短文网整理的质数和合数教学设计(精选18篇),快来看看吧,希望对您有所帮助。
质数和合数教学设计 篇1
教学内容:
复习质数、合数的特征并利用质数和合数的知识点,把质数和合数知识大胆运用到正方体拼组图形中。
教学目标:
1、复习质数、合数的特征、复习长方体、正方体的特征。
2、利用质数和合数的知识点,把质数和合数知识大胆运用到小正方体拼组图形中。引导学生归纳出:小正方体的个数是质数个时,只能拼成一种长方体,而小正方体是合数个时,哪种表面积最大或最小。
3、培养学生的逻辑思维能力与空间想象能力。
教学重点、难点:
如何把质数和合数的知识运用到拼组图形中,并能归纳出合数个小正方体拼组成的图形,谁的表面积的大、谁的表面积小。
教具准备:
1、每人20个小正方体。
2、题卡每个小组两张.。
教学过程:
一、激趣导入,复习铺垫。
创设问题:
1、师:比一比:老师写出1至20,你们说出1至20,看看谁最快?
课件1出示:1、2、3、4、5、6、7、8、9、10、
11、12、13、14、15、16、17、18、19、20…..
(课堂上,我班学生感觉到不太可思议,太简单了,于是高高兴兴的在本子上认真书写,写好后还再高兴中我就提出新的问题!)
2、在我们的生活中,你知道这些数的用途吗?
(当时,课堂气氛相当活跃,学生七嘴八舌说出许多这些数在生活中的用途。即数学问题的“生活化”,让数学教学内容向学生的生活实际延伸,让生活中的数学问题进入数学教学,使学生感受到课堂上学习的数学知识来源于生活,而又运用于生活中。)
3、问题情境:你能用本学期的知识给这些数分分类吗?
学生很快就把这1至20分好了类:
(1)是不是2的倍数来分:
奇数:1、3、5、7、9、11、13、15、17、19
偶数:2、4、6、8、10、12、14、16、18、20
(2)按约数的个数分:
既不是质数也不是合数的(只有一个约数):1
质数(两个约数):2、3、5、7、11、13、17、19
合数(三个约数):4、6、8、9、10、12、14、15、16、18、20
4、让学生给1至20说出它们的因数:
找出质数的所有因数:
2的因数:1、2
3的因数:1、3
5的因数:1、5
7的因数:1、7
11的因数:1、11
13的因数:1、13
17的因数:1、17
19的因数:1、19
小结:质数的因数只有1和它本身。
找出合数的所有因数:
4的因数:1、2、4
6的因数:1、2、3、6
8的因数:1、2、4、8
9的因数:1、3、9
10的因数:1、2、5、10
12的因数:1、2、3、4、6、12
14的因数:1、2、7、14
15的因数:1、3、5、15
16的因数:1、2、4、8、16
18的因数:1、2、3、6、9、18
20的因数:1、2、4、5、10、20
小结:合数的因数除了1和它本身以外,还有其他的因数。
5、复习长方体与正方体的.相关知识点。
(1)让学生回忆长方体与正方体的知识。
长方体:6个面,面积完全相同;8个顶点;12条棱,相对的棱的长度相等
正方体:6个面,相对的面面积完全相同8个顶点;12条棱,长度都相等。
二、质疑、探究。
1、问题情境
师:昨天,我们班有一个同学在做题的时候遇到了困难,你们愿不愿意帮帮他呀?得到了学生肯定的回答,我出示课件:12个棱长是1厘米的小正方体拼组图形,问拼成的立体图形,表面积多少?
学生用练习本完成。
(1)12×1×4+1×1×2=50(平方厘米)
(2)6×2×2+6×1×2+2×1×2=40(平方厘米)
看着学生的答题,我试问学生,还有没有算出与这两位同学不一样的表面积?
学生一口同声的回答:没有!
2、分析与探究。
师:那我们一起用小正方体来拼一拼,算一算!
课件出示:12×1×4+1×1×2=50(平方厘米)
6×2×2+6×1×2+2×1×2=40
4×3×2+4×1×2+3×1×2=383×2×4+2×2×2=32
教师小结:通过比较发现,12个小正方体可以拼成四种不同的长方体,体积一样,但表面积各不相同。
3、带问题合作探究。
师:下面我们分小组合作交流,我给每个同学20个大小一样的正方体,看看你能拼出哪些不同的长方体。并以五人小组合作记录在下面的表格,小组合作,并填写下表:
师:同时,谁能结合质数和合数的知识,你能联系质数和合数的知识,熟练拼组出这些图形吗?并把你拼出的长方体或正方体的长、宽、高跟你的小组同学说一说,看看和你的拼组图形一样,特别注意的是看看哪个同学在拼一拼、说一说的过程中有新的发现?
质数和合数教学设计 篇2
教学内容:
质数和合数
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类、
2、培养学生细心观察、全面概括、准确判断、自主探索、独立思考、合作交流的能力。
教学重点:
能准确判断一个数是质数还是合数、
教学难点:
找出100以内的质数、
教学过程:
一、复习导入(加深前面知识的理解,为新知作铺垫)
下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数、
3和154和2449和791和13(指名回答。)
二、小组合作学习质数和合数的的概念。
全班分两组探讨并写出1--20各数的因数。
1、观察各数因数的个数的特点。
2、填写表格。
只有一个因数
只有1和它本身两个因数
除了1和它本身还有别的因数
3、师概括:只有1和它本身两个因数,这样的.的数叫做质数。除了1和它本身还有别的因数,这样的数叫做合数。(板书:质数和合数)
4、举例。
你能举一些质数的例子吗?
你能举一些合数的例子吗?
5、小练习:最小的质数是几?最小的合数是几?质数有多少个因数?合数至少有多少个因数?
6、探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)
引导学生明确:1既不是质数也不是合数。
7、小练习:自然数中除了质数就是合数吗?
三、给自然数分类。
1、想一想
师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把自然数分为哪几类?
生:质数,合数,0。
2、说一说
知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?
引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数;如果有两个以上因数,这个数就是合数。
四、师生学习教材24页的例1。
老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
1、师引导学生找出30以内的质数。
提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)
(特殊记忆20以内的质数,因为它常用。)
2、小组探究100以内的质数。
3、汇报100以内的质数。师生共同整理100以内的质数表。
4、应用100以内质数表:
5、小练习:
(1)所有的奇数都是质数吗?(2)所有的偶数都是合数吗?
五、思维训练。
有两个质数,它们的和是小于100的奇数,并且是17的倍数,求这两个数。
六、课堂小结。
这节课你学会了什么?什么叫质数?什么叫合数?你会判断质数和合数吗?判断的关键是什么?
质数和合数教学设计
作为一名人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以让教学工作更加有效地进行。我们该怎么去写教学设计呢?以下是小编为大家收集的质数和合数教学设计,希望对大家有所帮助。
质数和合数教学设计 篇3
教学内容:
复习质数、合数的特征并利用质数和合数的知识点,把质数和合数知识大胆运用到正方体拼组图形中。
教学目标:
1、复习质数、合数的特征、复习长方体、正方体的特征。
2、利用质数和合数的知识点,把质数和合数知识大胆运用到小正方体拼组图形中。引导学生归纳出:小正方体的个数是质数个时,只能拼成一种长方体,而小正方体是合数个时,哪种表面积最大或最小。
3、培养学生的逻辑思维能力与空间想象能力。
教学重点、难点:
如何把质数和合数的知识运用到拼组图形中,并能归纳出合数个小正方体拼组成的图形,谁的表面积的大、谁的表面积小。
教具准备:
1、每人20个小正方体。
2、题卡每个小组两张.。
教学过程:
一、激趣导入,复习铺垫。
创设问题:
1、师:比一比:老师写出1至20,你们说出1至20,看看谁最快?
课件1出示:1、2、3、4、5、6、7、8、9、10、
11、12、13、14、15、16、17、18、19、20…..
(课堂上,我班学生感觉到不太可思议,太简单了,于是高高兴兴的在本子上认真书写,写好后还再高兴中我就提出新的问题!)
2、在我们的生活中,你知道这些数的用途吗?
(当时,课堂气氛相当活跃,学生七嘴八舌说出许多这些数在生活中的用途。即数学问题的“生活化”,让数学教学内容向学生的生活实际延伸,让生活中的数学问题进入数学教学,使学生感受到课堂上学习的数学知识来源于生活,而又运用于生活中。)
3、问题情境:你能用本学期的知识给这些数分分类吗?
学生很快就把这1至20分好了类:
(1)是不是2的倍数来分:
奇数:1、3、5、7、9、11、13、15、17、19
偶数:2、4、6、8、10、12、14、16、18、20
(2)按约数的个数分:
既不是质数也不是合数的(只有一个约数):1
质数(两个约数):2、3、5、7、11、13、17、19
合数(三个约数):4、6、8、9、10、12、14、15、16、18、20
4、让学生给1至20说出它们的因数:
找出质数的所有因数:
2的因数:1、2
3的'因数:1、3
5的因数:1、5
7的因数:1、7
11的因数:1、11
13的因数:1、13
17的因数:1、17
19的因数:1、19
小结:质数的因数只有1和它本身。
找出合数的所有因数:
4的因数:1、2、4
6的因数:1、2、3、6
8的因数:1、2、4、8
9的因数:1、3、9
10的因数:1、2、5、10
12的因数:1、2、3、4、6、12
14的因数:1、2、7、14
15的因数:1、3、5、15
16的因数:1、2、4、8、16
18的因数:1、2、3、6、9、18
20的因数:1、2、4、5、10、20
小结:合数的因数除了1和它本身以外,还有其他的因数。
5、复习长方体与正方体的相关知识点。
(1)让学生回忆长方体与正方体的知识。
长方体:6个面,面积完全相同;8个顶点;12条棱,相对的棱的长度相等
正方体:6个面,相对的面面积完全相同8个顶点;12条棱,长度都相等。
二、质疑、探究。
1、问题情境
师:昨天,我们班有一个同学在做题的时候遇到了困难,你们愿不愿意帮帮他呀?得到了学生肯定的回答,我出示课件:12个棱长是1厘米的小正方体拼组图形,问拼成的立体图形,表面积多少?
学生用练习本完成。
(1)12×1×4+1×1×2=50(平方厘米)
(2)6×2×2+6×1×2+2×1×2=40(平方厘米)
看着学生的答题,我试问学生,还有没有算出与这两位同学不一样的表面积?
学生一口同声的回答:没有!
2、分析与探究。
师:那我们一起用小正方体来拼一拼,算一算!
课件出示:12×1×4+1×1×2=50(平方厘米)
6×2×2+6×1×2+2×1×2=40
4×3×2+4×1×2+3×1×2=383×2×4+2×2×2=32
教师小结:通过比较发现,12个小正方体可以拼成四种不同的长方体,体积一样,但表面积各不相同。
3、带问题合作探究。
师:下面我们分小组合作交流,我给每个同学20个大小一样的正方体,看看你能拼出哪些不同的长方体。并以五人小组合作记录在下面的表格,小组合作,并填写下表:
师:同时,谁能结合质数和合数的知识,你能联系质数和合数的知识,熟练拼组出这些图形吗?并把你拼出的长方体或正方体的长、宽、高跟你的小组同学说一说,看看和你的拼组图形一样,特别注意的是看看哪个同学在拼一拼、说一说的过程中有新的发现?
质数和合数教学设计4篇
作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。教学设计应该怎么写才好呢?以下是小编精心整理的质数和合数教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
质数和合数教学设计 篇4
教学内容:
复习质数、合数的特征并利用质数和合数的知识点,把质数和合数知识大胆运用到正方体拼组图形中。
教学目标:
1、复习质数、合数的特征、复习长方体、正方体的特征。
2、利用质数和合数的知识点,把质数和合数知识大胆运用到小正方体拼组图形中。引导学生归纳出:小正方体的个数是质数个时,只能拼成一种长方体,而小正方体是合数个时,哪种表面积最大或最小。
3、培养学生的逻辑思维能力与空间想象能力。
教学重点、难点:
如何把质数和合数的知识运用到拼组图形中,并能归纳出合数个小正方体拼组成的图形,谁的表面积的大、谁的表面积小。
教具准备:
1、每人20个小正方体。
2、题卡每个小组两张.。
教学过程:
一、激趣导入,复习铺垫。
创设问题:
1、师:比一比:老师写出1至20,你们说出1至20,看看谁最快?
课件1出示:1、2、3、4、5、6、7、8、9、10、
11、12、13、14、15、16、17、18、19、20…..
(课堂上,我班学生感觉到不太可思议,太简单了,于是高高兴兴的在本子上认真书写,写好后还再高兴中我就提出新的问题!)
2、在我们的生活中,你知道这些数的用途吗?
(当时,课堂气氛相当活跃,学生七嘴八舌说出许多这些数在生活中的用途。即数学问题的“生活化”,让数学教学内容向学生的生活实际延伸,让生活中的数学问题进入数学教学,使学生感受到课堂上学习的数学知识来源于生活,而又运用于生活中。)
3、问题情境:你能用本学期的知识给这些数分分类吗?
学生很快就把这1至20分好了类:
(1)是不是2的倍数来分:
奇数:1、3、5、7、9、11、13、15、17、19
偶数:2、4、6、8、10、12、14、16、18、20
(2)按约数的个数分:
既不是质数也不是合数的(只有一个约数):1
质数(两个约数):2、3、5、7、11、13、17、19
合数(三个约数):4、6、8、9、10、12、14、15、16、18、20
4、让学生给1至20说出它们的因数:
找出质数的所有因数:
2的因数:1、2
3的因数:1、3
5的因数:1、5
7的因数:1、7
11的因数:1、11
13的因数:1、13
17的因数:1、17
19的因数:1、19
小结:质数的因数只有1和它本身。
找出合数的所有因数:
4的因数:1、2、4
6的因数:1、2、3、6
8的因数:1、2、4、8
9的因数:1、3、9
10的因数:1、2、5、10
12的因数:1、2、3、4、6、12
14的因数:1、2、7、14
15的因数:1、3、5、15
16的因数:1、2、4、8、16
18的因数:1、2、3、6、9、18
20的因数:1、2、4、5、10、20
小结:合数的因数除了1和它本身以外,还有其他的因数。
5、复习长方体与正方体的相关知识点。
(1)让学生回忆长方体与正方体的知识。
长方体:6个面,面积完全相同;8个顶点;12条棱,相对的棱的长度相等
正方体:6个面,相对的'面面积完全相同8个顶点;12条棱,长度都相等。
二、质疑、探究。
1、问题情境
师:昨天,我们班有一个同学在做题的时候遇到了困难,你们愿不愿意帮帮他呀?得到了学生肯定的回答,我出示课件:12个棱长是1厘米的小正方体拼组图形,问拼成的立体图形,表面积多少?
学生用练习本完成。
(1)12×1×4+1×1×2=50(平方厘米)
(2)6×2×2+6×1×2+2×1×2=40(平方厘米)
看着学生的答题,我试问学生,还有没有算出与这两位同学不一样的表面积?
学生一口同声的回答:没有!
2、分析与探究。
师:那我们一起用小正方体来拼一拼,算一算!
课件出示:12×1×4+1×1×2=50(平方厘米)
6×2×2+6×1×2+2×1×2=40
4×3×2+4×1×2+3×1×2=383×2×4+2×2×2=32
教师小结:通过比较发现,12个小正方体可以拼成四种不同的长方体,体积一样,但表面积各不相同。
3、带问题合作探究。
师:下面我们分小组合作交流,我给每个同学20个大小一样的正方体,看看你能拼出哪些不同的长方体。并以五人小组合作记录在下面的表格,小组合作,并填写下表:
师:同时,谁能结合质数和合数的知识,你能联系质数和合数的知识,熟练拼组出这些图形吗?并把你拼出的长方体或正方体的长、宽、高跟你的小组同学说一说,看看和你的拼组图形一样,特别注意的是看看哪个同学在拼一拼、说一说的过程中有新的发现?
质数和合数教学设计
在教学工作者开展教学活动前,通常会被要求编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那要怎么写好教学设计呢?以下是小编整理的质数和合数教学设计 ,希望对大家有所帮助。
质数和合数教学设计 篇5
教学内容:
质数和合数
教学目标:
使学生理解质数与合数的饿意义,掌握判断质数合数的方法,
教学过程:
一、复习
约数的概念,找约数的方法。
二、引入新课
例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。
自然数约数
11
21、2
51、5
91、3、9
111、11
121、2、3、4、6、12
171、17
201、2、4、5、10、20
381、2、19、38
451、3、5、9、15、45
(1)找约数
(2)按照约数的多少进行分类?
(3)讨论:1是什么数?
最小的质数是几?
最小的合数是几?
三、巩固练习
1、练一练
第一题,练习判断一个数是质数还是合数。
分析:怎样去判断一个自然数是质数还是合数
2、试一试
第三题判断下面各题,正确的'在括号里打对,不正确的打错。
四、总结归纳
1、使学生弄清奇数与质数,偶数与合数是不同的概念
五、布置作业
反思:对于本节课的知识学生还好理解,但当把自然数的另一个分类混合的时候学生的概念就出现了混乱。所以我们的教学不能光着眼于学生会不会做这些题目,而是应该真正的了解把自然数分成1、质数、合数的理由是什么。并懂的与偶数、奇数的分类是不同的理由,也就是两个不能相等的概念。并渗透一种交叉的概念。
质数和合数教学设计 篇6
1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。
2.培养学生观察、比较、抽象、慨括的能力。
3.培养学生自主探究的精神和独立思考的能力。
教学重点:质数和合数的概念。
教学难点:正确区分质数、合数。
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小*的分类方法。明确:分类的际准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。
板书对应的集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找质数的方法来给自然数分类。
复习:什么叫因数?怎样找一个数所有的因数?
同桌合作.找出列举的各数的所有的因数。(同时板演)
引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况!
根据学生的回答板书。
自然数
(因数的个数)
(只有两个因数)(有3个或3个以上的约数)
引导学生思考:只含有两个因数的,这两个因数有什么特点?引出质数的概念。
明确合数的概念.提问:合数至少有几个因数?想一想:1的因数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,奇数,偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
1528315377891ll
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的因数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的因数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。
完成练一练。
三、练习巩固
1、坚持下面各数的因数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22293549517983
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答:揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是这样的关系呢?
五、布置作业(略)。
教学反思:
概念的教学往往是枯燥的,一般不是有教师和学生的重复不断语言就是有很多的练习题训练。而这一节课教学使学生感到特别兴奋。
第一、在概念教学中,师生的这种融洽的、和谐的,而又不失激情的课堂氛围感染了我。它一改概念教学的枯燥与乏味。让学生在做中学,源于课本又超越了课本,学生用本册刚刚学到的数据收集和整理的知识,来动手操作研究这一节课,使得学生的.兴趣一下子就被调动起来了。
第二、探究、合作、讨论、自主学习是新课程标准的基本理念。在概念教学中如何实施这一理念是这一节课的特色,教学中教师通过自己对教材的理解,对学生的了解。精心设计了问题,巧妙地进行引导学生思考、讨论探索、总结发现规律。学生通过异质的组合来讨论、探究知识,促进相互的学习,提高合作的能力,这对学生一生的发展都的有用的。
第三、大数学观是小学数学新课程标准的重要理念,这一片段的教学中不仅体现了小学数学知识的综合性强的特点,而且真正的把数学知识的教学、动手能力、合作能力等人文素养的培养结合在一起。学生的异质组合讨论、动手拼一拼、相互商议、个别争论等都无不体现了教师先进的教育教学理念。
质数和合数教学设计 篇7
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
教学重点:
理解质数和合数的意义。
教学难点:
判断一个数是质数还是合数的方法。
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。
板书对应的集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作,找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看了集合圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约数,就能判断这个数是合数还是质数。不必找出所有的`约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例1的判断是否正确。
完成练一练。
三、练习巩固
1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是怎样的关系呢?
五、布置作业(略)。
质数和合数教学设计 篇8
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩*唯物主义的观点。
教学重点:
理解质数和合数的意义。
教学难点:
判断一个数是质数还是合数的方法。
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。
板书对应的*图。
自然数
(能不能被2整除)
把学生列举的`数填写在对应的*圈里。
问:看了*图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作,找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看了*圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
152831537789111
学生*完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约数,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例1的判断是否正确。
完成练一练。
三、练习巩固
1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22293549517983
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生*作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是怎样的关系呢?
五、布置作业(略)。
质数和合数教学设计 篇9
教学目标:
①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。
②知道100以内的质数,熟悉20以内的质数。
③培养学生自主探索、独立思考、合作交流的能力。
④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:
质数和合数的意义。
教学难点:
正确判断一个常见数是质数还是合数。
教学过程:
一、导入(课件出示)
1、在1——20的各自然数中,奇数有哪些?偶数有哪些?
2、想一想:自然数分成奇数和偶数,是按什么标准分的?自然数分几类?
师:自然数还有一种新的分类方法,今天就来学习这种分类方法。
二、出示预习提纲:
自学内容P23-24例1、做一做,P25—26的T1—5
思考:
1、按要求填书中表:
从上面的表格中的数据有什么特点?
2、什么叫质数和合数?举例说明。
3、在这个表中找出100以内的全部质数
小组讨论,你发现了什么?
4、把不理解的内容做好标记。
三、汇报展示:
1、学习质数和合数的概念。
预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)
预习反馈(2)观察:填在书中第23页表格中的数据有什么特点?
(3)学生讨论后归纳分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。)
反馈:只有一个因数的:1
只有1和它本身两个因数的:2,3,5,7,11,13,17,19
有两个以上的因数的:4,6,8,9,10,12,14,15,16,18,20
(4)教学质数和合数的概念。
①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?
讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。(板书“质数”)
②4、6、8、9、10、12、14、……这些数的因数与上面的数的因数相比有何不同?
讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)
注意:1既不是质数,也不是合数。
(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?
2、质数、合数的判断方法。
(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)
(2)完成P23做一做,判断下列各数中哪些是质数,哪些是合数?(先独立完成,再同桌互查)
(3)提问:你是怎样判断的?(找出每个数的因数的个数)
判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的因数,不管有几个,它都是合数)
3、出示P24例题1,找出100以内的质数,做一个质数表。
(1)提问:如何很快的制作一张100以内的指数表?
(2)按质数的概念逐个判断?也可以用筛选法。
(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的`就是100以内的质数。
100以内的质数:(略)
(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)
四、反馈检测
完成P25题1~5
第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。
同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。
板书设计
质数和合数
质数(素数):只有1和它本身两个因数。如2、3、5、7
合数:除了1和它本身还有别的因数。如4、6、15、49
附质数和合数检测题:
一、填空。(口答)课件出示
1、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。
2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。
3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。
4、在5和25中,()是()的倍数,()是()的约数,()能被()整除。
二、猜一猜:(课件出示)
三、判断题,对的在括号里写“√”,错的写“×”。
(1)任何一个自然数,不是质数就是合数。()
(2)偶数都是合数,奇数都是质数。()
(3)7的倍数都是合数。()
(4)20以内最大的质数乘以10以内最大的奇数,积是171。()
(5)只有两个约数的数,一定是质数。()
(6)两个质数的积,一定是质数。()
(7)2是偶数也是合数。()
(8)1是最小的自然数,也是最小的质数。()
(9)除2以外,所有的偶数都是合数。()
(10)最小的自然数,最小的质数,最小的合数的和是7。()
质数和合数教学设计 篇10
教学目标:知识与技能:
1、掌握质数和合数的意义。
2、熟记20以内质数,能较快地、准确地辩识一个常见数是质数还是合数。
3、通过探究质数和合数的意义,培养学生的探究意识和能力。
数学思考:
1、透过实际箱装饮料罐的排列方式,感知生活中有数学。
2、能对现实生活中箱装饮料罐的数字信息作出合理解释。
情感与态度:
1、由简单、实际的生活例子开始,减少学习时遇到太过抽象,无法理解的情况,以增加学习信心。
2、在形式多样的练习中,激发学生的学习兴趣。
教具学具:
cai、投影仪、学习单2张,学号数字卡。
教学过程:课前谈话。
如果让你给来听课的老师分类,你想怎样分?(按性别分成男和女两组,按年龄分年青和年长两组…)也就是说按不同的标准分有不同的分法。
一、生活实例引入
1、观察生活:
(1)师:日常生活中,一箱饮料通常都是排在长方体的纸箱中。
请你猜猜看:通常一箱饮料的总数量会是些什么数?(生猜:偶数、奇数……)
师:真是这样的吗?
(2)老师这里拍摄了一些箱装饮料的照片,大家一起来看一看:每箱饮料共有多少瓶?是怎样排列的?用算式表示。
教师出示4张不同数量装箱的照片: 板书: 9=33
9瓶啤酒、12瓶可乐、 12=34
15瓶牛奶、24瓶雪碧 15=35
24=46
学生观察并说一说:9瓶啤酒排成3行3列,9=33……
(师板书在黑板右侧)
2、实际数量的多种排列方法,分析可行性:
这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)
板书:9=33=19
12=34=26=112
15=35=115
24=46=38=212=124
提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(请一学生在黑板上勾一勾。)
为什么?(不便携带……)
3、比较质疑,引入新课:
现在老师这儿有13瓶饮料,请你将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?
板书:13=113 学生思考,同桌说一说
17=117 (师板书在黑板左侧)
19=119
你还能举出几个这样的'数吗?
据学生回答:20以内的质数。(这样的数还有很多)
二、探究原因:
(一)、探究质数意义:
1、想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?
(评:这个问题抓住了实质,它是本节课的核心和关键,非常具有思考价值,学生的思维被充分地调动起来。)
四人小组讨论(相机提示:跟这些数的约数有关。仔细观察左边这些数的约数,你发现了什么?)
汇报]:(鼓励学生用自己的语言描述)
整理揭示:象这样只有1和它本身两个约数的数叫“质数”。
(cai辅助逐步演示。)
2:1、 2
3:1、 3
5:1、 5
7:1、 7
11:1、11
13:1、13
17:1、17
19:1、19
……
2、再举几个质数,并说明理由。
(评:适时巩固应用,加深理解概念。)
(二)、探究合数
1、用质数判断合数:右边这些数也是质数吗?(不是)为什么?
除了1和它本身还有别的约数。
揭示:象这样除了1和它本身,还有别的约数的数,叫“合数”。
(cai辅助逐步演示)
4:1、4、2
6:1、6、2、3
8:1、8、2、4
9:1、9、3
10:1、10、2、5
12:1、12、2、6
14:1、14、2、7
15:1、15、3、5
16:1、16、2、8、4
18:1、18、2、9、3、6
20:1、20、2、10、4、5
……
2、请你再举几个合数,并说明理由。
3、比较巩固意义:你觉得判断一个数是质数还是合数的关键是什么?(约数的个数。)
(三)、谜底揭晓:日常生活中一箱饮料的总数量通常是些什么数?(板书:合数)很少采用什么数?(板书:质数)
(四)、巩固练习,并引出“1”
1、判断下列各数(是质数,一、二组举手;是合数,三、四组举手)。
2、17、50、22、37、35、29、87、1
提问50、87的判断方法(联系旧知:能被2、5、3整除的数的特征)
2、当最后判断“1”时,都没举手,提问:为什么?
学生充分发表意见。
揭示:“1”只有一个约数,它既不是质数,也不是合数。(cai演示。)
(五)、总结并揭题:这节课我们学到了哪些新知识?
三、发展练习(cai辅助演示。)
填一填:
(1)最小的奇数是 ( )
(2)最小的质数是 ( ),(3)最小的合数是 ( )
(4)既是偶数又是质数的只有 ( ),(5)既是奇数又是合数的有 ( )、( )……
判断下列说法是否正确。
(1)在自然数中,除了质数以外都是合数。 ( )
(2)除2以外,所有的偶数都是合数。 ( )
(3)所有的奇数都是质数。 ( )
(4)两个质数相加,和一定是合数。 ( )
(5)9既是奇数又是合数。 ( )
2、猜一猜老师的电话号码。
第一位:10以内既是偶数又是合数的最大数
第二位:既是质数又是奇数的最小数
第三位:最小的质数
第四位:10以内最大的质数
第五位:最小的合数
第六位:既不是质数又不是合数的数
第七位:10以内既是奇数又是合数的最大数
第八位:最小的偶数
四、动脑筋离开教室。
请最特殊的数“1”离开教室;
请既是奇数又是合数的离开教室;
请质数离开教室;
请既是偶数又是合数的离开教室。
(课件按要求逐步出示数字,学生在自我判断后对照课件上的数字选择离开教室)
质数和合数教学设计 篇11
【教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习-——提出猜想——合作、交流验证——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【教学重点】:理解质数和合数的意义
【教学难点】:判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
【教具学具准备】:学生每人准备一张学号牌、课件
【教学过程】:
一、课前谈话:快点告诉我你的学号,学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?……
二、引入:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来;哪些人学号是偶数呢?都站过了吗,可见自然数可以怎样分类?分类依据是什么?
三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)
2、交流:请1—12号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
(全班交流)板书完成:有一个因数:1
有两个因数:2、3、5、7、11、
有两个以上因数:4、6、8、9、10、12
(1)质数
师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)板书
命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调“只有”两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)
再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个)想一想:最小的质数是几?最大的呢?
(2)合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?
(3)1既不是质数也不是合数
(4)分类:所以按照因数个数的.多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类
13号到27号的同学看看你们手中的因数也就这三类
判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
(二)动手实践,制作100以内的质数表。
1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
质数和合数教学设计 篇12
【教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习-——提出猜想——合作、交流验证——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【教学重点】:理解质数和合数的意义
【教学难点】:判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
【教具学具准备】:学生每人准备一张学号牌、课件
【教学过程】:
一、课前谈话:快点告诉我你的学号,学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?……
二、引入:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来;哪些人学号是偶数呢?都站过了吗,可见自然数可以怎样分类?分类依据是什么?
三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)
2、交流:请1—12号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
(全班交流)板书完成:有一个因数:1
有两个因数:2、3、5、7、11、
有两个以上因数:4、6、8、9、10、12
(1)质数
师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)板书
命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调“只有”两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)
再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个)想一想:最小的质数是几?最大的呢?
(2)合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?
(3)1既不是质数也不是合数
(4)分类:所以按照因数个数的'多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类
13号到27号的同学看看你们手中的因数也就这三类
判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
(二)动手实践,制作100以内的质数表。
1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
质数和合数教学设计 篇13
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?
学生独立思考,然后全班交流。
2、师:这样的四个小正方形能拼出几个不同的`长方形?
学生各自独立思考,想像后举手回答。
3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)
4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
学生几乎是异口同声地说:会越多。
师:确定吗?(引导学生展开讨论。)
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。
先让学生小组讨论,然后全班交流,师根据学生的回答板书。
师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?
学生独立思考后,在小组内进行交流,然后再全班交流。
引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)
6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:那你们认为“1”是什么数?
让学生独立思考,后展开讨论。
二、动手操作,制质数表。
1、师出示:73。让学生思考着它是不是质数。
师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)
师:这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)
2、让学生动手制作质数表。
3、集体交流方法。
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在讨论中有什么收获?
质数和合数教学设计 篇14
【教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习-——提出猜想——合作、交流验证——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【教学重点】:理解质数和合数的意义
【教学难点】:判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
【教具学具准备】:学生每人准备一张学号牌、课件
【教学过程】:
一、课前谈话:快点告诉我你的学号,学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?……
二、引入:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来;哪些人学号是偶数呢?都站过了吗,可见自然数可以怎样分类?分类依据是什么?
三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)
2、交流:请1—12号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
(全班交流)板书完成:有一个因数:1
有两个因数:2、3、5、7、11、
有两个以上因数:4、6、8、9、10、12
(1)质数
师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)板书
命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调“只有”两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)
再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个)想一想:最小的质数是几?最大的呢?
(2)合数
师:再看4、6、9、10等这一类的数,它们的`因数跟质数的因数比较,有什么不同呢?
(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?
(3)1既不是质数也不是合数
(4)分类:所以按照因数个数的多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类
13号到27号的同学看看你们手中的因数也就这三类
判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
(二)动手实践,制作100以内的质数表。
1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
质数和合数教学设计 篇15
教学目标:
1、使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:质数和合数的意义。
教学难点:正确判断一个常见数是质数还是合数。
教学时间:一课时
教学过程:
一、复习旧知,设疑激趣。
师:在刚开始学习倍数和因数时,我们就知道要研究的数是非零的自然数。如果以是不是2的倍数这个标准进行分类,自然数可以分为几类?
师:请手中的数是偶数的同学站起来,坐着的同学就是什么数?
师:自然数除了按奇偶数进行分类外。我们还可以按自然数的因数个数的多少来进行分类,大家想不想试一试?
二、新授
1.学习质数和合数的概念。
(1)先让学生找出手中数的所有因数。
(2)出示例题
师:老师先选出几个数,让有这几个数的同学说出这些数的.因数。
提问:如果把这6个数按因数个数的多少分成两类,你打算怎样分类?
讨论:哪种分类方法更能突出每类数在因数方面的共同特点?
3、小结:为了突出每一类数在因数方面的特点,我们就把这六个数分为两类:一类是只有两个因数的,另一类是超过两个因数的。
4、揭示定义:请大家仔细观察只有两个因数的数,这两个因数有什么特点?(一个是1,一个是它本身)。自然数中是不是只有这3个数只有两个因数呢?像这样的数,我们给它起个名字叫做质数,也叫做素数。(板书:质数)
剩下这几个数因数的个数是怎样的?和质数的因数有什么不同?(除了1和它本身外还有别的因数)。除了这3个数,看看你们手中的数还有没有这样超过两个因数的数?像这样的数,我们也给它起个名字叫做合数。(板书:合数)
5、揭示课题:这就是今天这节课要学习的内容。
6、分别请手中的数是质数和合数的同学站起来,问:你们有没有观察到,有一个同学两次都没有站起来,知道她手中拿的是什么数吗?这个1有几个因数?它是质数还是合数?
7、这样看来,非零自然数如果按因数的个数分类,你认为应该分成几类?哪几类?
三、教学“试一试”
1、先让学生自己独立完成,然后指名对应数字的同学起来说出答案,并说明理由。
2、提问:你们认为怎样判断一个数是不是质数或者合数?
四、练习:
1、做“练一练”题。
2、做练习六的第1题
先让学生自己完成,然后齐读剩下的质数。
3、做练习六的第2题。
五、拓展延伸
1.把迷路的数送回家。(练习六第2题)
2、判断
所有的质数都是奇数。
所有的偶数都是合数。
自然数不是质数就是合数。
两个奇数相减,差一定是偶数。
两个偶数相加,和一定是合数。
六、课后小结。学习了关于质数和合数,你们还想研究哪些问题?还有哪些不懂的问题?
七、板书设计:
质数和合数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数,也不是合数
质数和合数教学设计 篇16
1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。
2.培养学生观察、比较、抽象、慨括的能力。
3.培养学生自主探究的精神和独立思考的能力。
教学重点:质数和合数的概念。
教学难点:正确区分质数、合数。
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小*的分类方法。明确:分类的际准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。
板书对应的集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找质数的方法来给自然数分类。
复习:什么叫因数?怎样找一个数所有的因数?
同桌合作.找出列举的各数的所有的因数。(同时板演)
引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况!
根据学生的回答板书。
自然数
(因数的个数)
(只有两个因数)(有3个或3个以上的约数)
引导学生思考:只含有两个因数的,这两个因数有什么特点?引出质数的概念。
明确合数的概念.提问:合数至少有几个因数?想一想:1的因数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,奇数,偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
1528315377891ll
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的因数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的因数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。
完成练一练。
三、练习巩固
1、坚持下面各数的因数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22293549517983
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答:揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是这样的关系呢?
五、布置作业(略)。
教学反思:
概念的`教学往往是枯燥的,一般不是有教师和学生的重复不断语言就是有很多的练习题训练。而这一节课教学使学生感到特别兴奋。
第一、在概念教学中,师生的这种融洽的、和谐的,而又不失激情的课堂氛围感染了我。它一改概念教学的枯燥与乏味。让学生在做中学,源于课本又超越了课本,学生用本册刚刚学到的数据收集和整理的知识,来动手操作研究这一节课,使得学生的兴趣一下子就被调动起来了。
第二、探究、合作、讨论、自主学习是新课程标准的基本理念。在概念教学中如何实施这一理念是这一节课的特色,教学中教师通过自己对教材的理解,对学生的了解。精心设计了问题,巧妙地进行引导学生思考、讨论探索、总结发现规律。学生通过异质的组合来讨论、探究知识,促进相互的学习,提高合作的能力,这对学生一生的发展都的有用的。
第三、大数学观是小学数学新课程标准的重要理念,这一片段的教学中不仅体现了小学数学知识的综合性强的特点,而且真正的把数学知识的教学、动手能力、合作能力等人文素养的培养结合在一起。学生的异质组合讨论、动手拼一拼、相互商议、个别争论等都无不体现了教师先进的教育教学理念。
质数和合数教学设计 篇17
教学内容:
复习质数、合数的特征并利用质数和合数的知识点,把质数和合数知识大胆运用到正方体拼组图形中。
教学目标:
1、复习质数、合数的特征、复习长方体、正方体的特征。
2、利用质数和合数的知识点,把质数和合数知识大胆运用到小正方体拼组图形中。引导学生归纳出:小正方体的个数是质数个时,只能拼成一种长方体,而小正方体是合数个时,哪种表面积最大或最小。
3、培养学生的逻辑思维能力与空间想象能力。
教学重点、难点:
如何把质数和合数的知识运用到拼组图形中,并能归纳出合数个小正方体拼组成的图形,谁的表面积的大、谁的表面积小。
教具准备:
1、每人20个小正方体。
2、题卡每个小组两张.。
教学过程:
一、激趣导入,复习铺垫。
创设问题:
1、师:比一比:老师写出1至20,你们说出1至20,看看谁最快?
课件1出示:1、2、3、4、5、6、7、8、9、10、
11、12、13、14、15、16、17、18、19、20…..
(课堂上,我班学生感觉到不太可思议,太简单了,于是高高兴兴的在本子上认真书写,写好后还再高兴中我就提出新的问题!)
2、在我们的生活中,你知道这些数的用途吗?
(当时,课堂气氛相当活跃,学生七嘴八舌说出许多这些数在生活中的用途。即数学问题的“生活化”,让数学教学内容向学生的生活实际延伸,让生活中的数学问题进入数学教学,使学生感受到课堂上学习的数学知识来源于生活,而又运用于生活中。)
3、问题情境:你能用本学期的知识给这些数分分类吗?
学生很快就把这1至20分好了类:
(1)是不是2的倍数来分:
奇数:1、3、5、7、9、11、13、15、17、19
偶数:2、4、6、8、10、12、14、16、18、20
(2)按约数的个数分:
既不是质数也不是合数的(只有一个约数):1
质数(两个约数):2、3、5、7、11、13、17、19
合数(三个约数):4、6、8、9、10、12、14、15、16、18、20
4、让学生给1至20说出它们的因数:
找出质数的所有因数:
2的因数:1、2
3的因数:1、3
5的因数:1、5
7的因数:1、7
11的因数:1、11
13的因数:1、13
17的因数:1、17
19的因数:1、19
小结:质数的因数只有1和它本身。
找出合数的所有因数:
4的'因数:1、2、4
6的因数:1、2、3、6
8的因数:1、2、4、8
9的因数:1、3、9
10的因数:1、2、5、10
12的因数:1、2、3、4、6、12
14的因数:1、2、7、14
15的因数:1、3、5、15
16的因数:1、2、4、8、16
18的因数:1、2、3、6、9、18
20的因数:1、2、4、5、10、20
小结:合数的因数除了1和它本身以外,还有其他的因数。
5、复习长方体与正方体的相关知识点。
(1)让学生回忆长方体与正方体的知识。
长方体:6个面,面积完全相同;8个顶点;12条棱,相对的棱的长度相等
正方体:6个面,相对的面面积完全相同8个顶点;12条棱,长度都相等。
二、质疑、探究。
1、问题情境
师:昨天,我们班有一个同学在做题的时候遇到了困难,你们愿不愿意帮帮他呀?得到了学生肯定的回答,我出示课件:12个棱长是1厘米的小正方体拼组图形,问拼成的立体图形,表面积多少?
学生用练习本完成。
(1)12×1×4+1×1×2=50(平方厘米)
(2)6×2×2+6×1×2+2×1×2=40(平方厘米)
看着学生的答题,我试问学生,还有没有算出与这两位同学不一样的表面积?
学生一口同声的回答:没有!
2、分析与探究。
师:那我们一起用小正方体来拼一拼,算一算!
课件出示:12×1×4+1×1×2=50(平方厘米)
6×2×2+6×1×2+2×1×2=40
4×3×2+4×1×2+3×1×2=383×2×4+2×2×2=32
教师小结:通过比较发现,12个小正方体可以拼成四种不同的长方体,体积一样,但表面积各不相同。
3、带问题合作探究。
师:下面我们分小组合作交流,我给每个同学20个大小一样的正方体,看看你能拼出哪些不同的长方体。并以五人小组合作记录在下面的表格,小组合作,并填写下表:
师:同时,谁能结合质数和合数的知识,你能联系质数和合数的知识,熟练拼组出这些图形吗?并把你拼出的长方体或正方体的长、宽、高跟你的小组同学说一说,看看和你的拼组图形一样,特别注意的是看看哪个同学在拼一拼、说一说的过程中有新的发现?
质数和合数教学设计 篇18
【教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习-——提出猜想——合作、交流验证——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【教学重点】:理解质数和合数的意义
【教学难点】:判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
【教具学具准备】:学生每人准备一张学号牌、课件
【教学过程】:
一、课前谈话:快点告诉我你的学号,学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?……
二、引入:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的.同学站起来;哪些人学号是偶数呢?都站过了吗,可见自然数可以怎样分类?分类依据是什么?
三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)
2、交流:请1—12号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
(全班交流)板书完成:有一个因数:1
有两个因数:2、3、5、7、11、
有两个以上因数:4、6、8、9、10、12
(1)质数
师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)板书
命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调“只有”两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)
再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个)想一想:最小的质数是几?最大的呢?
(2)合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?
(3)1既不是质数也不是合数
(4)分类:所以按照因数个数的多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类
13号到27号的同学看看你们手中的因数也就这三类
判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
(二)动手实践,制作100以内的质数表。
1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
质数和合数教学设计2篇
作为一名无私奉献的老师,时常需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的质数和合数教学设计,希望对大家有所帮助。