题,理解题意
(2)投影:(出示白兔和黑兔)找了谁多谁少
(3)引导学生进一步思考,求白兔比黑兔多几只?用减法计算
(4)对照图讲述
2、完成34页“做一做”
A、读题
B、讨论分析
C、列式解答
三、做课中课(拍手游戏)
四、巩固练习
1、练习九的第一题
2、练习九的第二、三题
3、夺红旗游戏
五、小结:今天我们学的.应用题里,告诉我们两个数,要求一个数比另一个数多几,要先想:哪个数比较多,再想来比较多的数是由哪两面三刀部分组成的,从它里面去掉和另一数同样多的部分,就能算出比另一个数多的。
比的应用教学设计 篇3
教学具准备:
1、翻看户口簿上自己的身份证号码是多少?
2、了解父母的身份证号码并了解身份证号码是怎样组成的?
3、师准备一张身份证。
教学过程:一、情景引入:
同学们到银行开户储蓄过吗?(去过)刚开户时要用到什么证件?(身份证)同学们坐飞机出境旅游过吗?坐飞机出境旅游也要用到什么证件?(身份证)今天我们就来学习身份证号码是怎样组成的?
一、学习新知:
1、视频展示台上出示一张,让学生观察并互相说说你发现了什么?
身份证上有姓名、性别、出生年月、发放日期和有效期、编号。
2、师生共同学习身份证上的编号是怎样组成的?
(1)指名介绍身份证号码中自己知道的某些数字表示的意思
(2)你还知道其他的号码有什么意义吗?
(3)师根据学生的介绍补充和小结:
实际上,身份证号码是由18位数字组成:前6位为行政区划代号,第7至14位为出生日期码,第15至17位为顺序码,第18位为校验码。
(4)从身份证号码中你能获得哪些信息?
4、刚才我们学习了身份证号码是怎样编排的,你能试着给自己编一个身份证号码吗?再与户口簿上的身份证号码对照一下。
5、学习例3,我们来给学校的每个学生编一个学号。
①学生思考并讨论学号中要体现的内容:年级、班级、性别、入学年份等
②根据以上内容来设计编码的方法。
③分组活动,共同探讨如何编号。
④最后,以小组为单位来展示本组同学设计的'学生学号的编排方法,老师注意引导学生说出每个数字在编码中的作用。
二、巩固练习:
1、完成P115的做一做。
2、介绍自己感兴趣的编码中的每个数字的意义。
三、全课小结:
同学们,今天我们学习了什么?你知道了什么?你还想告诉大家一些什么知识?
五、作业:到图书室去了解一下图书管理员是怎样给众多的图书编码的?
教学内容:人教版课标实验教科书P114~P115以及相应的练习。
教学目标:
1、通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用。
2、通过观察、比较、猜测来探索数字编码的简单方法。
3、让学生学会运用数进行编码,初步培养学生的抽象、概括能力。
4、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。
教学重难点:通过观察、比较、猜测来探索数字编码的简单方法。
比的应用教学设计 篇4
这学期暑假我参加了清丰县教委中心组织的《多媒体环境下的教学设计与资源应用》课程培训。古语有云“活到老,学到老”,在这个信息高速发展的时代,不能与时俱进,肯定会被淘汰,而这一至真名理,始终需要我们的贯彻实施,同时这也是一个提高自我修养的绝好机会,通过这次培训我学到了很多东西,大概有以下几点:
一.通过这次电脑课程的培训,我知道了教学资源的检索、收集、下载和加工处理的重要性,提高了我对电脑操作的熟练程度,对于相关的软件也可熟练操作,也有了一定的实践经验,对于以后的课件制作是一大助力,了解了多媒体环境下教学设计的特点和方法,也学会了教学资源与教学设计整合的方法,并亲身实践以加深印象。
二.随着时代的发展,信息的变更变得至关重要,有时候掌握信息就等于掌握了未来,而因特网上的大量信息就很好的帮助了我,它让我随时随地的掌握信息的变化,以更好的掌握时代的发展,能更好的跟上时代的步伐,不至于被淘汰,不过因特网上的信息因为太过庞杂,所以无可避免的夹杂一些有害信息,所以做好信息的筛选尤为重要,这一点也是我们最应该教给学生的,以便他们取其精华,去其糟粕,更好的学习,同时通过这个的`学习,也增加了我与学生交流的话题,更好的了解学生的变化,建立和谐的师生关系。
三.通过培训,我认识到了合作的重要性,与小组的几位老师合作的也很愉快,使我充分验证了“众人拾柴火焰高”这句名言,也使我交到了不少良师益友,这些将是我以后学习生活中的榜样和前进的动力。
总之,通过这次的学习培训,我是受益颇多,不仅加强了自己的专业技能,学到了很多多媒体应用技巧,也打开了一扇更为广阔空间的大门,相信未来会更光明。
比的应用教学设计 篇5
学习目标:
1、应用比的意义,解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。
学习重点:应用比的意义,解决按照一定的比进行分配的实际问题。
学情分析、教材处理:
六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。
教学准备:水杯、水、鲜奶、茶、秤、课件。
教学过程:
一、分配礼物
师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?
1、想一想
① 我将礼物的一半给男生、另一半给女生,你们说怎么样?
② 如果你觉得不太合理,那你们认为我应当怎样分呢
③ 调查班级男女生人数
④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?
如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……
⑤ 为什么这么多的分法你们都认为合理呢?,
师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。
【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的。】
2、分一分(教师拿出纸杯)
① 不知道有多少杯子,你建议怎么分呢?
② 依照学生的建议分杯。
教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果
③各种分杯建议的结果一样吗?为什么?
④这些分杯的方法哪一种最好?
师:方法没有最好,只有最适合,如果知道总的.数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。
3、比一比
① 出示“两袋鲜奶”。直接给男生一袋、女生一袋
思考:这是平均分呢?还是按比分呢?(生答)
② 其实,平均分也是按比分的一种,这个比就是1:1。
③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)
【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;再让学生实际分一分,感受逐次分和按比分的结果相同;最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激情被又一次点燃。】
二、配制奶茶
1、制茶前明确:
A、 制作奶茶需要什么材料?
B、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?
C、那你们想想要按着怎样的比来配呢?谁来提议一下?
D、 谁理解这个比的含义了?
E、哪一个单位最合适呢?
2、回归具体的量
A、 顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?
B、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)
想一想,你要用什么办法解决这个问题?
【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
4、品尝奶茶后的思考
A、感觉怎么样?有什么改进的建议?
B、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗
师:我这一勺是多少你才认为可以在这个比中占1份呢?
C 、小结:的确, 几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?
D、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)
E、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)
【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】
三、回归生活
师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?
1、第一站:某大学后勤部
今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)
2、第二站:四丰农药加工厂
农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)
3、第三站:木材加工厂配料车间
下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。
【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】
4、第四站:人民法院民事审判厅
案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39 万元,两个人由于没事先约定,发生争执,提出诉讼。
① 你们想要什么条件呢?
② 材料提供:1、建厂时,李某出资5万元,王某出资3万元。
2、经营时,李某出勤10个月,王某出勤12个月。
3、创效益,李某签定6万元合同,王某签定8万元合同。
③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?
提供法律依据:合伙企业法第33条规定
“ 合伙企业的利润分配、按照合伙协议的约定办理;合伙协议未约定或者约定不明确的,由合伙人协商决定;协商不成的,由合伙人按照实缴出资比例分配;无法确定出资比例的,由合伙人平均分配。”
⑤ 现在你知道法官怎么分配财产的了吗?
【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】
四、总结反思
①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)
② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。
比的应用教学设计 篇6
教学内容:课本应用题例2及练一练
教学目标:
通过学习进一步促进学生分析问题的能力,掌握用各种方法来解决问题。提高学生的应用能力。
教学重点:掌握一般复合应用题的分析方法
教学用具:幻灯,小黑板
教学过程:
一、只列式不计算
⑴某毛纺厂有男职工25人,女职工的人数是男职工的4倍。
A.女职工有多少 人?
B.男女职工共有多少人?
C.女职工比男职工多几人?
(B、C两问要让学生思考用多种方法。让学生说说分析的思路)
⑵养鸡场有公鸡120只,母鸡的只数比公鸡的5倍多32只,
A.有母鸡多少只?
B.公鸡、母鸡共有多少只?
(让学生试试用线段图来表示题意)
二、创设问题情景
每年的`“六一”节前怡园小学生都要向山区同学捐书,今年大队部对三、四、五年级捐书情况统计如下:
三年级说:“我班捐书36本。”
四年级想了想说:“我班捐书的本数是三年级的2倍。”
五年级大声说:“我班比三、四年级捐书的总数少8本。”
你们知道五年级捐书多少本吗?
三、解决问题
1、学生独立思考。
2、独立完成后同桌交流,看是否正确。
3、汇报、板演。
36*2=72(本) 综合算式:36+36*2-8
36+72=108(本)
108-8=100(本)
学生说理后再问:你还有其它的方法吗?
如:36*(1+3)-8
用线段图帮助学生理解:把三年级捐书的本数看作一份数。
四、应用及变式
1、说说解题思路,再列式。
⑴有红金鱼10条,黄金鱼的条数比红金鱼的2 倍多4条。两种金鱼共有多少条?
⑵有红金鱼10条,黄金鱼的条数比红金鱼的2 倍少4条。两种金鱼共有多少条?
⑶有红金鱼10条,黄金鱼的条数是红金鱼的2 倍。花金鱼的条数比红、黄金鱼总数少4条。花金鱼有多少条?
⑷有红金鱼10条,黄金鱼的条数比红金鱼少3 条,花金鱼的条数比黄金鱼的2 倍少4条。花金鱼有多少条?
让学生每两题一比较。
2、列式计算
课本练一练的第二题
五、课堂作业
课本练一练的第3-5题
比的应用教学设计 篇7
教学目的:
1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。
2.培养学生分析、解决问题的能力,以及良好的思维品质。
教学过程:
一、复习
1.什么叫长方体、正方体的表面积?
如果告诉了长方体的长、宽、高,怎样求它的表面积?
如果要求正方体的表面积,需要知道什么?怎样求?
2.图中告诉了长方体的什么?
(1)要求前面或者后面的面积,需要用哪两个条件?怎样求?
用9厘米、3厘米这两个条件可以求出哪个面的面积,怎样求?如果要求左面或右面的面积,需要用哪两个条件,怎样求?
这个长方体的表面积怎样求?
(2)按要求列式,不计算。
3.(出示长方体教具)请同学生们看,这是什么体?它有几个面?
如果没有上面,(同时去掉上面)要求它的表面积,就是求几个面的总面积?是哪5个面呢?
如果没有上、下面,(再去掉下面)又是求几个面的总面积,哪几个面?
[说明:以上复习题的设计,突出了逻辑性和灵活性。为学生灵活运用表面积的计算方法,创造性地解决生活中的实际问题,埋下了伏笔。]
二、新课教学
1.揭示课题:长方体、正方体表面积的实际应用。
2.例3:粮店售米用的米箱(上面没有盖),长l.2米、宽0.6米、高0.8米,制作这样一个木箱至少要用木板多少平方米?
(1)读题,说出这道题的题意(或己知条件和问题)
(2)要求用木板多少平方米,就是求木箱的什么?这个木箱有几个面?少了哪一个面?
(3)怎样列式?
a.1.2×0.8×2+0.6×0.8×2+1.2×0.6
=1.92+0.96+0.72
=3.6(平方米)
答:至少要用木板3.6平方米。
b.谁还有不同的方法(并讲出列式思路)。
(1.2×0.8+0.6×0.8)×2+1.2×0.6
(l.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6
[说明:教师让学生审题时,强调题中的隐含条件"上面没有盖",抓住解答本题的关键,又从不同角度引导,加强学生逻辑思维的训练,培养思维的灵活性。]
3.小结:
通过例3的学习,我们知道在解答长方体、正方体表面积的问题时,首先要判断什么?然后就按照有几个面就直接求几个面的面积或先求出6个面的总面积再减去缺少面的面积的方法来解答。
4.如果原已知条件不变,再增加条件和问题,出示如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?
(1)提问:求刷油漆的面积就是求几个面的面积,自你会解答吗?请独立完成。
(2)集体评讲。(师板书如下)
1.2×0.8×2+0.6×0.8×2=2.88(平方米)
(1.2×0.8+0.6×0.8)×2=2.88(平方米)
(1.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6×2=2.88(平方米)
(1.2+0.6)×2×0.8=2.88(平方米)
(3)利用教具演示,验证(1.2+0.6)×2×0.8是否正确:如果把它刷油漆的四个面展开,观察是什么形,要求长方形的面积需要知道什么,这个长方形的长是多少?长方形的宽是多少?面积是多少?
[说明:通过上题只改变一个问题,使学生灵活运用知识,变换思路,培养学生集中思维和随机应变的能力,发展思维的灵活性。当学生说出(1.2+0.6)×2×0.8时,教师给予表扬性的肯定,然后教师借助教具的演示,使学生明白刷油漆的四个面展开后与长方形的关系及计算的简洁性,利用了转化思想,培养了学生的思维独创性。]
5.看来,在实际生活中,有些物体不一定要求6个面的总面积。老师带来一幅图,请看,哪些物体是需要求6个面的总面积,哪些是求5个面的或4个面的总面积的?谁还能举出生活中的例子?
[说明:举例说明生活中的求六、五、四个面总面积的物体,不仅提高了学生学习的兴趣,开阔了数学视野,而且使学生感觉到生活中处处有数学,可以学以致用。]
三、巩固练习
1.只列式,不计算。
(1)农民伯伯要做一个不带盖的正方体水桶,底面是边长3分米的`正方形,做这样一个水桶至少要用铁皮多少平方分米?
(2)工人叔叔要做一个长方体烟卤,长宽都是3分米,高10分米,求至少要用铁皮多少平方分米?
2.判断下列算式是否正确,并说明理由
一个火柴盒长5厘米、宽4厘米、高1.5厘米,做这样一个外盒至少要用硬纸多少平方厘米?
(1)5×4×2+4×1.5×2 ( )
(2)(4×1.5+5×1.5)×2+5×4 ( )
(3)5×4×2+5×1.5 ( )
(4)(5×4+5×1.5)×2 ( )
(5)(4×1.5)×2×5 ( )
(4+1.5)×2×1.5对不对呢?
请同学们像图一样放置火柴盒,用剪刀沿长剪开,看看是什么图形?要求长方形的面积需要知道什么?长是多少?宽是多少?(4+1.5)冬2×1.5求的是什么?
[说明:老师在处理判断题时,不仅仅满足于学生说出正常的分析思路,而且紧跟一句"谁还有不同的理由也能说明这道题是错的",培养了学生的多向思维;"哪一种判断方法最快",又培养了学生思维的敏捷性和批判性。当学生的思维遇到障碍时,老师引导学生亲自动手操作去发现,相机点拨,教给了学生探索解决问题途径的策略。]
3.希望小学新盖了一间教室,长8米、宽6米、高4米,工人叔叔要粉刷教室屋顶和四壁。除去门窗和黑板的面积20平方米。
(1)粉刷的面积是多少平方米?
(2)如果每平方米用涂料0.25千克,需要用涂料多少千克?
想一想在实际粉刷过程中,工人叔叔准备35千克的涂料够用吗?为什么?
[说明:"在实际粉刷过程中,工人叔叔准备35千元的涂料,够用吗",看似一句无关紧要的问话,却把学生的思维引向更加严密和周全的角度,这是创造性思维不可缺少的重要品质。]
4.一个长方体的食品盒长6厘米、宽5厘米、高10厘米,在食品盒的四周贴上商标纸,宽度是1.5厘米,贴这样1个食品盒要用商标纸多少平方厘米?
读题后,让学生讲什么叫接头处。
独立思考,并把算式写在练习本上。
[说明:以变化激趣,在变中找不变,使学生养成多层次思考的习惯,培养思维的广阔性。]
四、全课小结
同学们,我们今天学习了什么?你有什么收获?
[说明:最后,教师没有总结本节课所学的知识,而是让学生谈自己的收获。学生不但总结了本节课的知识而且从中明白了许多道理,这一设计打破了原来的教学模式,加深了学生对知识的理解和掌握,诱发了创造性思维。]
[说明:这节课重点突出、逻辑严密、灵活多样,充分调动了学生思维的积极性,在学习的过程中,不时有创造性的思维火花产生。这样设计一是通过一题多解培养了学生探索精神,发展了他们思维的独特性;二是通过简缩思维,培养了学生思维的敏捷性;二是通过联想,培养思维的变通性。]
比的应用教学设计 篇8
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。
二、教学重点、难点
1、教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的'应用题。
2、教学难点:根据数与数字关系找等量关系。
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1、复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,2n+1,2n—1;2n—1,2n—3;……(n表示整数)。
2、例1两个连续奇数的积是323,求这两个数。
分析:
(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)。设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x—1,则另一奇数为x+1;设较小的奇数为2x—1,则另一个奇数2x+1。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
比的应用教学设计 篇9
小学比和比例应用题的教学设计
教学要求:
1。使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。
2。使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。
教学过程:
一、揭示课题
1、口算。
让学生口算练习二十二第3题。
2、引入课题。
我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。这节课,我们来复习用不同的方法解答比和比例应用题。(板书课题)通过复习,要学会用不同的知识解答同一道应用题,提高灵活、合理地解答应用题的能力。
二、复习比与除法、分数的关系
1、提问:比与除法、分数有什么关系?
2、出示:甲数与乙数的比是1 :4。提问:根据甲数与乙数的比是1 :4,你能用分数、倍数关系表示甲数与乙数的关系吗?
3、做练习二十二第4题。
小黑板出示。指名一人板演,其余学生做在课本上。集体订正,选择两题让学生说说是怎样想的。
三、用不同方法解答应用题
l,说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。这样,就可以用不同的知识来解答关于比和比例方面的应用题。
2、做“练一练”第1题。
让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。提问:盐和水的重量比1 :15可以怎样理解?提问:按照1 :15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。(老师巡视辅导)指名学生口答算式,老师板书三种解法。提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?第三种解法是按怎样的`方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1 :15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。
3、做“练—练”第2题。
学生读题。指名板演,其余学生做在练习本上。集体订正,让学生说说各是怎样想的。注意学生中的不同解法。
4、做练习二十二第5题。
让学生默读题目,找一找三道题的相同点和不同点。谁来说一说,每题里元数与份数是怎样对应的?指名三人板演,其余学生做在练习本上,要求学生每道题用两种方法列出算式,不要计算结果。集体订正,让学生说说每种解法是怎样想的。追问:这里都是把哪个条件经过转化后找出不同解法的?
5、讨论练习二十二第6题。
请大家比较一下,这两题有什么相同和不同的地方?合唱组人数是舞蹈组的2倍可以怎样理解?两题里的人数对应的份数各是怎样的?
6、做练习二十二第7题。
让学生比较相同点和不同点。提问:第(1)题男衬衫和女衬衫件数的比是几比几?第(2)题男衬衫和女衬衫件数的比是几比几?这里两道题请同学们都用两种方法解答。指名两人板演,其余学生在练习本上列出算式。集体订正。提问:用分数知识解答这两道题列出的方程为什么不一样?各是按怎样的数量关系列方程的?用比的知识解答这两道题时列出的式子有什么不一样?为什么会不一样?还有没有不同的解法?指出:解答应用题要根据题意,弄清题里的数量关系,根据数量关系列式解答。
四、课堂小结
提问:比和比例应用题,或者倍数、分数应用题,用不同知识解答时,主要把哪个条件从不同角度理解的?(用比、分数或倍数表示两种量关系的条件)指出:由于表示两个数量关系的条件可以从不同角度理解,所以,解题时就可以根据每次理解这个条件的知识,用相应的方法灵活、合理地解答。
五、布置作业
课堂作业:练习二十二第6、8题。
家庭作业:“练一练”第3题。
比的应用教学设计 篇10
教学内容:小学教学第二册第33--34页的例2和例3,练习九中的第1--3题。
教学目的':1、使学生初步学会解答求一个数比另一个数多几的应用题。
2、培养学生理解能力,分析问题能力。
教学重点难点:求一个数比另一个多几的应用题。
教具准备:投影片
教学过程:
一、复习
1、口算(6道) 2、看图比多少?(2道)
二、新课
(一)教学例2
(1)出示投影片()
(2)哪个多些,哪个少些?找出同样多的部分。
(3)指出△比○多几?
(4)看33页例2,△和○图,再填空。
2、完成33页“做一做”题目
(二)教学例3
(1)读题,理解题意
(2)投影:(出示白兔和黑兔)找了谁多谁少
(3)引导学生进一步思考,求白兔比黑兔多几只?用减法计算
(4)对照图讲述
2、完成34页“做一做”
A、读题
B、讨论分析
C、列式解答
三、做课中课(拍手游戏)
四、巩固练习
1、练习九的第一题
2、练习九的第二、三题
3、夺红旗游戏
五、小结:今天我们学的应用题里,告诉我们两个数,要求一个数比另一个数多几,要先想:哪个数比较多,再想来比较多的数是由哪两面三刀部分组成的,从它里面去掉和另一数同样多的部分,就能算出比另一个数多的。
比的应用教学设计 篇11
教学目标
1.使学生在理解的基础上认识归一应用题的结构特点,能正确地分析归一应用题的数量关系,掌握这类应用题的解答规律;学会列综合算式解答归一应用题。
2.培养学生学会有条理有根据的进行思考,提高分析、解答实际问题的能力。
3.使学生感受数学与生活的密切联系,激发学习兴趣;训练学生养成认真审题、动脑分析、仔细检验的好习惯。
教学重点
使学生了解归一应用题的基本结构和数量关系,会解答此类应用题。
教学难点
线段图的画法及检验方法。
教学过程
一、联系生活,激趣引入。
(课前,可以布置任务:让学生调查各自所用的学习用品的价钱)
1.教师:我想买些学习用品做奖品,但是不知道哪种好,价钱又合适。正好同学们做了调查,谁愿意介绍一下。
学生介绍,如:这种钢笔很好用,每支8元。
师问:我要卖6支,需要多少钱?用到了我们学过的哪一数量关系?
列式:8×6=48(元)单价×数量=总价
2.教师:刚才我看到××的铅笔很好看,他告诉我买这3支铅笔共花了4元5角,我想买这样的10支,要花多少钱呢?
此时,学生可能会答出也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师则问:要想知道10支这样的'铅笔要花多少钱,就要先求出什么?(单价)
根据哪一数量关系求单价?(总价 ÷ 数量 = 单价)
3.教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试讨论,学习新知.
1.出示例3:学校买3个书架,一共用75元.照这样计算,买5个要用多少元?
(1)请学生自由出声读题,找出已知条件和问题
(2)小组讨论:尝试用线段图表示题目的条件和问题并分析题里的数量关系.
(3)教师提问:“照这样计算”是什么意思?按照题目的意思应该先算什么?再算什么?
(4)各组汇报,全班重点围绕“线段图的画法”、“照这样计算”的含义展开讨论:
“照这样计算”即按照3个书架是75元这样的单价去计算5个书架的价钱.每个书架就是75÷3=25(元)
(5)按照刚才的思路解题.
a.每个书架多少元?
75 ÷ 3 = 25(元)
b.买5个要用多少元?
25 × 5 = 125(元)
教师让学生独立列出综合算式并订正:75÷3×
5 教师提问:这道题怎样检验?请检验这道题.
教师指名完整地说说这道题的解题思路.
引导学生思考:如果把第三个条件改为“ 6个、9个、12个”,问题不变,仍求要用多少元?怎样列式?为什么?
2.将第三个条件改为“200元”,问题改为“可以买多少个书架?”成为例4.
出示例4:学校买了3个书架,一共用7 5元.照这样计算,200元可以买多少个书架?
让学生独立画线段图,理解题意.
重点讨论:线段图应该怎样改?这道题要先求什么?
③学生独立解题.
a.每个书架多少元?
75÷3=25(元)
b.200元可以买多少个书架?
200÷25=8(个)
④共同讨论:怎样列综合算式?为什么要给75+3加上小括号?
200 ÷(75 ÷ 3)
⑤教师提问:这道题怎样检验?
⑥引导学生说说自己的解题思路是什么?改为“400元”、“800元”、“1000元”,问题不变,应该怎样列式?
3.请同学们自己试做下面两道题。
①一辆汽车2小时行70千米.照这样计算,7小时行多少千米?
②一台磨面机5小时磨小麦250千克.照这样计算,磨1750千克小麦,需要几小时?
订正:
①a.每小时行多少千米?
70 ÷ 2 = 35(千米)
b.7小时行多少千米?
35 × 7 = 245(千米) 70 ÷ 2 × 7
②a.每小时磨小麦多少千克?
250 ÷ 5 = 50(千克)
b.磨1750千克小麦需要几小时?
1750 ÷ 50 = 35(时) 1750 ÷(250 ÷ 5)
请学生分别说说各题的解题思路是什么?
教师提问:比较例
3、例4和试做(3),每两道题之间的相同地方是什么?不同地方是什么?解题思路上有什么相同地方?
使学生明确:从应用题的结构上看,前两个条件相同(给出了总数量和份数),都有“照这样计算”的语句,第三个条件和问题不同.从解题思路上看,第一步都要求出单位数量(即每份数是多少、单价、速度等),教师点题,出示课题:归一应用题.
三、巩固练习,发展思维.
1.独立分析题目的条件和问题,找出先求什么,再列综合算式.
①小林看一本故事书,3天看了24页.照这样计算,7天可以看多少页?
②小林看一本故事书,3天看了24页.照这样计算,全书128页,多少天可以看完?
2.在正确的算式后面画“√”,并说出为什么.
①小明5分钟走300米,照这样的速度,他家离学校720米,要走多少分钟?
A.300 ÷ 5 × 720 B.720 ÷(300 ÷ 5)
C.720 ÷ 5 ÷ 300 D.720 ÷ 300 ÷ 5
②小明5分钟走300米,照这样的速度,他从家到学校要走 15分钟,他家离学校有多少米?
A.300 × 5 × 15 B.300 ×(15 ÷ 5) C.300 ÷ 5 × 1
5 (3)用不同的方法解答下面的应用题。
某食堂4天用大米800千克,照这样计算,1600千克大米够吃几天?
四、课堂小结,质疑问难.
这节课学习的是什么?应用题的结构有什么特点?(先求出一份数是多少)解题的思路是什么?解题时应该注意什么问题?同学们还有不明白的问题吗?
五、布置作业.
1.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,12个同学一共可以糊多少个纸盒?
2.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,要糊154个纸盒需要多少个同学?
教学反思:
“归一问题”实际上是数量间成正比例关系的问题。这种问题通常用算术方法解答比较简单。同学掌握了算术解法,可以巩固前面学过的常见数量关系,又为以后学习比例、函数打下初步基础,也为以后学习较复杂的归一问题做了准备。归一问题是在除法简单应用题的基础上发展起来的。关键是先用除法求出“单位数量”是多少,然后把它作为固定不变的数量(题里一般都说明“照这样计算”),进行推算。
一种类型是求出单位数量是多少后,再求几个这样的单位数量是多少;第二种类型是求出单位数量是多少后,再求有几个这样的单位。在教学这种应用题时,小标题只要求同学口述,不必写出来。通过例题,使同学弄清怎样利用线段图把已知条件和问题表示出来。在第五册是老师和同学一起利用线段图分析数量关系,这里开始训练同学独立画线段图,为今后借助线段图这种直观手段进一步学习更复杂的应用题打下基础。根据归一题的特点,用两条线段表示较清楚。如第一题,第一条线段先表示出3个书架一共用75元。第二条线段再表示5个书架用多少元。两条线段中,要用同样长的线段表示每个书架的单价。教材中突出引导同学想,要求5个书架用多少元要先算什么,弄清解答归一题的关键是先求出单位数量(在这里具体地说是单价)。例8先分步列式解答,然后再列综合 算式解答。这是为了能跟线段图配合,便于同学分析数量关系。以后应使同学既会用分步列式解答,又会用综合算式解答。但同学做题时除了有指定要求的以外,不限制同学必需用哪一种方法解答。
第二题仍是买书架的问题,以便于同第一题的数量关系和解法进行比较。通过线段图可以清楚地看出前两个条件完全相同,只是第三个条件和问题不同。因此解答这种 应用题的关键也是先求出单位数量(单价)。这样就可以使同学更好地掌握这种题的数量关系和解答方法。在做完两道题之后,引导同学对两个例题进行比较,找出它们的 一起点,使同学弄清它们的前两个条件相同,明确解题的关键都是先求出单位数量。
在“做一做”里,让同学仿照例题的解答方法独立完成,使同学熟悉这种应用题的数量关系。
为了突出解答两种归一题的第一步都要先算出“单位数量”,教材的编排注意把两种题对比出现(如第7、9、10题)。第8题通过表格形式 渗透函数思想,使同学通过解答初步体会到路程是随着时间的变化而变化的。另外,还注意带着复习已学的两步应用题、口算以和混合运算等内容。 “归一问题”实际上是数量间成正比例关系的问题。这种问题通常用算术方法解答比较简单。同学掌握了算术解法,可以巩固前面学过的常见数量关系,又为以后学习比例、函数打下初步基础,也为以后学习较复杂的归一问题做了准备。归一问题是在除法简单应用题的基础上发展起来的。关键是先用除法求出“单位数量”是多少,然后把它作为固定不变的数量(题里一般都说明“照这样计算”),进行推算。
比的应用教学设计 篇12
课题:
比的应用
教学内容:
义务教育课程标准小学数学六年级上册第三单元《比的应用》
教学目标:
1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。
3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独立思考、自觉检验的好习惯,增强学生学好数学的信心。
教学重点:
掌握按比分配应用题的结构特点和解题思路。
教学难点:
正确分析,灵活解决按比分配的实际问题。
教学准备:
教学课件卡片
教学过程:
一、复习导入
1、复习求一个数的几分之几是多少的实际问题。
2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。
二、讲授新课
1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。
2、利用课件出示例2。
(1)学生读题,弄清题意。
(2)引导学生找出题中所提供的数学信息。
(3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的结构特点。
(4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。
(5)小组讨论解题方法,然后进行汇报,并集体订正。
(6)引导学生用不同的方法解决问题,重点理解按比分配的方法。
(7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。
3、小结:按比分配的应用题有什么结构特点?怎样解答这样的.应用题?
三、巩固练习
1、解决课前分卡片时所产生的问题。
2、课件出示练习题1,在学生理解题意的基础上,引导学生比较练习题与例题
的异同,并用自己喜欢的方法解决,后集体订正。
3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,鼓励学生用不同的方法独立解决,并引导学生自行检验。
四、拓展延伸
利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
五、课堂总结
学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。
比的应用教学设计 篇13
【教材分析】
《比的应用》小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、 “比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
【教学目标】
1、能运用比的意义解决按照一定的比进行分配的'实际问题,进一步体会比的实际意义;
让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
【教具准备】
课前准备:学生查找有关事物各组成部分比的资料。
课上准备:小红旗。
【教学重点】理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。
【教学过程】
一.情境引入
老师有140个橘子,要分给幼儿园两个班的小朋友,你觉得怎样分才算合理呢?(平均分,这样才公平。)
经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?(不合理,因为每个人分到的就不一样多了。)
怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。(按人数比30 :20 = 3 :2进行分配。)
3、3 :2表示什么意思?
[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。
二、问题解决活动1:合作研究怎样按3 :2 这个“比”来分配
为了研究方便,老师给大家提供了一些小旗代替橘子。
(一)合作研究
1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)
大班 小班
第一次
第二次
第三次
第四次
第五次
大班分得()面小旗
小班分得()面小旗
2.学生合作研究
3.教师组织反馈交流
老师在巡视的过程中,收集约三种不同的分法,分步展示在黑板上。
四人一组交流讨论要求
(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?
(2)观察、比较这几种分法,你能发现什么?
插问:你觉得分一次至少需要多少面小旗?为什么?
也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?
学生可能出现的方法预设:
分法1:每次分给大班3面,分给小班2面。
表扬:认真有耐心,十二次。
分法2:根据比的基本性质分,分的次数明显减少。
表扬:很会动脑筋,在分的过程中及时进行了调整。
分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。
表扬:很会联系实际情况,这种分法在实际生活中非常实用。
[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力
(二)验证
1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?
大班 小班
分得小旗的总面数
人数
平均每人分到小旗的面数
30 :20 = 3 :2 = 36 :24
2.师生一起小结:
(1)平均每人分到的小旗同样多吗?
(2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?
(3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?
[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。
(三)当我们知道总数的情况下的按比分配
1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?
2.四人一组交流,说说你想到的方法:
方法1:按比逐次分配。
方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小旗。
方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数
3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?
三、巩固练习
同学们表现得太出色了,能再帮老师一个忙好吗?好啊
我家有一块近似长方形的菜地,面积大约是984平方米,我想按3:5的比例种茄子和西红柿,茄子和西红柿各种多少平方米?
四、总结
今天的学习,你有哪些收获和感受?
1、通过这节课的学习你对比有了哪些新的认识?
2、把一些事物按一定的比分的时候,可以用哪些策略?
3、你在生活中还能找到比的应用的例子吗?
比的应用教学设计 篇14
学习目标:
1、应用比的意义,解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。
学习重点:应用比的意义,解决按照一定的比进行分配的实际问题。
学情分析、教材处理:
六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。
教学准备:水杯、水、鲜奶、茶、秤、课件。
教学过程:
一、分配礼物
师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?
1、想一想
① 我将礼物的一半给男生、另一半给女生,你们说怎么样?
② 如果你觉得不太合理,那你们认为我应当怎样分呢
③ 调查班级男女生人数
④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?
如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……
⑤ 为什么这么多的分法你们都认为合理呢?,
师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。
【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的'。】
2、分一分(教师拿出纸杯)
① 不知道有多少杯子,你建议怎么分呢?
② 依照学生的建议分杯。
教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果
③各种分杯建议的结果一样吗?为什么?
④这些分杯的方法哪一种最好?
师:方法没有最好,只有最适合,如果知道总的数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。
3、比一比
① 出示“两袋鲜奶”。直接给男生一袋、女生一袋
思考:这是平均分呢?还是按比分呢?(生答)
② 其实,平均分也是按比分的一种,这个比就是1:1。
③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)
【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;再让学生实际分一分,感受逐次分和按比分的结果相同;最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激情被又一次点燃。】
二、配制奶茶
1、制茶前明确:
A、 制作奶茶需要什么材料?
B、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?
C、那你们想想要按着怎样的比来配呢?谁来提议一下?
D、 谁理解这个比的含义了?
E、哪一个单位最合适呢?
2、回归具体的量
A、 顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?
B、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)
想一想,你要用什么办法解决这个问题?
【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
4、品尝奶茶后的思考
A、感觉怎么样?有什么改进的建议?
B、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗
师:我这一勺是多少你才认为可以在这个比中占1份呢?
C 、小结:的确, 几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?
D、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)
E、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)
【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】
三、回归生活
师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?
1、第一站:某大学后勤部
今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)
2、第二站:四丰农药加工厂
农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)
3、第三站:木材加工厂配料车间
下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。
【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】
4、第四站:人民法院民事审判厅
案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39 万元,两个人由于没事先约定,发生争执,提出诉讼。
① 你们想要什么条件呢?
② 材料提供:1、建厂时,李某出资5万元,王某出资3万元。
2、经营时,李某出勤10个月,王某出勤12个月。
3、创效益,李某签定6万元合同,王某签定8万元合同。
③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?
提供法律依据:合伙企业法第33条规定
“ 合伙企业的利润分配、按照合伙协议的约定办理;合伙协议未约定或者约定不明确的,由合伙人协商决定;协商不成的,由合伙人按照实缴出资比例分配;无法确定出资比例的,由合伙人平均分配。”
⑤ 现在你知道法官怎么分配财产的了吗?
【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】
四、总结反思
①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)
② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。
比的应用教学设计 篇15
一、教材分析
1.本节教材的地位和作用
这是由本节教学内容在高中化学教学的地位和作用决定的。本章作为从学科内容方面使学生认识化学科学的起始章,是连接初中化学与高中化学的纽带和桥梁,对于发展学生的科学素养,引导学生有效地进行高中阶段的化学学习,具有非常重要的承前启后的作用。 “承前”意味着要复习义务教育阶段化学的重要内容,“启后”意味着要在复习的基础上进一步提高和发展,从而为化学必修课程的学习,乃至整个高中阶段的化学学习奠定重要的基础。因此,本章在全书中占有特殊的地位,具有重要的功能,是整个高中化学的教学重点之一。
对大量繁杂的事物进行合理的分类是一种科学、方便的工作方法,它在学习和研究化学当中有不可替代的作用。本章的一条基本线索就是对化学物质及其变化的分类。在高中化学的第二章编排化学反应与物质分类,使学生对物质的分类、离子反应、氧化还原反应等知识的学习既源于初中又高于初中,既有利于初、高中知识的衔接,又有利于学生能够运用科学过程和科学方法进行化学学习,立意更高些。
2.教学内容
本课题共包含三大内容:分类的含义、分类的方法、分类的应用。
3.教学目标
(1)知识与技能:能根据物质的组成和性质对物质进行分类,同时知道分类的多样性。知道交叉分类法和树状分类法,能根据需要选择并制作分类图。
(2)过程与方法:从日常生活中学生所遇见的一些常见的分类事例入手,采用合作学习的方式,让学生将所学过的化学知识从自己熟悉的角度进行分类,将不同的知识通过某种关系联系起来,从而加深对知识的理解与迁移。通过探究活动,学习与他人合作交流,共同研究、探讨科学问题。
(3)情感态度与价值观:初步建立物质分类的思想,体会掌握科学方法能够有效提高学习效率和效果,体验活动探究的喜悦,感受化学世界的奇妙与和谐,增强学习化学的兴趣,乐于探究物质变化的奥秘。
4.教学重点和难点
【教学重点分析】
能根据物质的组成和性质对物质进行分类,建立分类思想,体会分类方法对于化学科学研究和化学学习的重要作用,体会合作探究学习方式。
【教学难点分析】
本课题没有难点。
5.课时安排
共1课时。
二、学情分析
1.学生起点能力分析
教学对象是刚上高一的`学生,处于初高中过渡时期,有一定的生活经验和知识基础。在初中化学的学习中,学生已掌握了一些化学物质和化学反应。初中阶段纯净物、混合物及酸、碱、盐等的学习,其实就是物质分类方法的具体应用,但在思维上,学生正从直觉型经验思维向抽象型思维过渡,学生还没有把分类形成一种方法,形成化学学习的思想。
2.学生“生活概念”的分析
分类法是研究和处理庞大而复杂的现实问题的最常用方法,联系实际面较宽,因此要求学生掌握更多的生活概念。学生在预习时已经按照我的引导查阅了相关知识,有了一定的生活基础。
3.学生“认知方式”分析
学生理解能力基本上没问题,但是处理信息能力及对信息的加工能力、整合知识、运用知识等能力较差,因此在教学中要加强对学生这些能力的培养。
三、教学方法
新课程理念下教师不再教教材而是用教材教,在课堂教学中教师的角色是一个设计者、组织者、指导者,学生处于主动地位,是学习的主角,以获得发展为目的。我采用建构主义理论的指导下的“知识问题化、问题情景化”的教学模式,整个过程中教师适时适量地加以提示,帮助学生在概念的框架下逐渐构建,对知识的综合性、整体性的认识,并将它合理化、理论化,在个体学习的条件下,再进行小组协商、讨论。经过小组成员思维的磋商,在共享集体成果的基础上达到对所学知识比较全面、正确的理解,完成对所学知识的意义建构。所以本节课我采用了活动探究式教学,学生采取小组活动探究形式。
四、学法指导
在教学过程中,教师是主导,而学生是主体,要充分发挥学生的主体作用,教师要教学生怎样去学,使学生自己动手动脑,掌握科学的学习方法。
1.思敢思会思
学生在课堂上要敢于思考,积极配合教师,改变“被动”“灌输式”的学习方式,充体现“学生为主体”的理念。这样,既活跃了思维活动,又使学生体会到思考的必要与快乐。
2.做高效合作
在小组讨论和合作学习的过程中,激发集体荣誉感。通过学生小组实验促进学生之间的合作与竞争,培养学生的探究欲和操作能力。
3.议学会交流
本节教材对理论教学的要求不高,学生应参与讨论,使具有不同思维优势的学生都能够参与到课堂中来,通过表达各自观点来感受成功的喜悦。
4.乐乐于探究
通过实验探究体验科学探究的过程,在探究中学习,充分体现新课程理念,体现教材改革以人为本,以学生的发展为本的思想,从而培养学生终身学习的能力,使课堂真正成为学生的课堂。
五、教学过程设计
教学环节教学活动设计意图
情境创设
展示图书馆、超市图片,图书馆里的图书、超市里的商品成千上万,为什么你能快速找到所需要的图书或商品?创设问题情境,激发学生学习兴趣,引出课题。
探究活动1
其实在我们的日常生活、学习中自觉地不自觉地运用分类法对我们身边的各种物质、用品进行分类。
学生分组活动:
在1分钟内尽可能多地写出你所知道的应用分类法的例子。
讨论分类的意义。思维的发散,让学生意识到分类法在我们的生活中非常普遍存在,明确分类的意义。引出本节课题。
探究活动2学生分组活动:
对下述化合物:
NaCl、HCl、CaCl2、CuO、H2O、Fe2O3分类。
请你说一说你是怎样分类的?在对这些物质分类过程中体会到了什么?
比的应用教学设计 篇16
教学内容:
北师大版六年级数学上册第55页、第56页。
教学目标:
知识与技能:
能运用比的意义解决按照一定的比进行分配的实际问题。
过程与方法:
讲练结合,小组合作,三疑三探。
情感、态度、价值观:
进一步体会比的意义,提高解决问题的能力,培养学数学的兴趣,养成良好的思维品质。
教学重点:
理解和掌握按一定的比进行分配的意义,并进行实际应用。
教学难点:
把比熟练地转化成分数,将分数知识横向迁移。
教学准备:
多媒体课件。
教学过程:
一、创设情境,设疑自探
1、课件出示教材中的情境图,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?学生商量分法,得出:按大班和小班的`人数来分比较合理。
2、大班人数和小班人数的比是3:2,学生用小棒代替橘子分一分。
(没有告诉学生小棒的数目。)学生分好后,交流分法。
3、小结。
二、解疑合探,知识迁移
1、如果有140个橘子,按3:2分,应该怎样分?学生讨论分法,并试着解决。
2、交流方法,展示。学生可能出现的方法:
⑴、借助表格分。
⑵、发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。别占橘子总数的几分之几,最后根据分数的意义解题。
3、引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶利用乘法的意义解题。
4、你喜欢哪种方法,请说明理由。
5、回忆学过的“平均分配”,可以看成几比几?
三、巩固练习,深化认识
1、小清要调制2200克巧克力奶,巧克力和奶的比是2:9。需要巧克力多少克?
2、3月12日是植树节,学校把种植60棵小树苗的任务分配给六年(3)班和二年(3)班,两班人数相等。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?
3、完成教材第56页练一练第3题合理搭配早餐。
四、总结评价,课后延伸。
1、总结。
2、布置作业。
板书设计:比的应用
大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
3、先求出一共分成几份,再求出大班和小班分的个数分
(以上方法可借助课件演示帮助学生理解。)
比的应用教学设计 篇17
教学内容:课本第20-21页练习五的第4-8题。
教学目的:通过练习使学生进一步理解比较容易的三步应用题的数量关系,掌握解题的方法;培养学生的分析、推理和灵活解答应用题的能力。
教学过程:
一、混合练习。
1.做练习五的第4题。
请一位学生读题后,指名让学生说一说,这题的已知条件和问题、计算步骤,然后让学生自己解答。教师巡视,看看有没有不同的解法。如果有没有不同的解法。如果有不同的解法,教师把它们写在黑板上,让学生讨论一下两种解法都对不对,以开阔学生的眼界,培养学生灵活的解题能力。如果没有不同的解法,教师可启发学生想一想,还有没有其他的解法。让学有余力的学生自己找出另一种解法,集体讨论、订正。
2.做练习五的第5题。
先让一位学生读题,说一说题里的已知条件和问题。然后教师提问,指名学生回答:
要想平均每人做几朵花,先要求什么?(先要求出两个班一共做了多少朵花。)
能不能直接求出两个班一共做了多少朵花?(不能。)
还要先求出什么?(先求出二班做花的朵数。)然后让学生独立解答。注意发现和鼓励学生想出不同的解法。
3.做练习五的第6题。
教师出示第6题的图:
让一位学生读题后,教师借助图引导学生理解题意。弄清楚“甲、乙二人同时从同一地点向相同方向出发。”是什么意思。然后,让学生说一说这题的已知条件和问题。接着教师提问:
(1)要想求2小时后二人相距多少千米,先要求出什么?(先要求出甲、乙2小时后各行了多少千米。)
(2)能不能直接求出?(不能)
(3)还要先求出什么?(先求出乙骑摩托车的速度是多少。)
(4)这道题应该怎样列式解答呢?(20×3×2-20×2=80)
让学生自己列式解答,教师巡视。做完后集体订正。
问:这道题还有没有其他的解法?可以先算出什么,再算出什么?
引导学生自己想出可以先算出甲、乙二人每小时相距多少千米,再算出2小时后二人相距多少千米。
教师让学生自己试着列式计算。(20×3-20)×2=80
做完后,集体订正。
问:上面两种解法,哪一种更简便一些呢?
二、增加条件的练习。
1.做练习五的第7题。
请一位学生读题后,指名让学生说一说题里的条件和问题,怎样列式计算。然后教师提问问题:
这是一道需要几步计算的.应用题?(两步)
你能改变题里的条件,使它变成一道三步计算的应用题吗?
教师要求学生:想一想,应该怎样改。引导学生想出只要把原题中的一个直接条件变成间接条件就可以了。(例如:把“五月份生产了2199件”改为“五月份比四月份多生产359件”或者把“四月份生产了1840件”改为“四月份比五月份少生产359件。)
教师让学生把自己改成的三步题,在自己的练习本上解答出来。解答之后,可指名让学生说一说两步应用题与三步应用题的区别,使学生进一步理解三步应用题的数量关系。
2.做练习五的第8题。
请一位学生读题后,教师出示这一题的示意图。
原来80米 增加20米
引导学生理解题意,使学生明确:这是一道连续两问的应用题;要想求出扩建后的操场面积,应该先求出扩建以后操场的长和宽;要想求出扩建以后操场的面积比原来增加了多少,只要用扩建以后的操场面积减去扩建以前的操场面积就可以了。然后,让学生自己列式解答。教师巡视,个别辅导。
比的应用教学设计 篇18
[教材简析]
比的应用是在学生学习了比与分数的关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
[教学目标]
知识与技能
1、理解按一定比来分配一个数的意义。
2掌握按比例分配应用题的结构特点及解题方法,。
过程与方法
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
情感态度与价值观
1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
[教学重点]
掌握解答按比例分配应用题的步骤。
[教学难点]
掌握解题的关键。
[学习方法]
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
[教学时间]
一课时
[教学过程]
一、创设生活情景,谈话引入。
1、创设情景提出问题。
师:各位同学,现在是橘子丰收的季节,大家来看看农场的一些丰收的场面。这些果子老师想把它们送给你们两个班的,怎么分配这些果子呢?
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
二、探讨解决问题的方法。
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
( 2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。
4、实际应用,解决问题。
(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个) 28×3=84(个) 28×2=56(个)
方法二:3+2=5140×3/5=84(个) 140×2/5=56(个)
小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的.问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
三、实践运用,巩固练习。
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
2、笑笑帮妈妈洗碗,妈妈拿给笑笑一瓶浓缩液,要求笑笑按这瓶浓缩液上的比1:4加清水稀释成600毫升的稀释液洗碗,你能帮笑笑算出要用多少毫升的浓缩液和清水呢?
3、蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:18:9:8,这样一个7千克的面团需要多少鸡蛋,白糖和面粉呢?
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
四、联系生活,介绍比的应用的广泛性。
1、举例
师:今天我们解决了这么多关于比的问题,其实比在生活中有着非常广泛的应用,比如说消毒药水中酒精和水分配,饮料中的各种配料的比……你能举个事例吗?
2、数学书第56页练一练第2题。
3、数学故事:
一个老地主临死时把他的11匹马分给三个儿子,老大继承二分之一,老二继承四分之一,老三继承六分之一,可是三个儿子不知道怎样分,你能帮助他吗?
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
五、回顾教学,总结方法。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
六、作业。
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
板书设计
比的应用
方法一:3+2=5 方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个) 140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
《比的应用》教学反思
一、充分挖掘教材,旧知迁移新知。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
二、借助多媒体或教具,助学生理解新知识。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
三、教师在小结升华时讲解。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
比的应用教学设计 篇19
教学目标:
1.通过分析社会各领域的具体例子,理解控制的涵义及其在生产和生活中的应用。
2.通过学习,培养学生注意观察问题,发现问题,帮助学生了解控制的作用。
3.激发学生了解控制,研究控制的兴趣与热情。
4.理解控制的含义
教学重点:
理解控制的涵义。
教学难点:
理解控制的涵义。
教学过程:
引入:
提出本学期的教学计划,引导学生重视本学期的教学工作,做好会考的复习准备。
[录像]通过卓别林的《城市之光》录像片段,引入新课。
新课教学:
一、控制是普遍存在。
用一些典型的、生活中的例子让学生了解控制是普遍存在,对控制有初步的认识,打破其神秘感。
现代社会中的例子:
生产、生活中的例子
古代社会中的例子:
案例1:大禹治水
请学生讲述《大禹治水》的故事
并提出问题,让学生思考。
问题:大禹治水过程中,通过什么手段实现治理好水患的目的?
通过“疏通河道,泄洪为主” 手段实现治理好水患的目的。
案例2:木牛流马
请学生讲述《木牛流马》的故事:“(建兴)九年,亮复出祁山,以木牛运,粮尽退军,与魏将张郃交战,射杀郃。十二年春,亮悉大众由斜谷出,以流马运。…”
据研究:木牛和流马是汉代独轮手推车的两种改进设计,通过改进使人的负重有所减轻。木牛是一种轮子稍小一些的独轮手推车,载重大,前由人拉、后由人推,运行较慢;流马载重小,轮子稍大一些,由一人推,运行速度很快。诸葛亮所说“木牛流马”应是比喻它们运行的灵便程度和载重量的大小:木牛行动较笨而慢,像牛;流马行动敏捷而快,像马。不是说它们外形像牛像马。
目的:帮助军队运送战略物资。
案例3:希罗自动门
希罗自动门的相关材料见教参P66或江苏版P107。
希罗自动门说明了什么道理?
道理是:利用气压和液压动力装置,实现自动开门、关门。
总结:事物发展的结果可能是人们预先期望的,也可能与预期的目标不相符,甚至是不希望得到的。如果人们想达到某一特定的目的,就必须运用适当的手段来实现。
那么,运用什么手段来实现呢?
(引入控制的概念)
二、控制的涵义
控制是根据自己的目的,通过一定的手段使事物沿着某一确定方向发展的行为和过程。
结合事例(用音乐喷泉的事例),重点阐明控制的对象是什么;控制要达到什么目的;采取什么控制手段。
课本马上行动
控制事例
控制的'对象
控制的目的
控制的手段
电风扇扇叶转速快慢的控制
电风扇
调节速度
换档
音响的音量控制
音响
音量的调节
旋钮
燃气热水器温度的控制
热水器
调节出水口温度的高低
改变燃气火头的大小
用喷雾器喷洒农药
喷雾器
给庄稼治病
操作喷雾器的手柄
[探究活动]
请同学们说说你在生活学习中所见到的应用控制的事例。
如:
学校:学校的音乐铃声、多媒体教学系统、足球场草地自动喷淋系统、体育馆的自动伸缩坐椅等。
家庭:冰箱、电饭煲、微波炉等。
社会:交通信号灯、电子警察、电梯、程控电话交换机等
三、控制的分类
从控制过程中人工干预的情形来分:
人工控制:人工纺纱、普通自来水龙头,旋转按钮打开电灯、驾驶汽车等;
自动控制:数控机床、饮料自动装罐生产线、花房恒温控制、十字路口红绿灯的转换等
按照执行部件的不同,控制分为:机械控制、气动控制、液压控制、电子控制等
对于自动控制
按控制方式分为:开环控制、闭环控制和复合控制。
3、控制的应用
控制的应用自古就有,并在近代得到迅速发展,在社会生产生活的各个领域都有极其广泛的应用。
通过事例说明控制在社会生产生活的各个领域的应用。
案例1:汽车自动化生产线。
案例2:农业现代化设施。
案例3:现代网络家电。
小结与练习:
1、控制是普遍存在。要求学生能列举事例。
2、控制的涵义。要求学生在理解的基础上掌握好其控制的涵义。
3、控制的应用。
比的应用教学设计 篇20
教学目标:
1.经历解决问题的过程,学会用两步乘法解决问题,感受解决问题策略的多样化。
2.能从多个角度解决同一问题,提高解决问题的能力,发展思维。
3.感受数学知识在生活中的.应用价值,体验成功的快乐。
4.结合教学渗透思想教育。
教学重点:
正确分析数差关系,能用两步乘法解决问题。
教学难点:
解决问题的思考过程。
教学过程:
一、情境引入,激活思维
师:“六一”儿童节快到了,学校准备举行一次乒乓球比赛,借这个机会,我们三(1)班也举行一次乒乓球比赛。现在由班长小芳去超市购买乒乓球,需要买的个数如图所示,请你仔细观察,从图中你发现了什么?(出示情境图)
让学生回答:每袋有6个球,共有6袋。
师:同学们观察得真仔细,看到图你最想知道什么?
让学生提出:①我想知道一共买了多少个乒乓球?②我想知道一共用了多少元?
师:(对着第一个学生的回答)你是想知道一共买了多少个乒乓球吗?(对着第二个学生的回答)你想知道一共用了多少元?是吧?你们对这两个问题还有什么想说的?
让学生说出:要求一共用了多少元,还必须知道每个乒乓球多少元?(根据学生提问出示:补充条件和问题)
比的应用教学设计 篇21
教学目标:
1、知识与技能
经历正比例意义的建构过程,通过具体问题认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。
2、过程与方法
通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、情感态度与价值观
在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。教学重点:正确理解正比例的意义。教学难点:能准确判断成正比例的量。教学准备:多媒体课件,学生练习纸 教学过程:
一、在学生熟悉的儿歌中引入正比例的量: 你听过《数青蛙》这一首儿歌吗?(课件)
师:你会往下唱吗?三只青蛙,四只青蛙,n只青蛙呢?
师:你在唱得时候有什么规律吗?
生:嘴巴数和青蛙只数一样,眼睛数总是青蛙只数的2倍,腿数总是青蛙只数的4倍。
师:你真聪明,会横着观察观察表格。
生:青蛙每增加一只,嘴巴数增加1张,眼睛增加2只,腿数增加4条。
师:很好,你是竖着观察表格的。
师:我已经学过比,所以还可以说,眼睛数/青蛙只数=2;腿数/青蛙只数=4;嘴巴数/青蛙只数=1。
看来,嘴巴数、眼睛数、腿数都随着青蛙只数的变化而变化,像这样有一定关系的量,在数学上,称为相关联的量。
(学生的自主学习需要教师的引导,此处教师看似无意的评价,实际是对学生学习方法的指导,直接影响学生后续的自主学习活动,有了此处的指导,学生接下来就能顺利地自主观察表格发现规律了。)
二、自主建构正比例的量
(一)初步感受成正比例量的变化规律
看来,像这样相关联的量在变化的时候有一定的规律,有兴趣继续研究吗?在我们的生活中,像这样相关联的量还有许多,老师为同学们的研究找了几组材料:(课件)
1、学生独立填表。
2、选择其中的一张表格,通过观察说说你发现了什么规律? 你可以模仿前面找规律的方法。
3、反馈交流
4、小结:这两张表格的变化情况有什么相同点? 一种量增加或(减少),另一种量也相应增加或(减少),它们相对应的两个数的比值一定
(二)在比较中继续感受成正比例量的变化规律
看到同学们学得那么认真,数学老爷爷也要来考考我们,想挑战吗?他给我们带来下面两组信息,并告诉我们只有一张表格的变化情况和前面的变化规律一样,但不知是哪一张,你能找出是哪一张吗?我们先把表格填写完整。
1、出示材料:
下面是边长与周长,边长与面积的变化情况,把表填写完整。
2、四人小组活动:
思考:哪一张表格的变化情况和前面的变化规律一样? 3、比较图像,再次感受正比例
除了用表格的形式表示它们的变化情况,我们还可以用图来表示它们的变化情况,你想看吗? 指导看图,说说你发现了什么?
师:另外两张表格的变化情况我们也画成了图,你想看吗? 思考:这四张图如果让你分类,你会怎么分?为什么这样分? 其中三张图为什么都呈直线状态,朝一个方向生长?(比值一定)其中一张图为什么呈曲线?(比值不一定)
揭题:像这样的两个相关联的量,我们在数学上就说它们成正比例,具体可以这样描述:
(三)尝试归纳正比例的意义
1、出示:
像这样时间增加(或减少),所走的路程也相应增加(或减少),而且相应的路程与时间的比值(也就是速度)相同,那么,我们就说路程和时间成正比例。
2、你觉得这里哪几个词比较重要?
3、你能照这样说说另外几组成正比例的量吗? 不成正比例的用虽然但是来说
三、运用提高
1、小明和爸爸的年龄变化情况如下,把表填写完整。父子的年龄成正比例吗?你怎么想的?
2、在《数青蛙》儿歌中找找成正比例的量。
四、小结提升:
通过今天这节课的学习,你有什么收获?成正比例的量有什么重要特征?
刚才同学们在一首《数青蛙》的儿歌中就找到了这么多的成正比例的量,可以想象在我们的生活中一定存在着更多的成正比例的量,希望同学们在课后能以数学的眼光去观察,发现生活中成正比例的量,下一节课我们一起交流
板书设计:
正比例的意义
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的.两个量的比的比值(商)是一定的 路程/时间=速度(一定)总价/数量=单价(一定)
《正比例》教学反思
对比过北师大和人教版两个版本的教材,人教版的教材中介绍了“两个相关联的量”,而北师大版中没有,在最初的教学设计中本没有设计介绍“相关联的量”这一环节,但课前准备中我也为是否设计这一环节而矛盾,但最后还是在我的课堂中呈现了这一概念,课后自己不禁反思,“正比例的意义”本来就是一抽象的概念,我还在课堂上有加入“相关联的量”这一概念,无疑是增加了学生理解的难度。另在设计教案之初,本以为本班学生整体情况较好,在处理“正比例的意义”中的“比值一定”时,只注重了口头上的描述而忽略了让学生动手去算算比值。课后看见学生的作业,自己不尽感叹“失策”,对于抽象的概念一定要让学生通过实际的生活经验或者是通过自己的实际操作去理解。
还有本节课还有一个最大的问题,就是没有及时抓住学生精彩的生成。也许我们每一位老师都有过这样的经历:我们精心设计的一节课,原想着会很顺利地在课堂教学中予以实施,但事实却并不是这样,往往会因为学生的一些出乎意料的想法或问题,而使我们的教学偏离了预设的轨道,课上得并不那么顺利。比如,象正方形的周长、面积与其边长,原的周长与半径这些特例是否成正比例,我觉得这实际上就是教师如何有效处理动态生成的问题。
教学不应只是平实地传递和接受知识的过程,更多的是师生双方在课堂上互动对话、实践创造,随机生成与资源开发的过程。它是教师及时捕捉课堂上无法预见的教学因素,利用课堂上随机生成的资源展开再教学的过程。就正如赵老师前面提到的“课中也要备课”,动态生成才能真正体现学生的主体性和课堂的真实性,它追求课堂的真实、自然、和谐,再现师生“原汁原味”的教学生态情境,从而达到师生共识、共享、共进的教学高境界,实现师生生命价值的不断超越。
那么,怎样才能做到课堂上的精彩生成呢?从生成的内容看,有显性的知识、技能生成和隐性的情感、态度生成。因此,我认为:促进课堂生成的关键是教师课前的预设、教学的机智和学生的心理环境。要达到课堂有精彩的生成且能很好的抓住并能利用生成这点还需要我的不断努力。
比的应用教学设计 篇22
教学目标:
知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。
过程与方法:培养学生运用知识进行分析、推理等思维能力。
情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答按比例分配应用题。
教法:
启发引导法,演示法学法:观察比较,合作交流。
教学准备:
多媒体课件。
教学过程:
一、复习解决下面各题:化简:27千克:750克千米:800米求下面各比的比值:66学生独立完成,抽生板演,集体订正。
二、情景导入学生自由讨论
1.一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?
2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。
三、新授新知教学例2
(1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?
(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)
(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的'五分之一,水的体积占稀释液的五分之四)
(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)
水的体积:500×4=400(ml)
答:稀释液100ml,水400ml。
这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。
师:把我们学过的比转化成分率,怎样来做?
生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成:浓缩液的体积:500×1/5=100(ml)
水的体积:500×4/5=400(ml)
答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)
做一做第1、2题,学生独立完成,抽生板演,集体讲评。
五、全课总结
今天我们学到了什么?
六、家庭作业
教材第50页,练习十二1-3题。
教学反思:
本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。
比的应用教学设计集锦(15篇)
作为一位不辞辛劳的人民教师,通常需要准备好一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么问题来了,教学设计应该怎么写?以下是小编精心整理的比的应用教学设计,仅供参考,希望能够帮助到大家。
(必备)比的应用教学设计15篇
作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。那么优秀的教学设计是什么样的呢?下面是小编精心整理的比的应用教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
比的应用教学设计 篇23
教学内容:
人教版六年级数学上册第54页例2和练习十二第1~4题。
教学目标:
1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。
2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。
3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。
教学重点:
运用按比分配的知识解决生活中的实际问题。
教学难点:
提高分析问题与解决问题的能力。
教学过程:
一、情景导入。
如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。
板书:比的应用。
二、探索新知。
请同学们打开教科书的'54页。
出示教材54页例2
阅读与理解:
(1)、了解情境中的生活信息。
(2)、已知条件:500mL是配好后的稀释液的体积,1:4表示的是浓缩液与水的体积的比。
分析与解答:
(1)、稀释液:500ml总分数:1+4=5
1:4表示什么意思呢?
浓缩液:水
(2)、浓缩液和水的体积比是1:4。
浓缩液的体积是稀释液的1/5。
水的体积是稀释液的4/5。
方法一:
总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。
把每份是:500(1+4)=100(mL)
浓缩液:1001=100(mL)
水:1004=400(mL)
方法二:
先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。
浓缩液有:5001/5=100(mL)
水有:5004/5=400(mL)
回顾与反思:
浓缩液体积:水的体积
=():()
=():()
答:浓缩液有100mL,水的体积有400mL。
三、巩固练习
练习十二第1、2题。
四、小结:
1、今天我们应用比解决了一些实际问题。你有什么收获?
2、按比的配制应用题的解题方法是:
a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。
b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。
五、作业:
练习十二第3、4题。
六、板书设计:
比的应用
方法一方法二
总分数1+4=5
每份数:500(1+4)=100(mL)浓缩液占总体积的1/5
水占总体积的4/5
浓缩液:1100=100(mL)浓缩液有:5001/5=100(mL)水:4100=400(mL)水有:1004/5=400(mL)
答:浓缩液有100mL,水的体积有400mL。
课后反思:
按比的配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。
以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。
比的应用教学设计 篇24
教学内容:
北师大版小学数学教材六年级上册第55—56页。
教学目标:
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用。
3、提高解决问题的能力。
教学重点:
理解按一定比例来分配一个数量的意义。
教学难点:
根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分的量。
教学准备:
PPT
三角形学具
练习题
教学过程:
一、复习引入:
师:同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“六年级一班的男生人数与女生人数之比是3:4”,(PPT)从这个比中,你能推断出什么信息呢?
生1:女生人数与男生人数之比是4:3、
生2:全班的人数是7份,男生占其中的3份,女生占其中的4份。
生3:男生人数是女生人数的3/4。
生4:女生人数是男生人数的4/3、
生5:男生人数是全班人数的3/7。
生6:女生人数是全班人数的4/7。
生7:男生人数比女生人数少1/4。
生8:女生人数比男生人数多1/3、
师:看来,同学们对“比”的知识掌握得相当不错。
二、探究新知:
1、创设情境:
师:最近,笑笑遇到了一个问题。(PPT)谁来说说是什么问题?
生:她要把一筐橘子分给幼儿园的大班和小班,可是不知道怎么分合理。
师:你们能帮助她吗?怎么分合理?谁来说说你的想法?
生1:按班级来分,每个班分这筐橘子的一半。
师:每个班分这筐橘子的一半,这是我们以前所学习过的哪种分法?
生:平均分。
师:还有谁想发表自己的意见?
生2:按大班和小班的人数比来分。
师:按人数比来分是按几比几分?
生:按3:2分。(板书:3:2)
师:那你们知道“平均分”是按几比几来分吗?
生:按1:1分。
师:我们以前所提到的“平均分”,其实就是按照1:1的比进行分配,但是在一些特殊的情况下按照“平均分”并不合理。这时候我们就要考虑一些特定的因素,然后按照一定的比来进行分配。(PPT:按3:2分合理)
2、揭示课题:
师:这节课,我们就来学习按一定的比进行分配的实际问题。(板书:比的应用)
3、分一分。
(1)出示题目:这筐橘子按3:2应该怎样分?(PPT)
①小组合作(用三角形代替橘子,实际操作)。
师:请同学们以小组为单位,拿出你们桌上的纸袋,用里面的三角形代替橘子,来实际操作一下。请大家一边分,一边在本子上记录下你们分配的过程。最后看看大班和小班各能分到多少个橘子。
②小组汇报。(投影学生的分配记录)
师:分好了吗?哪个小组愿意来说说你们分配的过程?
生1:我们是这样分的:先给大班3个,小班2个;然后再给大班3个,小班2个;第三次还是给大班3个,小班2个,就这样,我们一共分了8次,分完了。我们由此知道这堆三角形有40个,最后大班分到了24个,小班分到16个。
师:分了8次分完了,看来你们做事比较有耐心。事实上很多科研成果也是通过科学家们的无数次实验得来的,所以耐心完成一件工作是值得我们学习的。
生2:我们前两次分的方法和他们一样,第三次分的时候我们发现还剩下很多,我们就给大班分了6个,小班分4个,这样又分了2次就分完了。这堆三角形有40个,最后大班分到24个,小班分到16个。
师:分的结果都一样,但看来你们分的次数要比他们少一些,分得快一些,看来你们也动了脑筋。
生3:因为要按3:2来分,而三角形有一大堆,所以我们就想给大班分30个,小班分20个,后来发现三角形不够,就换成给大班15个,小班10个;剩下的大班给9个,小班给6个,一下子就分完了。
师:你们虽然开始不够,但你们的想法很好,而且实际上你们也一下子就分完了,能干。
生4:列算式解。
师:利用份数来解决这个问题,你们的见解很独到。
③发现规律。
师:同学们,在刚刚分三角形的.过程中,你们有什么发现?(PPT:表格)谁来说一说?
生1:我觉得不管怎样分,我们都要按照3:2的比来分,也就是我们每次分的三角形的个数都必须是3:2、
生2:我发现6:4,30:20,15:10,9:6结果都是3:2、
生3:我觉得按3:2的比来分和以前我们学过平均分是不一样的。平均分两个人分得的个数相同,而按3:2的比分来分的话,两个人分得的个数不同。
(2)出示题目:如果有140个橘子,按照3:2又应该怎样分?(PPT)
①独立思考,合作交流。
师:如果现在有140个橘子,按照3:2分给大班和小班,又该怎么分呢?每个班能分到多少个?请同学们思考一下,自己在本子上写一写,算一算。写完之后,可以在小组内交流交流。②汇报展示。(抽生板演列式的两种方法)
师:还有不同的方法吗?(投影其他方法)
师:这是谁做的?你是怎么想的?
方法一:表格
方法二:画图。
方法三:列式。
A:3+2=5140×3/5=84(个)140×2/5=56(个)
答:大班分84个,小班分56个,比较合理。
师:为什么要用“3+2”?“3/5”在这里表示什么?
生:用“3+2”算出橘子的总份数,3/5表示大班能分到橘子总数的3/5。
B:3+2=5140÷5=28(个)28×3=84(个)28×2=56(个)
答:大班分84个,小班分56个,比较合理。
师:为什么要“÷5”?
生:“÷5”是把总数平均分成5份,先求出1份是多少,再给大班分3份,小班分2份。
③比较不同的方法。
师:还有其他的做法吗?刚刚同学们想的这些方法都可以。在这么多的方法中,你比较喜欢哪一种呢?
师:列式计算的A方法,是先求出总份数,然后找到各部分的数量占总量的几分之几,最后按照“求一个数的几分之几是多少”的方法,求出各部分的数量;而列式计算的B方法,是先求出总份数,然后算出一份的数量,最后根据各部分所占的份数来求出各部分的数量。
4。小结。
师:我个人觉得,同学们的这些方法各有千秋,都很不错,建议大家都掌握。那么在解决实际问题的时候,关键还是要认真分析数量关系,弄清各个数量之间的份数。
三、巩固新知。
1、填一填。
师:在我们的生活中,还有许许多多按照一定的比来进行分配的问题,下面我们就一起来看一看。(PPT)
师:(5题)甲班能得到18本。怎么得到的?(2题)按1:1来分,也就是平均分。
2、试一试。
师:试一试你能试着独立完成吗?做在课堂作业本上。(投影学生作业)
师:写完了吗?我们来看看这位同学做的。对吗?
生:回答。
四、知识拓展:
1、数学故事:阿凡提分马。
师:紧张的学习之后,我们一起来看一个小故事。(PPT)
师:听了这个故事,你想说什么?
师:其实,这个故事的问题根本,其实是在于原先商人的遗嘱中,1/2,1/4和1/6相加的和不为1、有兴趣的同学,我们可以下来以后再讨论。
2、闯关活动。
师:老师这里还有几个问题,想请同学们思考一下。
五、课堂小结。
师:通过今天的学习,同学们有什么收获呢?