短文网整理的《比的应用》教学设计(精选24篇),快来看看吧,希望对您有所帮助。
《比的应用》教学设计 篇1
教学内容:
义务教育课程标准实验教科书数学六年级下册P49、50“练一练”和练习十一的第3、4、5题
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。
教学重点:
能按给定的比例尺求相应的实际距离或图上距离。
教学难点:
能按给定的比例尺求相应的实际距离或图上距离。
设计理念:
本课时主要是学生在对比例尺含义理解的'基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。
教学步骤
教师活动学生活动
一、复习旧知
引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?
2、什么叫比例尺?求比例尺时要注意哪些问题?
学生练习,找出图上距离与实际距离,再写出比例尺。
二、理解明确
实践运用
1、出示例7,明确题意
找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。
2、分析比例尺1:8000所表示的意义。
引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。
3、尝试列式
根据对1:8000的理解你能尝试列出算式吗?
师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)
4、归纳、选择、
教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。
5、练习
教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
学生分析题意,明确已知比例尺,已知图上距离,求实际距离。
学生分析1:8000表示的意义。
学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。
学生可能出现的方法:
1、5×8000=40000……2、5×80=400……
3、5/X=1/8000……
图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。
学生列式5/X=1/8000并计算。
三、尝试练习
巩固提高1、做“试一试”。
先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。
2、做“练一练”先独立解题,在组织交流
3、做练习十一第4题
引导学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。
引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
学生练习
在图中表示医院的位置。
学生练习后交流
四、全课总结
回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?
2、你还有什么疑问,或你能给同学提出什么新问题?
五、知识拓展
激发兴趣P51“你知道吗?”
1、收集地图资料,展示给学生观看。
2、介绍国家基本比例尺地图。
学生观看
阅读后适当交流
《比的应用》教学设计 篇2
教学目标
1.复习成正比例和反比例关系的量的意义。
2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。
3.进一步培养同学们分析、推理和判断等思维能力。
教学重点和难点
1、 判断两种相关联的量成什么比例;确定解答应用题的方法。 教学准备 多媒体课件
教学过程设计
今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。
一、复习概念
1、什么叫成正比例的量?它的关系式是什么?
2、什么叫成反比例的量?它的关系式是什么?
3、正反比例它们有什么相同和不同的地方?
二、复习数量关系
1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成
什么比例?
1.工作效率一定,工作时间和工作总量。( )
2.每块砖的面积一定,砖的块数和铺地面积。( )
3.挖一条水渠,参加的人数和所需要的时间。( )
4.从甲地到乙地所需的时间和所行走的速度。( )
5.时间一定,速度和距离。( )
2.选择题:
1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。 ① 成正比例② 成反比例③ 不成比例
2.步测一段距离,每步的平均长度和步数( )。
① 成正比例② 成反比例③ 不成比例
3.比的后项一定,比的前项和比值()。
① 成正比例② 成反比例③ 不成比例
4.C= πd 中,如果c一定,π和 d( )。
①成正比例 ② 成反比例③ 不成比例
5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。
?40:15= 60: ② 40=15×60 ③ 60=15×40
三、复习简单应用题
例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?
A、题中涉及哪三种量?其中哪两种是相关联的量?
B、哪一种量是一定的?你是怎么知道的?
C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。
2、总结 正 、反比例解比例应用题要抓的四个环节
3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。
②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。
③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。
④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
⑤、小敏买3枝铅笔花了1.5元,小聪买同样的.铅笔5枝,要付给营业员多少钱?
⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?
四、 巩固练习
1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?
解:设可装订本。
(30+10)=500×30
4 0=15000
=15000
=375
答:可装订375本。
2、比一比,想一想,每一组题中有什么不同, 你会列式吗?
(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?
(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?
五、拓展延伸
用正反两种比例解答:
1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?
六、全课总结
解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。
七、板书设计
正反比例应用题
=K(一定) X×Y=K(一定)
X和Y成正比例关系。 X和Y成反比例关系。
正y 、反比例解比例应用题要抓的四个环节
第一、分析:可分四步。
第一步:确定什么量是一定的。
第二步:相依变化的量成什么比例。
第三步:找准相对应的两个量的数。
第四步:解方程(根据比例的基本性质)
第二、设未知数为X,注意写明计量单位。
第三、根据正反比例的意义列出方程。
第四、检验并答题。
《比的应用》教学设计 篇3
—、气体摩尔体积
一、教材分析:
气体摩尔体积是在学习物质的量的基础上学习的,它将气体的体积和气体的物质的量联系起来,为以后学习气体参加反应的计算奠定了基础。
二、教学目标
(一)知识与技能
1、理解决定物质体积大小的因素;
2、理解气体摩尔体积的概念;
3、掌握气体体积与物质的量之间的转换关系。
(二)过程与方法
从分析决定物质体积大小的因素入手,培养学生发现问题的意识,通过设置问题调动学生的求知欲望,引导学生进行归纳,体验矛盾的主要方面和次要方面对结论的影响。
(三)情感态度与价值观
通过决定物质体积大小的因素和气体摩尔体积的学习,培养学生的分析问题的能力和团结合作的精神,感受科学的魅力。
三、教学重难点
教学重点:气体摩尔体积
教学难点:决定物质体积大小的.因素、气体摩尔体积。
四、教学过程
【引入】在科学研究和实际生产中,常常用到气体,而测量气体的体积往往比称量质量更方便。那么气体体积与它的物质的量之间有什么联系呢?我们今天就来学习气体体积与其物质的量之间的桥梁——气体摩尔体积。
二、气体摩尔体积
【教师活动】播放电解水的实验视频。
【学生活动】观察、讨论、思考并回答问题。
1、阅读教材P13 —P14科学探究的内容,并填空。
(1)实验中的现象:两极均产生气体,其中一极为 氢气,另一极为氧气,且二者体积比约为 。
(2)
质量(g)物质的量(mol)氢气和氧气的物质的量之比氢气氧气从中你会得出结论:在相同温度和压强下,1molO2和H2的体积。
2、下表列出了0℃、101 kPa(标准状况)时O2和H2的密度,请计算出1 mol O2、H2的体积。从中你又会得出什么结论?
物质物质的量(mol)质量(g)密度(g·L-1)体积(L)O211.429H210.0899结论:在标准状况下,1mol任何气体的体积都约是。
【过渡】1mol任何气体在同温、同压条件下体积几乎相等,1mol固体或液体是否也类似的关系呢?【问题】下表列出了20℃时几种固体和液体的密度,请计算出1 mol这几种物质的体积。
密度/g·cm-3质量/g体积/cm3Fe7.86Al2.70H2O0.998H2SO41.83
结论:在相同条件下,1mol固体或液体的体积。
《比的应用》教学设计 篇4
设计思路:
本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。
教学内容:
六年级上册比的应用
教学目标:
1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。
2、能正确解答按比例分配问题。
3、培养解决问题的能力,促进探索精神的养成。
教学重点:
掌握解答按比例分配应用题的步骤。
教学难点:
掌握解题的关键。
教学过程:
一、创设情境,感受价值
1、师:同学们,大家平时放过东西吗?
2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)
注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?
3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。
注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。
二、探究教学
1、探究例题
(1)呈现例题,根据学生的建议,共同完成例1
师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵?
(2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?
师:请同学们独立思考,独立完成(教师巡视、指导)
(3)展示结果
根据学生的回答板书解题方法
第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)
第二种:2+3=5
60×3/5=36(棵) 60×2/5=24(棵)
注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。
2、揭示课题
师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。
3、思考:如何检验答案是否正确呢?
讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?
指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。
三、巩固练习教材做一做。
四、总结
通过这节课的`学习,你有什么收获?
教学反思:
1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。
2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。
《比的应用》教学设计15篇
在教学工作者实际的教学活动中,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那要怎么写好教学设计呢?下面是小编为大家收集的《比的应用》教学设计,欢迎阅读与收藏。
《比的应用》教学设计 篇5
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习
1.说说正、反比例的意义。
2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从A地到B地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米
(二)新课
例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
(1)用以前方法解答。
(2)研究用比例的方法解答
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的.条件和问题
甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?
教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?
1、以前的发法解答。
2、怎样用比例知识解答?
3讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
整理和复习
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例
5/x=10/340/24=5/x
3、完成26页2、3题
综合练习
1、A×1/6=B×1/5A:B=():()
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()
实践与应用
1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
《比的应用》教学设计 篇6
教学内容:
人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。
学情分析:
1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。
2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。
教学目标:
1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。
3、使学生在学习分数的意义的`基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。
教学重难点:
重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:
多媒体课件,答题纸,小棒。
教学过程:
师:你想到的这个数表示什么意思?
(预设:平均分、分数线、分子、分母、分数的意义。师选择板书)
二、探究新知。
1、初步感受整体由“1个”变“多个”
(1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?
(2)、现在你又想到了哪个数?它表示什么意思?
(3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?
(4)教师对学生的回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?
2.理解部分与整体的关系。
(1)课件出示六个苹果,动态演示平均分的过程。
学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)
(2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)
3、回顾建模。
课件出示:
引导学生回顾总
结:我们不仅可以把一个完整的物体
或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。
三、动手操作,加深认识。
1、“均匀地分”。
(1)提出要求:老师给大家准备了12个苹果,
请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。
(2)生独立思考,动手操作。
(3)、汇报交流。
(4)对比提升。
课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。
2、“创新地画”。
(2)生独立思考,动手操作。
(3)、汇报交流,展示学生作品。
预设:因为都是把整体平均分成了2份,取其中的1份。
师:哪儿不同?
预设:总数不同,每份数也不同。
四、闯关游戏,加深理解。
第一关:“准确地拿”。
第二关:“独具慧眼”。
五、回顾反思,结束全课。
1、引导学生回顾反思:今天你有什么收获?
2、师给与评价
《比的应用》教学设计 篇7
一、本单元的基础知识
本单元是学生在已经学习了百分数的相关问题,初步理解了百分数的含义,会解决简单的百分数的问题,掌握了一些解决百分数的基本技巧的基础上进行教学的。
二、本单元的教学内容
P87~99本单元教材内容包括百分数的应用,进一步运用方程解决有关百分数问题。
三、本单元的教学目标
1.在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2.能利用百分数的有关知识以及方程解决一些实际问题,提高解决实际问题的能力。
四、本单元重难点
1.教学重点:能运用所学知识解决有关百分数的实际问题。
2.教学难点:运用方程解决简单的百分数问题。
五、学情分析:
本单元的内容是在学生已经正确理解了百分数的意义,了解百分数、分数、小数的互化方法的基础上进行学习的,而且在分数混合运算的学习过程中学生对“谁比谁多(少)”也有了一定的`了解,知道如何用画图的方法体现出“谁比谁多(少)”的数量关系。而对于解答方法上学生也有类似的运用方程解决问题的经验,这些都会为他们学习本单元的知识扫清障碍。
六、教学过程:
一、导入。
从1997年至今,我国铁路已经进行了多次大规模提速。有一列火车,原来每小时行驶80千米,提速后,这列火车的速度比原来增加了40﹪。现在这列火车每小时行驶多少千米?
同学们,能自己通过画图,分析题意解决这个问题吗?
二、百分数的应用。
(1)学生独立画图。
(2)展示学生的成果。
(3)教师评价。
3.学生自主解答问题。
4.班内交流。
办法一:80×40%=32(千米)
80+32=112(千米)
办法二:80×(1+40%)
=80×1.4
=112(千米)
答:现在这列火车每小时行驶112千米。
三、试一试。
1.生活中的折扣。
游乐场的套票原来每套30元,六一期间八折优惠,购买一套这样的套票能省多少元?
2.思考:八折是什么意思?
※学生自由发表自己的见解。
※教师评价。
※八折就是现价是原价的80%。
3.学生自主解答然后交流。
办法一:30×80%=24(元)
30-24=6(元)
办法二:30×(1-80%)
=30×20%
=6(元)
四、练一练。
1.教科书第26页练一练第1题。
2.教科书第26页练一练第2题。
3.教科书第26页练一练第3题。
4.教科书第27页练一练第6题
提示:“几成”是什么意思?
※成数主要用于农业收成
※几成就是十分之几。
※一成就是1/10,也就是10%
二成五就是2.5%,也就是25%
3、学生独立解决问题
五、课堂总结。
通过今天的学习你有什么收获?
板书设计:
方法(一):80×40%=32(千米)方法(二):80×(1+40%)
80+32=112(千米)=80×1.4
=112(千米)
百分数应用题和分数应用题的解题思路与方法是完全一致的。
《比的应用》教学设计(15篇)
作为一名教职工,总不可避免地需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。写教学设计需要注意哪些格式呢?以下是小编整理的《比的应用》教学设计,仅供参考,希望能够帮助到大家。
《比的应用》教学设计 篇8
1、 让学生独立解答例3的三道题目
2、 讨论:
(1)这三道应用题之间有什么联系和区别?
(2)列方程解应用题的步骤是什么?
①审题;(弄清题意)
②设未知数;
③找出等量关系、列方程;
④解方程;
⑤检验、写答案;
(3)用方程解和用算术方法解,有什么不同?
方程解:A、用字母代表未知数参加列式与运算;
B、列出符合题中条件的等式;
算术解:A、算式中应全是已知数;
B、算式必须表示所求的未知数;
3、 练习:
① 114页“做一做”;
② 练习二十四的.第1、2题。
三、巩固练习:(补充练习)
1、①男生50人,女生比男生的2被多10人,女生多少人?
②男生50人,比女生2被多10人,女生多少人?
③全班50人,男生比女生的2倍多10人,男、女生各多少人?
2、①果园里的桃树和杏树共360棵,杏树的棵数是桃树的4/5。桃树和杏树各有多少棵?
②果园里的桃树和杏树共360棵,杏树的棵数比桃树少50棵。桃树和杏树各有多少棵?
四、作业:
联系二十四3、4、5、6题
《比的应用》教学设计 篇9
教学目的
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系。
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题。
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力。
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。
教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。
教学过程
一、复习准备。
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间。
(2)总价一定,每件物品的价格和所买的数量。
(3)小朋友的年龄与身高。
(4)正方体每一个面的面积和正方体的表面积。
(5)被减数一定,减数和差。
谈话引入:我们今天运用正反比例的知识来解决实际问题。
(板书:用比例知识解应用题)
二、探讨新知。
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?
1.学生读题,独立解答。
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系。
(二)反馈。
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米。照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈。
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人。如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的'高是第二个圆柱高的。第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结。
通过这堂课的学习,你有什么收获?
五、课后作业。
1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。实际每天加工2100个零件。实际用了多少天就完成了任务?
2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?
六、板书设计
《比的应用》教学设计 篇10
【教材分析】
《比的应用》小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、 “比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
【教学目标】
1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;
让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
【教具准备】
课前准备:学生查找有关事物各组成部分比的资料。
课上准备:小红旗。
【教学重点】理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。
【教学过程】
一.情境引入
老师有140个橘子,要分给幼儿园两个班的小朋友,你觉得怎样分才算合理呢?(平均分,这样才公平。)
经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?(不合理,因为每个人分到的就不一样多了。)
怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。(按人数比30 :20 = 3 :2进行分配。)
3、3 :2表示什么意思?
[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。
二、问题解决活动1:合作研究怎样按3 :2 这个“比”来分配
为了研究方便,老师给大家提供了一些小旗代替橘子。
(一)合作研究
1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)
大班 小班
第一次
第二次
第三次
第四次
第五次
大班分得()面小旗
小班分得()面小旗
2.学生合作研究
3.教师组织反馈交流
老师在巡视的`过程中,收集约三种不同的分法,分步展示在黑板上。
四人一组交流讨论要求
(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?
(2)观察、比较这几种分法,你能发现什么?
插问:你觉得分一次至少需要多少面小旗?为什么?
也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?
学生可能出现的方法预设:
分法1:每次分给大班3面,分给小班2面。
表扬:认真有耐心,十二次。
分法2:根据比的基本性质分,分的次数明显减少。
表扬:很会动脑筋,在分的过程中及时进行了调整。
分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。
表扬:很会联系实际情况,这种分法在实际生活中非常实用。
[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力
(二)验证
1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?
大班 小班
分得小旗的总面数
人数
平均每人分到小旗的面数
30 :20 = 3 :2 = 36 :24
2.师生一起小结:
(1)平均每人分到的小旗同样多吗?
(2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?
(3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?
[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。
(三)当我们知道总数的情况下的按比分配
1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?
2.四人一组交流,说说你想到的方法:
方法1:按比逐次分配。
方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小旗。
方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数
3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?
三、巩固练习
同学们表现得太出色了,能再帮老师一个忙好吗?好啊
我家有一块近似长方形的菜地,面积大约是984平方米,我想按3:5的比例种茄子和西红柿,茄子和西红柿各种多少平方米?
四、总结
今天的学习,你有哪些收获和感受?
1、通过这节课的学习你对比有了哪些新的认识?
2、把一些事物按一定的比分的时候,可以用哪些策略?
3、你在生活中还能找到比的应用的例子吗?
《比的应用》教学设计 篇11
教学内容:教材第24页例11
教学目标:
1、进一步加深对“倍”的含义的理解。
2、学会解答求一个数的几倍是多少的应用题,并能够正确进行解答。
3、初步学会分析数学信息与所求问题的联系,学会看线图。
4、培养学生动脑、动手、动口能力.
教学重点:
1、学会解答求一个数的几倍是多少的应用题,并能够正确进行解答。
2、初步学会分析数学信息与所求问题之间的联系,学会看线段图。
教学难点:
理解题目中关于两个数量之间倍数关系的语句。
教具学具准备
口算卡片、小黑板、投影仪、圆片。
教学过程:
一、复习旧知,知识迁移
1.出示口算卡片抢答.
2.口述算式和得数(出示投影片).
(1)3个2的和是多少?
(2)5个7的和是多少?
(3)2个5可以说成5的( )倍。
(4)3个4可以说成4的( )倍。
(数学教材本身具有很强的系统性,旧知是新授的前提与基础,新授是旧知的扩展与深化。,旧知复习是一种铺垫和前导,发挥着促进学生顺利理解和掌握新授内容的作用。)
3.导入新课
(1)学生摆圆片,第一行摆2个,第二行摆4个.
指导学生明确第一行摆2个圆片,第二行摆4个圆片,摆了2个4,所以第二行圆片的个数是第一行的2倍.
板书课题 求一个数的几倍是多少的应用题
二、探究新知.
教学例4同类的应用题(小黑板)
郭晓翔今年12岁,刘老师的年龄是郭晓翔的'3倍,刘老师今年多大年龄?
(1)学生读题,理解题意.
(2)引导学生找已知条件并板书:
已知条件:郭晓翔今年12岁
刘老师的年龄是郭晓翔的3倍
求得问题:刘老师今年多大年龄?
(3)教师提示:刘老师的年龄是郭晓翔的3倍,也就是刘老师的年龄是3个12,为了加深理解,今天我们用线段图来表示题意,用一条线段表示郭晓翔今年12岁,用3个线段的长表示刘老师的年龄,教师板书并同时演示 “应用题”画线段图.
(4)从线段图上你知道了什么?
引导学生明确:刘老师的年龄是郭晓翔的3倍,刘老师年龄大,郭晓翔年龄小,求刘老师的年龄也就是求3个12或12的3倍是多少.
(5)启发学生回答计算过程,并引导学生口述解题思路.
(教学中没有运用课本上的例题,而是选择了学生与老师年龄来讲授同类的知识,使学生意识到,在他们周围的某些事物中存在着数学问题,养成有意识地用数学眼光观察和认识事物的习惯。同时也为了激发聋生学习数学的浓厚兴趣。)
4.完成81页“做一做”的第2题.
妈妈买了4米白布,买花布的米数是白布的3倍,买了多少米花布?
(1)引导学生读题,找出已知条件和所求问题.
(2)通过移动投影片出示线段图,帮助学生分析题意和数量关系.
(3)学生列式计算.
三、全课总结.
通过学习知道了求一个数的几倍是多少,就是求几个这个数的和,用乘法计算.
四、随堂练习.
列式计算
(1)2个7相加是多少?
(2)7的2倍是多少?
(3)3个6相加是多少?
(4)6的3倍是多少?
五、布置作业.
1、小波有5元钱,小翔的钱是小波的3倍.小翔有多少钱?
2、旬阳县阳光学校男生人数是女生人数的3倍,女生有18人,男生有多少人?
3、旬阳县阳光学校有4个篮球,足球的个数是篮球的4倍,足球有多少个?
4、圆珠笔每支2元,钢笔的价钱是圆珠笔的6倍,钢笔每支多少钱?
(在给学生布置作业时,我往往会费一番心思,选择一些开放性的作业。使学生真切地体验到“生活离不开数学”,“生活中处处有数学”,运用数学知识能解决生活中许多实际问题,让学生体会到学数学“真管用”,提高学生学习数学的兴趣。促进学生观察生活、体验生活,从中发现问题,进而去解决问题,增进学生数学应用意识,提高解决实际问题的能力。)
教学反思:
1.教师将学生的生活与数学学习结合起来,使数学知识“生活化”。所谓“生活化”,即在数学教学中,从学生的生活经验和己有的知识背景出发,联系生活讲数学,把生活经验数学化,数学问题生活化,体现“数学源于生活,寓于生活,用于生活”的思想以此来激发学生学习数学的兴趣,从而对数学产生亲切感,增强了学生对数学知识的应用意识,培养学生的自主创新解决问题的能力。
2.数学学习是与生活实际密切相关的,让学生接触社会,贴近生活,给学生生活化的练习,才能更好地使他们了解数学知识在实际生活和工农业生产中的运用。理解“数学来源于生活,又服务于生活”这句话的深刻含义,形成学以致用、学为所用的思想,真正体会到学习“必须与生产劳动相结合”,并逐步提高用数学的眼光看待生活,增强应用意识及提高解决生活问题的效率。
《比的应用》教学设计 篇12
教学目标:
1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)
二、新授。
1、教学例2。
(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的.稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
①稀释液平均分成的份数:1+4=5
②浓缩液的体积:500×()=100(ml)
③水的体积:500×()=400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4
(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答:
①三个班的总人数:47+45+48=140(人)
②一班应栽的棵数:280×()=94(人)
③二班应栽的棵数:280×()=90(人)
④三班应栽的棵数:280×()=96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。
练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学追记:
本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。
《比的应用》教学设计 篇13
教学目标:
(1)知识目标:使学生理解按比例分配的意义。
(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。
(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。
教学重点:
分析理解按比例分配应用题的数量关系。
教学难点:
掌握按比例分配应用题的解答方法。
教具准备:
多媒体课件
教学过程:
一、学前准备
1、一个农场计划在100公顷的地里播种60公顷的大豆和40公顷玉米。大豆和玉米的播种面积各占这块地的几分之几?大豆和玉米播种面积的比是多少?
60÷100=3/5
40÷100=2/5
这里的3/5和2/5是什么意思?
2、60:40=3:2
你发现了什么?
二、探究新知
1、导入新课
在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?
2、教学例题2
一个农场计划在100公顷的地里播种大豆和玉米。播种面积的'比是3:2,两种作物各播种多少公顷?
(1) 学生独立思考,相互说说:要分配什么?3:2是什么意思?
(2) 探究问题解决的方法
(3) 交流
(4) 用分数怎么解答?
总面积平均分成的份数:3+2=5
播种大豆的面积:100×3/5=60(公顷)
播种玉米的面积:100×2/5=40(公顷)
(5) 用归一方法怎么解答?
3、归纳小结:按比例分配的应用题有什么特点?怎样解答?
4、学习例题3
(1) 小组尝试解答检验
(2) 全班交流、反馈
三个班的总人数:47+45+48=140(人)
一班应栽的棵数:280×()=( )棵
二班应栽的棵数:280×()=( )棵
三班应栽的棵数:280×()=( )棵
(3) 例题2和例题3有什么相同点和不同点
三、巩固练习与检测
1、水果店运来桔子和梨共840千克,梨和桔子的重量的比是3:2,桔子和梨各重多少千克?
2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。
3、教材53页的2、3题
四、小结(略)
五、作业:练习十三的第一、二、五题。
《比的应用》教学设计 篇14
《比的应用》教学设计
作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的《比的应用》教学设计,欢迎阅读,希望大家能够喜欢。
《比的应用》教学设计 篇15
设计说明
1.注重培养学生学习的自主性。引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
教学目标
1、经历多种方法解决“物物交换”问题的过程,体会解决问题方法的多样性,提高综合运用知识解决问题的能力。
2、在解决问题的过程中,列出含有未知数的比例,并自主探索解比例的方法,理解根据“两个内项的积等于两个外项的积,求比例中的未知项,”会正确解比例。
3、在生活中感受数学探索的乐趣,提高学生学习数学的兴趣。
教学重点:
使学生自主探索出解比例的方法,并能轻松解出比例中的未知项。
教学难点:
用比例的知识解决实际问题
教法学法
讲授法、讨论法、练习法、自主学习法
教学准备:
多媒体课件
教学过程:
一、回顾旧知,复习铺垫
1.上节课我们学习了有关比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?
2 .下面两个长方形的长和宽能组成比例吗?(白板出示长方形)
二、创设情境 引出新知
师讲《完璧归赵》的故事。秦王打算用什么来换和氏璧?其实这种物物交换的现象在我们现实生活中同样存在,学生举例,课前,老师就收到了这样一则信息,淘气是玩具汽车的收藏爱好者,笑笑喜欢收藏小人书,两人一商量,打算资源共享。引出新知——《比例的应用》
三、实践探究、精讲点拨
活动(一)“物物交换”,提出问题
呈现问题情境,引导学生读懂题意,并尝试提出问题。
他们经过商量,打算用4个玩具汽车换10本小人书, 14个玩具汽车,可以换多少本小人书?(设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
活动(二)尝试解决,体会联系
1、14个玩具汽车可以换多少本小人书?把你的想法记录在答题卡上。
2、 教师引导学生交流各自的想法,体会在“物物交换”的'过程中,玩具汽车的数量与小人书的数量之间存在的比例关系。
3、学生介绍每种方法的思考过程,强调尽管思路不同,但各种方法都围绕玩具汽车个数与小人书本数之间的比例关系而展开。
活动(三) 拓展策略 列比例解答
1、教师引导:假设14个玩具汽车可以换x本小人书,同学们能否根据题意列出比例?并说说你是根据哪两句话写出比例的,你是怎么想的?
2、学生尝试列式。
3、交流汇报写出比例的主要依据。
4、学生独立解比例。
5、汇报结果。
6、验算:把求出的结果代入比例验算一下,看等式是否成立。 (学生自主验算)
7、教师小结。解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
四、分层练习、生生过关
(1)完成练一练1、2题
(2)完成练一练3、题
五、拓展延伸、优化提升
1、根据小组评价结果编一道有关比例的应用题。
2、你能结合生活中的例子编一道有关比例的应用题吗?
《比的应用》教学设计 篇16
学习目标:
1、应用比的意义,解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。
学习重点:应用比的意义,解决按照一定的比进行分配的实际问题。
学情分析、教材处理:
六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。
教学准备:水杯、水、鲜奶、茶、秤、课件。
教学过程:
一、分配礼物
师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?
1、想一想
① 我将礼物的一半给男生、另一半给女生,你们说怎么样?
② 如果你觉得不太合理,那你们认为我应当怎样分呢
③ 调查班级男女生人数
④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?
如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……
⑤ 为什么这么多的分法你们都认为合理呢?,
师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。
【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的'假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的。】
2、分一分(教师拿出纸杯)
① 不知道有多少杯子,你建议怎么分呢?
② 依照学生的建议分杯。
教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果
③各种分杯建议的结果一样吗?为什么?
④这些分杯的方法哪一种最好?
师:方法没有最好,只有最适合,如果知道总的数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。
3、比一比
① 出示“两袋鲜奶”。直接给男生一袋、女生一袋
思考:这是平均分呢?还是按比分呢?(生答)
② 其实,平均分也是按比分的一种,这个比就是1:1。
③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)
【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;再让学生实际分一分,感受逐次分和按比分的结果相同;最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激情被又一次点燃。】
二、配制奶茶
1、制茶前明确:
A、 制作奶茶需要什么材料?
B、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?
C、那你们想想要按着怎样的比来配呢?谁来提议一下?
D、 谁理解这个比的含义了?
E、哪一个单位最合适呢?
2、回归具体的量
A、 顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?
B、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)
想一想,你要用什么办法解决这个问题?
【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
4、品尝奶茶后的思考
A、感觉怎么样?有什么改进的建议?
B、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗
师:我这一勺是多少你才认为可以在这个比中占1份呢?
C 、小结:的确, 几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?
D、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)
E、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)
【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】
三、回归生活
师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?
1、第一站:某大学后勤部
今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)
2、第二站:四丰农药加工厂
农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)
3、第三站:木材加工厂配料车间
下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。
【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】
4、第四站:人民法院民事审判厅
案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39 万元,两个人由于没事先约定,发生争执,提出诉讼。
① 你们想要什么条件呢?
② 材料提供:1、建厂时,李某出资5万元,王某出资3万元。
2、经营时,李某出勤10个月,王某出勤12个月。
3、创效益,李某签定6万元合同,王某签定8万元合同。
③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?
提供法律依据:合伙企业法第33条规定
“ 合伙企业的利润分配、按照合伙协议的约定办理;合伙协议未约定或者约定不明确的,由合伙人协商决定;协商不成的,由合伙人按照实缴出资比例分配;无法确定出资比例的,由合伙人平均分配。”
⑤ 现在你知道法官怎么分配财产的了吗?
【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】
四、总结反思
①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)
② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。
《比的应用》教学设计 篇17
将信息技术应用于语文教学,教师不仅要熟练掌握技术手段,更重要的是要深刻了解语文教育的本质,了解语文学科教学的根本目的,了解教学中的重难点所在,了解传统教学的优点和局限性,找准整合点,才能充分运用信息资源上出具有语文味的语文课,实现教学最优化。
信息技术教学手段在语文课中的运用,我们现在还处于初级阶段,实施过程中的缺陷是显而易见的。例如应该如何减少教师对于多媒体课件的过度依赖;如何才能使我们的语文课回归“语文味”,而不是“技术味”;如何才能在网络环境教学当中真正发挥大部分学生的学习主动性,不让他们成为形式上的“参与者”,实质上的“旁观者”等等。其实,归根结底就是如何把握好一个“度”的问题,这需要我们首先从思想上切实树立以人为本的观念,一切以学生的需要为根本出发点,让技术为人服务,而不是让人被技术牵着鼻子走。其次,需要在语文教学的具体过程中,从情境设置、突破重难点、学练结合、拓展延伸等环节上寻找两者的最佳整合点,提高语文教学的实效性。
综上所述,任何时候都应为了语文课的教学而进行教学手段的改革,而不应该是为了采用现代化教学手段而进行语文课堂教学。是否使用信息技术应是有目的的,它取决于教师的教学组织需要。
1、信息技术与语文学科整合是要将信息技术看作是进行语文学习的一个有机组成部分,它主要在语文学科的学习活动中有机结合使用信息技术,以便更好地完成学习目标。要达到“整合”的目标,老师不仅要熟练掌握技术手段,更重要的是要深刻了解教育的本质,了解语文学科教学的根本目的,了解教学中的难点所在,了解传统教学的优点和局限性,结合技术所提供的能力更好地进行教学活动。值得注意的是:整合不等于混合,它强调在利用信息技术之前,教师首先要清楚课程教学的目的、需求,以及信息技术的自身特点,设法找出信息技术在哪些地方能提高这堂课的学习效果,能使学生完成哪些用其他方法做不到或能做到却效果不佳的学习任务,然后才能决定用整合模式进行教学。并不是所有的课都适合与信息技术进行整合。如:20xx人教版试用修订本第二册的一篇课文——《敬畏生命》,写的是作者在印第安那州的一个湖边见到树不断飘送白色纤维——种子的情景,及由此洞察到的生命的来之不易和为了延续生命所做出的无私的奉献。课文的主题是歌颂生命的,而题目“敬畏生命”这个概念对于初一学生来说,是比较难以理解的,为了帮助学生更好的理解作者这样表达的用意,体会“敬畏生命”的含义,我就采用了生物学科,思想品德学科中有关生命知识的`内容进行了多学科的整合教学,并用信息技术制作成了一个以《敬畏生命》为主题的个人网站,让学生在我的引导下进入网站学习,这样就很轻松地完成了教学任务,达到了教学目的。
2.信息技术应作为学生学习知识的基本认知工具。在信息技术与语文学科的整合中,强调信息技术服务于课上的具体任务。学生以一种自然的方式对待信息技术,把信息技术作为在学习中获取信息、探索问题、协作解决问题的认知工具,并且对这种工具的使用要像铅笔、橡皮那样顺手、自然。这就要求学生有一定的信息素养。如,在网络课《敬畏生命》一课中,为了让学生更深刻地感受“生命的投资是豪华的、奢侈的,不计成本的”这个学习难点,设计需要学生上网查看人的生命形成的过程。这不仅能解决本文的学习难点,也从生物学角度让学生自己体会到生命的来之不易。在本课教学设计的“拓展”部分,为了让学生知道自己应“敬畏生命”,需要让学生上网查看一些有关学生**的新闻材料,看后,让学生在留言板上用最简洁的话输入自己的感想——自己应该如何对待生命,方便大家讨论。这两部分内容,如果学生没有一定的信息素养,就无法更快、更好地完成本课的学习内容。
3.能力培养和知识学习相结合的教学目标。信息技术与语文学科的整合要求,和其他课程整合一样:学生学习的重心不再仅仅放在学会知识上,而是转到学会学习、掌握方法和培养能力上,包括培养学生的“信息素养”。如,在《敬畏生命》一课中,我设计的学习目标如下:首先是语文知识和能力方面。让学生了解作者的情况,思考并讨论写作思路,再对文中的重点语句进行点拨,讨论对这些语句的理解;同时培养学生阅读能力及自主学习的能力。其次,在多学科整合方面。借助互联网上生物学科中有关生命形成的内容,让学生了解一些有关生命的知识,帮助学生更好的理解文中的重点语句。联系互联网上一些学生**的新闻资料,对学生进行生命意识和思想品德教育,帮助学生树立正确的人生观、价值观,进而珍视生命、热爱生命。再次,通过这堂课的学习培养学生网上获取知识信息的意识。这样的设计,不但让学生学到了语文课知识,也有了上网查寻语文方面的知识信息的意识。更有了网上也可获取其它知识信息的意识。把这种解决问题的技能逐渐迁移到其他领域。
4.“教师为主导、学生为主体”的教学结构。新型的教学模式,均强调“学生学习的主体性,要求充分发挥学生在学习过程中的主动性、积极性和创造性。学生被看作知识建构过程的积极参与者,学习的许多目标和任务都要学生主动、有目的地获取材料来实现。所以,我设计的信息技术与语文学科的整合课,都是教师进行引导、点拨,以学生自主学习为主的。这样,教学过程不再是学生被动接受知识的过程,而是学生主动探究、发展、创造的过程。如:《秋魂》(初中语文新教材第一册十四课)的教学设计中,利用多媒体,将秋天的肃杀、凄凉及文中所描写、歌颂的“秋实”、“秋色”、“秋味”、“秋风”、“秋叶”、“秋土”、“秋景”均用图片展示在学生面前,让学生自己从视觉角度去体会作者笔下秋之美,再适当配以舒缓的音乐——钢琴曲《秋日私语》,让学生朗读这篇散文诗,加深对课文的理解。教师只需在欣赏和朗读的基础上引导学生讨论,启发学生理解文中的“秋魂”,再引导学生学会诠释自己心目中的“秋魂”,甚至是“春魂”、“夏魂”,乃至“冬魂”。
5.个别化学习和协作学习的和谐统一。信息技术给我们提供了一个开放性的实践平台,利用它实现相同的目标,我们可以采用多种不同的方法。同时,信息技术与语文学科的整合强调“具体问题具体分析”,教学目标固定后,可以整合不同的任务来实现,每一位学生也可以采用不同的方法、工具来完成同一个任务。这种个别化教学策略对于发挥学生的主动性和进行因人而异的学习是很有帮助的。但社会化大生产的发展,要求人们具有协同工作的精神。同样,在现代学习中,尤其是一些高级认知场合(例如复杂问题的解决、作品评价等)要求多个学生能对同一问题发表不同的观点,并在综合评价的基础上,协作完成任务。而网络环境正为这种协作学习提供了很好的平台。如,在《敬畏生命》一课中,关于作者的情况,我先展示网上作者的有关资料,让学生快速阅读,并抓住主要信息点,再让学生在留言板上输入自己所掌握的作者的关键信息,用大屏幕把留言全部展示后,学生讨论谁输入的信息最重要;然后,教师点评。学习完课文内容后,我又让学生上网查看一些学生**的新闻材料;一段时间后,教师让学生在留言板上用最简洁的话输入自己看后的感想,自己应该如何对待生命。教师进行联网让学生开展讨论。通过讨论引导学生去思考,并得出该如何对待生命的结论。这种讨论正是协作式的学习。这样的协作学习不但能让学生在短时间内得出应掌握的关键内容。又能了解、掌握更多的思想和知识。
《比的应用》教学设计(精选15篇)
作为一名老师,常常要写一份优秀的教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。我们该怎么去写教学设计呢?下面是小编为大家整理的《比的应用》教学设计,欢迎阅读,希望大家能够喜欢。
《比的应用》教学设计 篇18
今天是我参加多媒体环境下的教学设计与资源应用》培训的第三天。今天的学习任务比较多,我在紧张和忙碌中度过了这一天。虽然感觉很紧张,但我感觉很充实。我忙碌着并快乐着。
今天我们主要学习了多媒体环境下的教学设计,主要内容包括认识多媒体环境下的教学设计,学习需要分析、学习者特征分析、教学内容分析、学习环境分析、教学目标的编写、教学方法的选择、教学策略的制定、教学媒体的选择、教学评价的设计和修改教学设计等10个内容。认真学习今天所学的内容,结合自己的日常教学,发现自己的教学设计存在着很多不足之处。比如前期分析、学习环境分析等都是我没有考虑到的。
在这个过程当中,我从理论上知道了多媒体教学的特征;知道了什么叫做教学媒体,以及为什么要用这些媒体,运用多媒体的依据及使用原则;理解了教学设计的过程,以及我们所用的授导型教学与探究型教学的区别于联系;学习了课件制作的方法及技巧,提升了多媒体应用的能力。所有内容以交流为重要手段,其中有反思;有讨论;有分享……使我们在彼此的交流中获得共同的提高。好的课堂教学离不开教师的精心设计,多媒体教学更是这样。多媒体环境下的教学设计是以传统教学设计为基础的,除了具有一般教学设计的特征外,更加注重了教学媒体的选择和应用,更加注重了学生的'学习指导,更加注重分析媒体、资源在教师的教和学生的学中作用,以达到最优化的教学效果。当我们选择了合适的教学媒体后,还要考虑教学媒体使用方式,遵循教学媒体的应用原则,找准教学媒体使用的最佳时机。多媒体教学设计应以教材为本,以学生为本,适合所教内容,适合学生的发展需求,体现出多媒体的优越性,但使用多媒体要适可而止,不要使用过多、过于繁杂。
知识爆炸和科学技术的飞速发展,要求教学活动必须提高效率,一支粉笔一本书的教学模式无法适应社会发展的要求,必须改变教育观念和教育手段。因此,我认为我们应抓住现有的、优化的、有效的资源,结合多媒体巧妙地设计教学流程,会使课堂大放异彩。
《比的应用》教学设计 篇19
教学目标:
1、使学生经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力;感受数学在日常生活中的应用,初步形成综合运用数学知识解决问题的能力。
教学重点:
在解决问题的过程中巩固两位数乘两位数的计算方法。
教学难点:
形成综合运用数学知识解决问题的能力。
教学准备:
小黑板
教学设计
一、情境导入
师:这几天,我们学习了两位数乘两位数的口算和笔算,这一节课,刘老师和同学们用两位数乘两位数的知识解决实际问题。先来看一下本节课的教学目标:
二、目标导学
1、经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
2、能灵活运用不同的'方法解决简单的实际问题,提高解决问题能力。(让学生看看教学目标,并让一个学生读一读
三、独立解答、小组合作解决问题
师:每当夜幕降临,街道上就亮起五彩缤纷的霓虹灯,我们的城市和建筑物在灯光的映射下显得更加迷人和漂亮,请同学们打开课本36页,我们一块来欣赏一下这迷人的夜景。(学生们看书36页夜景图)
师:夜景迷人吗?(生:迷人)通过欣赏夜景图,你都发现了哪些数学信息?
生一:48根灯条,每根71个灯泡
生二:一个广告灯一天的租金是45元,这条街上有29个同样的广告灯
生三:A型车限乘25人,B型车限乘8人,A租4辆型车正好。
生四:5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?
(通过让学生说数学信息,培养学生完整、正确表达的好习惯)
师:根据你发现的信息能提出哪些数学问题?
(学生各抒己见)
师:刚才同学们提了很多数学问题,都非常的好,今天咱们着重来解决这四个问题,把其余的放入问题口袋,再一节课再来研究。
出示四个问题:
1、一共有多少个灯泡?
2、29个同样的广告灯一天的租金多少元?
3、A型车限乘25人,B型车限乘8人,A租4辆型车正好。如果租B型车,需要多少辆?
4、5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?
师:同学们看看这四个问题,你会解答吗?下面请同学们在练习本上独立解答出来。
(学生独立解答,教师巡视大约10分钟)
师:刘老师看大部分同学做完了,而且发现没做完的同学的原因是做题过程中遇到了一点小麻烦,不要紧,下面咱们以小组为单位,把你的解题思路先在小组内交流一下,不会的地方提出来,同学们共同帮助你,待会再在班内交流。
(学生小组交流,教师巡视,看看各小组讨论情况)
师:各小组都讨论完了,下面请小组的同学上来汇报。
小组同学就各问题汇报,不对的和不完整的其余各小组及时纠正和补充。
师:刚才同学们讲的都很棒,特别是第3个问题和第4各问题。第3个问题同学们想的很周到,生活中经常遇到这样的问题,到底是舍去还是向前进一,根据生活实际情况解决;第4个问题同学们想到了那么多的解答方法,根据自己的情况选择喜欢的解答方法。
四、自主练习
教材37页第3题和第5题(学生独立解决,小组讨论订正,不会的再在班内交流)
《比的应用》教学设计 篇20
教学内容:课本第52页~53页的例2、例3,完成“做一做”的题目和练习十三的第1~4题。
教学目的:使学生学会并掌握按比例分配应用题的解答方法,能运用这个知识来解决一些日常工作、生活中的实际问题。
教学重、难点:按比例分配的实际应用。
教学过程:
一、导入
1、情境导入
老师今天向学校图书室借来50本图书准备分给我们班的男、女同学,请同学们说说该怎样分呢?(让学生自由发言,有可能得出男、女同学各分25本,实际上就是我们学过的平均分)
2、复习铺垫:我们班的男生30人、女生20人,人数不同,你说这样平均分合理吗?该怎样分才合理呢?今天我们就来研究象这样不是把一个数量平均分配,而是按一定的比例来进行分配。这种分配方法,通常叫做按比例分配。(板书:比的应用)
二、新授:
1、教学例1(自己改编):六年级向学校图书室借来图书50本,按3:2分配给男、女学生,男、女生各分得多少本?
对照课本例2的解题过程,让学生先独立解答,然后由各小组讨论,并提出问题来共同解答。
师引导:
(1)题目中要分配什么?是按什么进行分配的?(分配50本图书,男女生按3:2进行分配。)
(2)男女生分得本数的比是3:2,是什么意思?(就是说在50本图书中,男女可分3份,女生可分2份,一共是5份,男生占总数的5分之3,女生占总数的5分之2。)
(3)你能求出两种作物各播种多少公顷吗?怎样求?
引导学生进行自己解题。
2、引导学生再次阅读例2的解题过程,再次质疑
3、练习:做一做第1题。订正时说说解题时先求什么?再求什么?
4、教学例3。
(1)出示例3:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的.几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答。并且把书上的例3做完整。
(5)学生试做“做一做”中的第2题。
先让学生说一说奶糖、水果糖、酥糖和占500千克什锦糖的几分之几?
三、巩固练习。
1.做一做第3题。
2.练习十三的第1、3题。
四、作业。练习十三第2、4题。
《比的应用》教学设计 篇21
教学内容:教材第145页期末复习第13—16题。
教学要求:
使学生进一步认识本册教材里学过的应用题及其结构,加深理解对这些应用题数量关系的理解,认识一些应用题之间的联系和区别,能比较熟练地分析推理并正确地解答应用题,提高解答应用题的能力。
教学过程:
一、揭示课题
本学期我们学习了三步计算的应用题。这节课,我们复习本学期学过的应用题。(板书课题)通过复习,要进一步认识本册教材里的应用题的特点,更加熟练地分析应用题的数量关系,正确地确定要先算的中间问题,进一步认识一些应用题之间的联系和区别,能正确地解答本学期学过的应用题。
二、复习三步计算应用题
1.整理思路。
这学期我们学习了许多三步计算应用题。请同学们想一想,我们学过的三步计算应用题,解答时可按怎样的方法来想要先求出的中间问题?还可以按照怎样的方法来想要先求出的中间问题
2.做期末复习第13题。让学生读题理解题意。
提问:这两题有什么相同和不同的地方?两道题的数量关系是怎样的
指名两人板演,其余学生做在练习本上。集体订正。
提问:第(2)题还可以怎样解答
学生口答,老师板书。
小结:这两题都是求两商之差的`三步计算应用题,而第(2)题有一重复条件,所以也可以两步计算列式解答。
3.做期末复习第14题。学生读题,比较:两道题有什么联系和区别
第(1)题根据问题可以怎样想?根据条件又可以怎样想
第(2)题可以怎样想呢
指名学生说一说这两题的解题思路。指名两人板演,其余学生做在练习本上。集体订正。
小结:这两题都可以从条件想起,或者从问题想起。但第(1)题的已知条件、所求问题和第(2)题的互换,所以解题思路有所不同,但都有一个共同的中间问题:即6天装配电脑的台数要先求出来。
请同学们看下面一道题。
山边林场栽槐树和杉树各12行,槐树每行24棵,杉树每行30棵。栽的槐树和杉树一共多少棵
提问:这道题可以用几种方法解答
第一种方法怎样解答?(板书综合算式)这样做是怎样想的
第二种方法可以先求什么,再求什么?怎样列算式?(板书综合算式
谁来说一说,这道题为什么可以用两种方法做
四、课堂小结
这节课我们复习了什么内容?解答应用题可以用哪两种方法来分析
指出:解答应用题,可以根据条件来想能求什么问题,也可以根据问题来想需要什么条件,确定每一步算什么。在列式时,要根据条件和条件、条件和问题的联系,尽考每一步用什么方法算。在本学期学的三步计算应用题里,如果有一个条件是两个数量共同的条件,也可以用两种方法来解答。
五、课堂作业
1.期末复习第15题。要求先说一说解题思路,再列式解答。
2.期末复习第16题。要求能用几种方法就用几种方法解答。
《比的应用》教学设计 篇22
一、教学任务分析
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
三、教学过程分析
本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、
第一环节:情境引入
情景1:复习提 问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现
数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)
情景3:课本引例(蚂蚁怎样走最近)
设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议
内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
设计意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、
第五环节:方程与勾股定理
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的`中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解、
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:
第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。
《比的应用》教学设计 篇23
教学目标
1.使学生在理解的基础上认识归一应用题的结构特点,能正确地分析归一应用题的数量关系,掌握这类应用题的解答规律;学会列综合算式解答归一应用题。
2.培养学生学会有条理有根据的进行思考,提高分析、解答实际问题的能力。
3.使学生感受数学与生活的密切联系,激发学习兴趣;训练学生养成认真审题、动脑分析、仔细检验的好习惯。
教学重点
使学生了解归一应用题的基本结构和数量关系,会解答此类应用题。
教学难点
线段图的画法及检验方法。
教学过程
一、联系生活,激趣引入。
(课前,可以布置任务:让学生调查各自所用的学习用品的价钱)
1.教师:我想买些学习用品做奖品,但是不知道哪种好,价钱又合适。正好同学们做了调查,谁愿意介绍一下。
学生介绍,如:这种钢笔很好用,每支8元。
师问:我要卖6支,需要多少钱?用到了我们学过的哪一数量关系?
列式:8×6=48(元)单价×数量=总价
2.教师:刚才我看到××的铅笔很好看,他告诉我买这3支铅笔共花了4元5角,我想买这样的10支,要花多少钱呢?
此时,学生可能会答出也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师则问:要想知道10支这样的铅笔要花多少钱,就要先求出什么?(单价)
根据哪一数量关系求单价?(总价 ÷ 数量 = 单价)
3.教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试讨论,学习新知.
1.出示例3:学校买3个书架,一共用75元.照这样计算,买5个要用多少元?
(1)请学生自由出声读题,找出已知条件和问题
(2)小组讨论:尝试用线段图表示题目的条件和问题并分析题里的数量关系.
(3)教师提问:“照这样计算”是什么意思?按照题目的意思应该先算什么?再算什么?
(4)各组汇报,全班重点围绕“线段图的画法”、“照这样计算”的含义展开讨论:
“照这样计算”即按照3个书架是75元这样的单价去计算5个书架的价钱.每个书架就是75÷3=25(元)
(5)按照刚才的思路解题.
a.每个书架多少元?
75 ÷ 3 = 25(元)
b.买5个要用多少元?
25 × 5 = 125(元)
教师让学生独立列出综合算式并订正:75÷3×
5 教师提问:这道题怎样检验?请检验这道题.
教师指名完整地说说这道题的解题思路.
引导学生思考:如果把第三个条件改为“ 6个、9个、12个”,问题不变,仍求要用多少元?怎样列式?为什么?
2.将第三个条件改为“200元”,问题改为“可以买多少个书架?”成为例4.
出示例4:学校买了3个书架,一共用7 5元.照这样计算,200元可以买多少个书架?
让学生独立画线段图,理解题意.
重点讨论:线段图应该怎样改?这道题要先求什么?
③学生独立解题.
a.每个书架多少元?
75÷3=25(元)
b.200元可以买多少个书架?
200÷25=8(个)
④共同讨论:怎样列综合算式?为什么要给75+3加上小括号?
200 ÷(75 ÷ 3)
⑤教师提问:这道题怎样检验?
⑥引导学生说说自己的解题思路是什么?改为“400元”、“800元”、“1000元”,问题不变,应该怎样列式?
3.请同学们自己试做下面两道题。
①一辆汽车2小时行70千米.照这样计算,7小时行多少千米?
②一台磨面机5小时磨小麦250千克.照这样计算,磨1750千克小麦,需要几小时?
订正:
①a.每小时行多少千米?
70 ÷ 2 = 35(千米)
b.7小时行多少千米?
35 × 7 = 245(千米) 70 ÷ 2 × 7
②a.每小时磨小麦多少千克?
250 ÷ 5 = 50(千克)
b.磨1750千克小麦需要几小时?
1750 ÷ 50 = 35(时) 1750 ÷(250 ÷ 5)
请学生分别说说各题的解题思路是什么?
教师提问:比较例
3、例4和试做(3),每两道题之间的相同地方是什么?不同地方是什么?解题思路上有什么相同地方?
使学生明确:从应用题的结构上看,前两个条件相同(给出了总数量和份数),都有“照这样计算”的语句,第三个条件和问题不同.从解题思路上看,第一步都要求出单位数量(即每份数是多少、单价、速度等),教师点题,出示课题:归一应用题.
三、巩固练习,发展思维.
1.独立分析题目的条件和问题,找出先求什么,再列综合算式.
①小林看一本故事书,3天看了24页.照这样计算,7天可以看多少页?
②小林看一本故事书,3天看了24页.照这样计算,全书128页,多少天可以看完?
2.在正确的算式后面画“√”,并说出为什么.
①小明5分钟走300米,照这样的速度,他家离学校720米,要走多少分钟?
A.300 ÷ 5 × 720 B.720 ÷(300 ÷ 5)
C.720 ÷ 5 ÷ 300 D.720 ÷ 300 ÷ 5
②小明5分钟走300米,照这样的速度,他从家到学校要走 15分钟,他家离学校有多少米?
A.300 × 5 × 15 B.300 ×(15 ÷ 5) C.300 ÷ 5 × 1
5 (3)用不同的方法解答下面的应用题。
某食堂4天用大米800千克,照这样计算,1600千克大米够吃几天?
四、课堂小结,质疑问难.
这节课学习的是什么?应用题的结构有什么特点?(先求出一份数是多少)解题的思路是什么?解题时应该注意什么问题?同学们还有不明白的问题吗?
五、布置作业.
1.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,12个同学一共可以糊多少个纸盒?
2.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,要糊154个纸盒需要多少个同学?
教学反思:
“归一问题”实际上是数量间成正比例关系的问题。这种问题通常用算术方法解答比较简单。同学掌握了算术解法,可以巩固前面学过的常见数量关系,又为以后学习比例、函数打下初步基础,也为以后学习较复杂的归一问题做了准备。归一问题是在除法简单应用题的基础上发展起来的'。关键是先用除法求出“单位数量”是多少,然后把它作为固定不变的数量(题里一般都说明“照这样计算”),进行推算。
一种类型是求出单位数量是多少后,再求几个这样的单位数量是多少;第二种类型是求出单位数量是多少后,再求有几个这样的单位。在教学这种应用题时,小标题只要求同学口述,不必写出来。通过例题,使同学弄清怎样利用线段图把已知条件和问题表示出来。在第五册是老师和同学一起利用线段图分析数量关系,这里开始训练同学独立画线段图,为今后借助线段图这种直观手段进一步学习更复杂的应用题打下基础。根据归一题的特点,用两条线段表示较清楚。如第一题,第一条线段先表示出3个书架一共用75元。第二条线段再表示5个书架用多少元。两条线段中,要用同样长的线段表示每个书架的单价。教材中突出引导同学想,要求5个书架用多少元要先算什么,弄清解答归一题的关键是先求出单位数量(在这里具体地说是单价)。例8先分步列式解答,然后再列综合 算式解答。这是为了能跟线段图配合,便于同学分析数量关系。以后应使同学既会用分步列式解答,又会用综合算式解答。但同学做题时除了有指定要求的以外,不限制同学必需用哪一种方法解答。
第二题仍是买书架的问题,以便于同第一题的数量关系和解法进行比较。通过线段图可以清楚地看出前两个条件完全相同,只是第三个条件和问题不同。因此解答这种 应用题的关键也是先求出单位数量(单价)。这样就可以使同学更好地掌握这种题的数量关系和解答方法。在做完两道题之后,引导同学对两个例题进行比较,找出它们的 一起点,使同学弄清它们的前两个条件相同,明确解题的关键都是先求出单位数量。
在“做一做”里,让同学仿照例题的解答方法独立完成,使同学熟悉这种应用题的数量关系。
为了突出解答两种归一题的第一步都要先算出“单位数量”,教材的编排注意把两种题对比出现(如第7、9、10题)。第8题通过表格形式 渗透函数思想,使同学通过解答初步体会到路程是随着时间的变化而变化的。另外,还注意带着复习已学的两步应用题、口算以和混合运算等内容。 “归一问题”实际上是数量间成正比例关系的问题。这种问题通常用算术方法解答比较简单。同学掌握了算术解法,可以巩固前面学过的常见数量关系,又为以后学习比例、函数打下初步基础,也为以后学习较复杂的归一问题做了准备。归一问题是在除法简单应用题的基础上发展起来的。关键是先用除法求出“单位数量”是多少,然后把它作为固定不变的数量(题里一般都说明“照这样计算”),进行推算。
《比的应用》教学设计 篇24
课题:
分数的简单应用
科目:
数学
教学对象:
三年级
课时:
2课时
教学内容分析:
本节课是在学生初步认识了分数之后,学习用分数解决一些简单的实际问题,主要先让学生了解把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示,加深学生对分数含义的理解,学会用简单分数描述一些简单的生活现象;接着通过直观操作与已经掌握的分数含义相结合解决简单的实际问题,培养了学生解决问题的能力,发展抽象概括和类比推理能力,发展学生的数感。让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动的经验。
教学目标:
1、通过说一说,分一分,画一画等数学活动,让学生经历“整体”由“1个”到“多个”的过程,指导把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能运用分数的相关知识,描述一些生活现象;发展抽象概括和类比推理能力,发展学生的数感。
3、让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动经验。
学习者特征分析:
1、学生是9-10岁的儿童,思维活跃,课堂上喜欢表现自己,对数学学习有浓厚的兴趣;
2、学生在学习中随意性非常明显,渴望得到教师或同学的赞许;
3、学生在平常的生活当中有“自己的事情自己做”的经历和体验,比如自己整理书包、系红领巾等;
4、学生已对数学有一定的认识和了解,对分数有了一定的认识;
5、学生已经学习了分数的简单计算;
6、学生对于分数有了自己的理解,对于整体和平均分有了一定的认识和理解,知道了一个整体的平均分,用分数表示和计算。
教学策略选择与设计:
在教学中,首先我通过让学生对比发现一个正方形和4个正方形的区别和联系,循序渐进地让学生体会“1”是一些物体时,如何用分数表示整体与部分关系,初步形成认识:与“1”是一个物体是相同的,平均分成几份分母就是几,取其中的几份分子就是几,取几份就有几个1份那么多。
接着,出示苹果图,让学生进一步巩固把多个物体看成一个整体的数学思维,并且让学生自己动手画一画,分一分,亲身经历“整体”由“1个”到“多个”的过程。在分苹果的过程中,有意识地进行拓展,让学生了解到“总数一样,平均分的份数不一样,每一份所用的分数表示也不一样”和“总数不一样,平均分的份数一样,每一份的数量也不一样”,培养学生的逻辑思维能力。
在整节课教学中,注重让学生用数学语言描述动作过程和结果,通过语言描述可以将学生的思维过程外显,加深对分数含义的理解。
教学重点:
知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
教学难点:
从份数的角度理解“部分”与“整体”的关系和平均分。
教学过程:
一、创设情景,揭示课题
谈话:让学生举例说分数及表示的意思,比较分数的大小,做几道分数的加减法的题,复习分数加减的规律。
小结:把一个物体平均分成几份,分母就是几,取其中的几份,分子就是几。
师:这节课,我们继续学习分数。
二、探究体验,经历过程
1、初步感知整体由“1个”变成“多个”。
(1)黑板出示例1(1)左侧的内容
①让学生用分数表示涂色部分并说说4/1表示什么意思。
②如果涂色部分有2份呢?用分数怎么表示?3份呢? (2)课件出示例1(1)右侧的内容,动态演示剪的过程。 ①课件演示将一个正方形平均分成了4个正方形。
问:涂色部分是其中的几份?这样的一份还能用分数表示吗?
②这样的2份是4个正方形的几分之几呢,3份呢?
③对比两个4/1,它们所表示的.意思是否一样?
小结:不仅可以把一个正方形平均分,还可以把4个正方形看成一个整体平均分。其中的1份都能用4/1表示。
2、从份数角度理解部分与整体的关系
课件出示第100页例1(2)的内容,动态演示平均分的过程。(有6个苹果,平均分成了3份)
① 其中的1份是苹果总数的几分之几?你能说说这个1/3表示的意思吗?你是怎么知道每一份用1/3表示的?
②1份是苹果总数的1/3,2份是苹果总数的几分之几呢?3份呢?
3、自主探索,加深认识
出示学具(苹果图),还可以怎么分?
(1)学生独立思考,自主探索
(2)学生展示,汇报交流
(3)对比提升,为什么同样是一份,却用不同的份数表示? (平均分的份数不一样)
4、比较辨析,提升认识 出示课件
①你能用分数表示其中的一份吗?
②为什么都能用1/3表示?(都是把苹果平均分成了3份,取其中的1份?)
② 每一份各有多少个苹果呢?(2个、3个、4个)
④为什么同样都是1/3,每一份的数量却不一样? (苹果的总数不同,所以每一份的数量也不同)
三、巩固练习,深入理解
1、完成教材第100页“做一做”的第1题。重点让学生说说分数表示的意义。
2、完成教材第100页“做一做”的第2题。 学生独立完成后,集体交流。 (将9个△平均分成了几份?每1份有几个△,2份呢?)
3、完成教材第100页“做一做”的第3题。 同桌合作学习,动手摆一摆,并说一说想的过程。 (把这个10根小棒平均分成5份,其中的1份是2根,2份就是4根。)
4、完成教材第102页练习二十二第2题。学生独立完成,集体交流,让学生结合图说一说分数表示的意义。
四、课堂小结 这节课你有什么收获?
教学评价设计:吕家岘小学办公室主任对我的这节课作如下评价: 首先白丽老师作为一名刚刚走上工作岗位的新教师,在第一次公开课上能达到这个教学水平还是不错的,当然除了优点以外,还存在一些不足之处,比如整个课堂气氛的创造上还不够,还要进一步下功夫,另外课堂的把握上也还存在一些问题,希望在以后的教学过程中多向有经验的老教师学习,多听老教师的课。 板书设计: 分数的简单应用
6个苹果平均分成3份, 1份是苹果总数的 2份是苹果总数的
12÷3=4(人) 12÷3=4(人) 4×2=8(人)
答:女生有4人,男生有8人。
教学反思:分数的简单应用是在学生学习了分数的认识、比较分数的大小和分数计算的基础上而解决实际问题的内容。这节课从学生的认知规律出发,符合三年级学生的年龄特点。教师应该认真分析教材内容,把分数的意义、分数的计算和解决问题融为一体。把解决问题的方法潜移默化的渗透给学生。
1、激发兴趣,主动探究。
学生有了兴趣就会产生强烈的求知欲望,就能积极主动地参与活动,成为学习的主体。教师应该抓住小学生好动的特点,充分利用操作材料,组织学生动手操作,通过摆一摆、画一画、算一算、说一说等活动,促使学生耳、口、手、脑等各种感官并用。教师参与到学生当中引导学生由浅入深逐步探究,营造了宽松和谐的学习氛围,激发了学生学习兴趣。
2、问题引导,落实目标。
紧紧围绕教学目标设计教学活动,教学中教师把学生当作研究者、发现者。课堂上教师以问题为引导,让学生自由地思考探究、操作交流。学生亲身经历数学知识的形成过程,经历知识从形象到表象再到抽象的过程。从中体验解决问题的思想和方法。例如:三分之一是女生,三分之一表示什么意思?三分之二是男生,三分之二是什么意思?进一步理解分数的意义。再如:请你用自己喜欢的方式求出男、女生的人数,再以小组为单位和小组同学说一说你是怎么想的?通过交流的过程学生将图形、语言、算式三种表征进行有机结合,在解决问题的同时加深了对分数的理解。
3、大胆放手,能力培养。
《数学课程标准》强调:“要鼓励学生独立思考、自主探究,为学生提供积极思考与合作交流的空间。”本节课教师充分利用学生已有的知识经验,给学生提供自主学习和合作交流两种学习方式。给予了学生自己操作、主动探究的空间,学生真正的成为了学习的主人,真正的掌握了学习的主动权,真正把课堂还给了学生。学生在小组合作讨论、全体汇报交流时,思维相互碰撞,智慧相互启迪,有的学生用小棒摆一摆,有的学生画一画,有的学生用算式计算,且算法多样。达到不同学生之间的资源共享,优势互补的目的,既培养了学生的合作意识,又培养了学生的探究能力。学生体验到成功的喜悦。
4、本节课抓住了学生的身边生活去学习数学,应用数学。把教材的内容与现实紧密结合起来,符合学生的认知特点。同时也消除了学生对数学的陌生感。
通过本节课也看到了自己需要努力的方向。譬如时间安排前松后紧,有一点拖堂;教师语言还不够精炼,上下衔接不流畅。但今后的教育道路还很长,我会不断努力,每一节课都会与我的学生共同成长。