小学五年级数学上册教案

短文网

2025-09-09教案

短文网整理的小学五年级数学上册教案(精选16篇),快来看看吧,希望对您有所帮助。

小学五年级数学上册教案 篇1

设计说明

本节课是从学生已有的生活经验和知识背景出发,促使学生对这些分数逐步归纳内化,从而上升到数学层面来认识它们的意义及特点。本节课教学在设计上有以下特点:

1.创设生动有趣的分饼情境,激发学生的学习兴趣。结合估一估的猜测活动,让学生在动手操作的过程中,通过折一折、剪一剪、涂一涂、画一画,体验真分数、假分数和带分数的产生过程,并辅以教具演示及课件动态演示,使学生由具体形象思维逐步建立表象,抽象出数学概念。

2.注重对学生能力的培养。在教学中引导学生说出不同的分饼方法,充分体验分饼策略的多样化,利用数形结合,让学生了解假分数、带分数和1的关系,有效地培养学生动手操作能力及数学思维,使他们体验到学习数学的乐趣。

3.分组进行分饼活动,从课前预设到学生应会通过预习及课上其他组同学的汇报感受不同的分饼方法及相应分数的产生,实际上还是引导学生全员参与整个活动过程,使学生的体验更真切、丰富。

课前准备

教师准备:PPT课件

学生准备:圆片、彩色笔、剪刀、直尺

教学过程

创设情境,导入新课

课前播放动画片《西游记》主题曲。

师:同学们看过《西游记》吗?唐僧师徒四人,你最喜欢谁?为什么?

预设生1:我最喜欢猪八戒,因为他呆头呆脑,十分可爱。

生2:我最喜欢沙僧,因为他很实在。

生3:我最喜欢孙悟空,因为他本领大,能降妖除魔。

生4:我最喜欢唐僧,因为他是师傅。

师:唐僧师徒四人在西天取经的路上遇到很多困难,有些是他们自己解决的,有些是观世音菩萨帮他们解决的。今天,咱们也来帮他们解决一个问题,有关“分饼”的问题。(板书课题:分饼)

设计意图:充分利用教材的情境图,创设一个接近学生喜好的动画情境,调动学生的兴趣。让学生帮唐僧师徒解决“分饼”问题,激发学生的求知欲,为后面的教学埋下伏笔,紧扣主题。

动手操作,探究新知

1.分饼,质疑。

唐僧遇到的问题:唐僧有8张一样大的饼(课件出示8张饼和唐僧的头像),平均分给师徒4人,每人分得多少张饼呢?你能用数学算式表示吗?(学生列式,课件出示算式)

师:沙僧也遇到一个问题,把1张饼平均分给师徒4人,怎么分呢?(课件出示1张饼和沙僧的头像)

预设生:把1张饼平均分成4份,折叠再折叠,每人分得1份。(课件演示动画,呈现把1张饼切成大小一样的4份,每人1份)

师:现在猪八戒遇到了一个难题:把5张饼平均分给师徒4人,怎么分呢?请同学们帮猪八戒想一想。(课件出示5张饼和猪八戒的头像)

2.探究5张饼平均分给4个人的方法。

(1)估一估。

每人分到多少张饼?

(2)以小组为单位探究分饼的方法。

以圆片代替饼,动手折一折,涂一涂,画一画,剪一剪,分一分。

(3)汇报结果。

老师请一些小组的同学上台演示,边做边说。(实物投影展示)

方法一:把1张饼平均分成4份,每人分到1份,每人分到张,按照这样的方法,再分第2张饼,第3张饼,第4张饼,第5张饼。最后每人分到5个张,即张。

方法二:把5张饼重叠放在一起分,平均分成4份,每人分到5张饼的,就是张。

方法三:先分4张饼,每人1张,再分剩下的1张饼,把剩下的这张饼平均分成4份,每人分到1份,即分到张,合在一起是1张又张。

(4)质疑。

师:从图上看,每人分到了,这是怎么回事呢?

生:这可不是1张饼的,而是5张饼的;也就是说,的整体“1”是5张饼,不是1张饼。5张饼的等于1张饼的,所以,5张饼的也是张饼。

设计意图:让学生通过想一想、说一说、剪一剪、分一分等活动,感知数学、体验数学,体现学习的`自主性和学生的主观能动性,演示不同的方法,经历认识分数的产生过程,体验成功的喜悦。

3.明确带分数的读写法。

(1)带分数的写法。

师:1张又张,用分数怎么表示呢?

师演示其写法:先写整数1,表示1张饼,再紧挨着整数写分数,分数线要与整数中间对齐,表示张饼。可以写作:1。

(2)带分数的读法。

读作:一又四分之一。

4.认识真分数、假分数和带分数。

师:(指着两组圆片)这两组圆片分得一样多吗?这个分数有什么特点?1与呢?这两个分数相等吗?这两个分数有什么特点?

生汇报交流,师点出分数的名称。

生1:的分子小于分母。

明确:这样的分数是真分数。(谁来说说还有哪些真分数?举例)

生2:的分子大于分母。

明确:这样的分数是假分数。(谁来说说还有哪些假分数?举例)

生3:1是整数加真分数。

明确:这样的分数是带分数。(谁来说说还有哪些带分数?举例)

5.探究真分数、假分数和带分数的特点,明确真分数、假分数和1的关系。

师:下列分数哪些是真分数,哪些是假分数?请将它们填在相应的方框里。

小学五年级数学上册教案 篇2

教学要求:

1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

2、比较正确地计算小数乘法,提高计算能力。

3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。

教学重点:

小数乘法的计算法则。

教学难点:

小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

教学用具:

投影、口算小黑板。

教学过程:

一、引入尝试

1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8 ×1.2)

2、尝试计算

师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?

如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

示范:

1. 2扩大到它的10倍1 2

× 0. 8扩大到它的10倍× 8

0.9 6缩小到它的1/100 9 6

3、1.2×0.8,刚才是怎样进行计算的?

引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。

4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?

5、小结小数乘法的计算方法。

师:请做下面一组练习

(1)练习(先口答下列各式积的小数位数,再计算)

(2)引导学生观察思考。

①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)

③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)

通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

(4)专项练习

①判断,把不对的改正过来。

0.0 2 4 0.0 1 3

× 0.1 4 × 0.0 2 6

9 6 7 8

2 4 2 6

0.3 3 6 0.0 0 0 3 3 8

②根据1056×27=28512,写出下面各题的积。

105.6×2.7= 10.56×0.27= 0.1056×27= 1.056×0.27=

三、应用

1、在下面各式的积中点上小数点。

0 . 5 8 6 . 2 5 2 . 0 4

× 4. 2 × 0 . 1 8 × 2 8

1 1 6 5 0 0 0 1 6 3 2

2 3 2 6 2 5 4 0 8

2 4 3 6 1 1 2 5 0 5 7 1 2

2、做一做:先判断积里应该有几位小数,再计算。

67×0.3 2.14×6.2

3、P.8页5题。

先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

四、体验

回忆这节课学习了什么知识?

五、作业:P8 7、9题。P9 13题。

小学五年级数学上册教案 篇3

教学目标:

1、根据除法中的商不变性质,利用知识的迁移规律,使学生理解比的基本性质。

2、通过学生的自主探讨,掌握化简比的方法并会化简比。

3、初步渗透事物是普遍联系和互相转化的辩证唯物主义观点。

教学重点:

理解并掌握比的基本性质。

教学难点:

应用比的基本性质把比化成最简单的整数比。

教学过程:

一、复习引入

1、复习比和分数、除法之间的关系,孕伏新知。

2、提问:比和除法,比和分数之间有那些联系?

3、出示三个分数:3/4、6/8、9/12. 问

(1)这三个分数相等吗?为什么?

(2)可写成比的形式分别是什么?

(3)这三个比相等吗?为什么?

(3:4=6:8=9 :12)

(4)这三个比是怎样变化的.?有什么规律?

(5)回忆:除法有什么性质?分数有什么性质?他们的内容是什么?

引导学生根据商不变的性质和分数的基本性质,猜想:比有什么性质?小组交流。

二、合作探究,学习新知

1、指名回答小组交流的结果。引导学生用语言表述

比的前项和后项同时乘或除以相同的数(0除外),比值不变。这叫做比的基本性质。

2、说明:利用商不变的规律可以进行除法的简算;根据分数的基本性质,可以进行分数的约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。

3、讨论。你怎样理解最简单的整数比这个概念?

学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项应该是互质数。

4、请个别学生举一个最简单的整数比。

5、把下面各比化成最简单的整数比。(强调化成最简单的整数比互质)

(1)问:怎样把一个整数化成最简单的整数比?

14:21 54:18

(2)引导学生总结整数比的化简方法:用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。

6、化简下列各比

(1)问:这两题比的前项、后项是什么样的数?怎么把分数比化成最简单的整数比呢?

1/10:3/83/5:5/8

(2)引导学生小结分数比的化简方法:比的前项后项分别乘以它们分母的最小公倍数,就化简成最简整数比。

7、化简下列各比

(1)这两题比的前项、后项是什么样的数?怎么把小数比化成最简单的整数比呢?

1.25:4 2.7:18

(2)由学生小结小数比的化简方法:先将小数化成整数,再化简成最简单的整数比。

师生共同总结化简比的方法:先要利用比的基本性质,把不是整数比的化成整数比,再把不是最简整数比的化成最简整数比。

8、练习:化简比

60:24 5/8:7/245/4:0.75

三、巩固练习

1、把1小时:45分钟化简后是1:45。

2、鞋厂生产的皮鞋,十月份生产的双数与九月份生产的双数的比是5:4。十月份生产了20xx双,九月份生产了多少双?

四、课堂总结

比的基本性质是什么?它是根据什么来的?利用比的基本性质可以干什么?化简比的方法是什么?

六、布置作业

自主练习5、7、8

小学五年级数学上册教案 篇4

单元导学

本单元的主要内容有:比较图形的面积;认识平行四边形、三角形与梯形的底和高;平行四边形、三角形和梯形的面积计算方法;解决有关面积计算的实际问题。

多边形的面积是《数学课程标准》图形与几何领域中的重要内容,也是本册教材的重点和难点知识,是小学生应该掌握的一项基本技能。

学生在以前的学习过程中已经初步认识了长方形、正方形、三角形、平行四边形和梯形,学习了面积与面积单位及长方形、正方形的面积等有关知识,初步感受了解决有关图形面积计算问题的思维方式,即用面积单位去度量一个图形的面积。本单元在此基础上展开图形面积计算公式的探索,解决有关图形面积与组成图形要素之间的数量关系的问题。

备内容

比较图形的面积(1课时)→比较图形面积大小的基本方法;体验图形形状的变化与面积大小变化的关系

认识底和高(1课时)→认识平行四边形、三角形、梯形的底和高;会用三角尺画平行四边形、三角形与梯形的高;能画出指定底和高的平行四边形、三角形与梯形

多边形的面积

探索活动:平行四边形的面积(2课时)→探索平行四边形面积的计算公式;运用平行四边形面积的计算公式解决实际问题

探索活动:三角形的面积(2课时)→探索三角形面积的计算公式;运用三角形面积的计算公式解决实际问题

探索活动:梯形的面积(1课时)→探索梯形面积的计算公式;运用梯形面积的计算公式解决实际问题

备目标

知识与技能

1.借助方格纸直接判断图形面积的大小,初步体验数方格及割补法在图形面积探索中的应用。

2.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

3.掌握平行四边形、三角形、梯形面积的计算公式。

过程与方法

1.通过动手操作、实验观察等活动,体验图形形状变化与面积大小变化关系,发展空间观念。

2.经历利用割补、转化等方法探索图形面积计算公式的过程,理解并掌握平行四边形、三角形和梯形的面积计算公式,体验转化的数学思想。

情感、态度与价值观

1.在数学活动中,培养学生的创新意识。

2.在具体的操作探究活动中体验学习数学的乐趣。

3.在探索图形面积的计算公式的过程中,获得成功探索问题的体验。

备重难点

重点

1.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

2.掌握平行四边形、三角形、梯形面积的计算公式。

难点

1.能画出平行四边形、三角形、梯形的高。

2.运用平行四边形、三角形和梯形的面积计算公式解决实际问题。

小学五年级数学上册教案 篇5

教学内容:

北师大版五年级上册第80、81页。

教材分析:

“鸡兔同笼”问题是我国古代的一道数学趣题,最早出现在《孙子算经》中。它集题型的趣味性、解法的多样性、应用的广泛性于一体,是实施开放式教学的好题材。

教材中要求掌握3种解题方法(逐一列表法、跳跃列表法、取中列表法),要求学生在教师的指导下,通过小组合作,运用假设举例列表等方法,寻找解决的结果。教学中,要求教师不宜补充其他解法,以免分散学生的注意力。

学情分析:

五年级学生已经学了一些用列表法解决问题的策略,?还有一些学生在兴趣小组、奥数等的学习中已经学过“鸡兔同笼”问题。学生的程度参差不齐。学生的思维活跃?敢想、敢说,有一定的小组合作经验。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用列表、假设的方法解决“鸡兔同笼”问题,通过列表尝试和不断调整的过程,从中体会解决问题的一般策略—列表,让学生学会从不同角度分析,掌握解题的策略与方法。

3、在解决问题的过程中,培养学生的迁移思维能力。合作、交流等学习品质和能力。

教学重点:

让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

教学难点:

运用学到的解题策略解决生活中的实际问题。

教学过程:

一、创设情境

(出示儿歌)鸡兔同笼不知数,三十六头笼中露,数数脚有一百只,几只鸡来几只兔?

师:这就是我国民间的三大趣题之一,最早记载在1500年前的数学名著《孙子算经》中(课件出示古书动画打开书出现原题),原题是这样的,请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁知道,这是一个什么问题?(鸡兔同笼问题,课件出示鸡兔同笼情境图)这节课我们就来研究中国历的数学趣题

“鸡兔同笼”。(板书:鸡兔同笼)

师:谁能用自己的话说说这道题的意思?(鸡兔同笼,上面数有35个头,从下面数共有94条腿,问鸡、兔各有几只?)

师:这道古代趣题你能解决吗?我们还是化繁为简,从简单入手吧!

二、探索新知

出示例题:鸡兔同笼,有20个头,54条腿,鸡兔个有几只?

1、明确问题,独立思考通过读题你获得了那些数学信息?这道题里还有隐藏的数学信息吗?

同学们先来猜一猜鸡、兔可能各有多少只?(找一两个同学猜测)

到底是几只鸡几只兔呢?

2、小组合作交流。

师:小组讨论,要解决这个问题可以用什么方法?

师:把你们的方法写在纸上。可以使用桌子上老师提供的表格。

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师:腿多了,减少谁的只数,增加谁的只数?

师:你们是怎么想到这种方法的?

生:在旅游费用的租车、租船中,我们就是用列表的方法找出答案,这题的类型跟那差不多,我们想,也可以用这种尝试列表的方法找出答案。

师:这种列表法有什么特点?

生:鸡一只一只地增加,兔子一只一只地减少。

师:谁能给这种列表法取个名字?

生:逐一列表法。

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从1只鸡,19只兔直接跳到6只鸡,14只兔。最后也得到了13只鸡,7只兔。

师:腿的总条数多了或少了你们组是怎么调整的,也就是你们的调整策略是什么?

生:腿多了,我们减少兔子的只数,腿少了我们增加兔子的只数。

师:我们也给这种方法取个名字,好吗?

生:跳跃列表法。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师:你能给这种方法取个名字吗?

生:取中列表法

师(展示台展示三张表格)同学们三张表格都能很好地求出鸡、兔的只数,哪种方法最捷径。

生1:取中列表法直取中间数减少了“试”的过程能更简便、快捷地找到答案。

生2:我认为应该三种列表法结合使用,先用取中列表法减少一半的猜测数字,再用跳跃列表法加快猜测的速度,在接近答案时用逐一列表法。

生3::那是数字大时使用,数字小时,还是使用逐一列表法好,它答案不会重复、不会遗漏。

小组4:(展示台展示)我们组认为还是采用列方程法最简便、快捷,先假设鸡的只数为ⅹ,兔子的只数就为20—x。

列式是:2x+4(20—x)=54解得x=13兔子的只数是7、师:你们小组的同学很聪明,但这种方法我们暂不讨论,有兴趣的同学,课后和老师一起向他们请教,好吗?

师:还有哪些组没有汇报?

小组5:我们组也是用列式法算出鸡、兔的只数(展示):假设全部是鸡

(54—20×2)÷(4—2)求出兔7只,鸡13只。

师:这种方法,我们也留在课后私下交流。

师:我们的祖先很聪明,为我们的祖先感到骄傲,其实老师也为你们感到骄傲,你们在这么短的时间内就想出了这么多解决问题的办法,你们很了不起!

四、方法应用,巩固新知

过渡语:、“鸡兔同笼”问题传到日本,日本人称它为“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”问题有什么相似之处?

1、师:除了“龟鹤问题”与“鸡兔同笼”问题类似以外,我们在实际生活中还有很多类似的

问题。(出示)学校举行乒乓球比赛,有单打和双打。12张乒乓球台上共有34人同时在打球。问:正在进行单打和双打的台子各有几张?

问:这题是否属于“鸡兔同笼”问题

2、师:我们班同学很聪明,会解“鸡兔同笼”类型的问题,那聪明的你,是否会出一道“鸡兔同笼”类型的题,考考其他组的同学呢?

3、(出示)一百个馒头,一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几人?

师:有兴趣的同学,课后思考这一趣题。

四、小结交流

今天这节课,我们跨越了1500多年的历史,即探讨了中国古代的数学名题,又解决了我们身边的一些数学问题。经过这节课,你有哪些收获?

小学五年级数学上册教案 篇6

[教学内容]

打扫卫生(第4~6页)

[教学目标]

1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

[教学重点]

除数是整数,商是小数的小数除法的计算方法。

[教学难点]

除得的结果有余数,补“0”继续除。

[教学过程]

一、复习导入

课件出示情境主题图:

开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

引导学生列出算式并独立计算:18.6÷624÷4

计算后说一说整数除法与小数除法的异同。

二、对比中探索,交流中生成

师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

教师把情境题中的18.6改成18.9,把24改成26。

1、初步尝试,发现问题。

请你尝试计算这两题,你发现了什么?

2、独立思考,尝试解决。

师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

3、讨论交流,异中求同。

(1)在小组内汇报自己的计算方法。

(2)展示汇报。(可能出现第4页中几种不同的方法)

(3)对比这几种方法:有什么相同的地方?

引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9角里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。

4、应用方法,归纳总结。

竖式计算26÷4

(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

(2)尝试总结除数是整数的小数除法的计算方法。

三、巩固练习。

1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

2、错题诊所。

209÷5=41810÷25=41.26÷18=0。7

3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算.32÷812÷252.45÷3

4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

[课堂总结]

本节课你有哪些收获?

[板书设计]

打扫卫生

商的小数点要和被除数的小数点对齐。

除到被除数的末尾有余数时,要在余数后边添“0”继续除。

小学五年级数学上册教案 篇7

教学目标:

1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。

教学重点:

掌握用“四舍五入法”求一个小数的近似数。

教学难点

求小数的近似数时,小数末尾的“0”不能去掉的理解。

教学过程:

一、复习旧知,情境导入。

1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!

2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。

先写黑板:12953≈1万

3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)

师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。

师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)

4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的.方法吗?

学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!

二、整合情景,探究交流。

1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)

这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?

保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。

谁再来说一遍?(2-3名同学。表扬。)

2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?

(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。

3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。

4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)

5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)

不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。

求得的近似数1.0和1比较,哪一个更精确一些,为什么?

幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。

三、练习。(智力闯关。)

同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。

1.第一关。保留一位小数。

0.58≈0.63.788≈3.8

精确到百分位。精确到百分位就是保留几位小数?

12.004≈12.001.987≈1.99

保留整数。

9.956≈109.0448≈9

2.第二关。在□里填数。

2.9□≈2.98.5□7≈8.56

3.第三关。

姚明的身高约为2.2米,姚明的身高可能是多少米?

2.15(6、7、8、9)2.155……

2.20(1、2、3、4)2.……

四、全课。

你今天有哪些收获?保留一位小数,就是精确到十分位,……

板书设计

求小数的近似数

12953≈1万0.984≈0.98保留两位小数,看千分位。

小于5,舍去。小于5,舍去

0.984≈1.0保留一位小数,看百分位。

0.984≈1保留整数,看十分位。

大于5,向前一位进1。

小学五年级数学上册教案 篇8

教学目标:

1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点:

使学生理解分数的基本性质。

教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教具准备:

课件,五年级数学学具盒,计算器。

教学过程:

一、呈现材料,发现问题

1、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?

花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。

[评析:创设情境,在学生喜欢的人物分饼的故事中直接导入本课,这样设计可以吸引学生的注意,让学生主动感知,主动去思考,激起学生的.探究兴趣,让学生产生想获知结果的__。内含情感与态度目标:孙悟空,做事认真仔细,机智,勇敢,本事大等。]

师:听到这里,你有什么想法吗?或你有什么话要说吗?

生1:我觉得孙悟空很聪明。

生2:我认为三只小猴分到的饼是一样多的。

生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。

[评析:一般的教师会在这里提出“哪只猴子分得的饼多?”或“你认为猴王这样分公平吗?”这样的问题。但这位教师却提出“听到这里,你有什么想法吗?或你有什么话要说吗?”。这个问题优于前两个问题是因为学生在思考时思路更深、更广。有效的问题有助于摆脱思维的滞涩和定势,促使思维从“前反省状态”进入“后反省状态”,问题的解决带来“顶峰”的体验,从而激励再发现和再创新,有效的问题有时深藏在潜意识或下意识中,“顿悟”由此而生。有效的创设问题可以激发学生创新意识。内含情感与态度目标,体现公平。]

2、师:大家都觉得其实三只小猴分到的饼一样多,那你们有什么方法来证明一下自已的想法,让这三只小猴都心服口服呢?怎么验证?

(1)师引导学生充分利用桌面上学具盒中的学具(其中一条长方形纸片为事先放入,其它都是五年级数学学具盒中原有的),小组合作,共同验证这三个分数的大小?

(2)师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?

组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。

组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。

组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)

组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。

组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。

[评析:书本上的设计是用折纸来验证这三个分数相等,在这里执教者大胆的放大教材,把一系列探究过程放大,把“过程性目标”凸显出来。同时也为学生探究方法的多元化创造了条件,出现了多种验证的方法。还有这样设计把一些知识联系起来,用计算器的目的,是和五年级上学期的一节计算器课联系起来,而且为验证猜想做准备,可以比较分数的大小,节约时间。和单位“1”的概念联系起来,体现出了单位“1”概念中的两层含意。]

3、组织讨论

(1)师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)

板书1/4=2/8=3/12

(2)你能从图上找到另一组相等的分数吗?

板书3/4=6/8=9/12

[评析:书本例1为比较3/46/8和9/12的大小。执教者在创设情景时选择的分数是有目地的]

4、引入新课

师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。

生:分数的分子和分母变化了,分数的大小不变。

师:我们今天就来共同研究这个变化的规律。

5、引导猜测

师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。

生1:分子和分母都乘以一个相同的数,分数的大小不变。

生2:分子和分母都除以一个相同的数,分数的大小不变。

生3:分子和分母都加上一个相同的数,分数的大小不变。

生4:分子和分母都减去一个相同的数,分数的大小不变。

师:根据学生回答板书

[评析:这样设计注意了知识背景的丰富性,拓宽了“分数基本性质”的研究背景。在教学中,学生充分观察学习材料,发现问题后,教师引导学生提出猜测。学生的实际猜想可能会出现观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据学生已有的知识经验提出的,能够自已提出问题,已经向探索迈出了可喜的一步。教师留给了学生足够的思空间,让学生充分展现心中的疑惑,呈现了四种不同的假说。如此一来,学生不但是进入到了知识的学习过程中,更是进入到了知识的研究过程中。“分数基本性质”的研究背景从知识层面上来看已经拓宽了,从以前的只局限于“分子和分母同时乘(或除以)一个相同的数,分数的大小不变”拓宽到对““分子和分母同时乘(或除以、或加上、或减去)一个相同的数,分数的大小不变”的研究,有利于学生更为充分地经历“性质”形成的过程,全面地理解和认识“分数的基本性质”,同时还为沟通加、减、乘、除四种情况在分数的大小不变过程中的区别和联系奠定了基础。]

二、活动研究,探究规律。

1、引导研究,感知规律

师:猜测是不一定正确的,需要通过验证才能知道猜测是不是有道理,规律是否存在。我们需要对以上的猜测进行验证。你们准备如何进行验证?

生:举一些例子来验证

师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?

生:分子和分母都乘以一个相同的数,分数的大小不变。

师:好,我们就选这个,试试看。

学生以小组为单位进行尝试验证,教师作适当指导。

反馈:根据学生回答板书

1/2=0.5

1×2/2×2=2/4=0.5

1×3/2×3=3/6=0.5

师:看了这些小组的举例验证,能说明这个猜测有道理吗?

有什么要补充的吗?

(学生没有答出0除外)

师:谁能写出几个与1/3相等的分数。比一比谁写的多。

生回答,师板书1/3=2/6=3/9……

师:这样写得完吗?

生:不能

师:分子和分母是不是可以乘以所有的数。

生:0要除外。

师:为什么0要除外呢?

生:0不能做除数,也不能做分母。

[评析:学生在巩固知识的过程中得出结论:这样是永远也写不完的。这时,教师适时点拨,将学生的思维引向更深层次,从而自然得出“0除外”的结论。这样形成的记忆是深刻的。]

2、自主研究,理解规律

师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。

学生自由选择,教师适当进行调配。

师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。

学生小组合作进行研究,教师作适当指导。反馈交流

小结

师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(0除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。

出示课题:分数的基本性质

师:你们认为性质中哪几个字是关键字。

生:“都”,“相同的数”,“0除外”

生齐读投影上的分数的基本性质

[评析:这样的设计使学生对四个“假说”的验证过程认知比较充分。这不仅为学生准确理解和把握“分数的基本性质”提供了丰富的感性材料,同时,也为学生体验数学学习的过程创造了条件。教师在该环节的处理上出于对学生实际的考虑,安排了两个层次。第一层次选择“分子和分母都乘以一个相同的数,分数的大小不变。”这一猜测进行验证,一是让学生充分体验一次验证的过程,认识到过程中的注意点,二是有利于教师下一步的调控和指导。正是有了这样的引导,学生在第二层次的独立验证活动中,才能够更多地关注数学学习内在的东西,排除了一些不必要的干扰。学生探究的过程比较清晰,对学习方法的体验也比较深刻、到位。由于这样的设计,使整节课的重心从关注知识的传授转移到关注学习方法的指导上。更重要的是这样的设计体现出了猜测——验证——结论的思维模式。]

3、沟通说明,揭示联系。

师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。

生:商不变性质

出示商不变性质

师:分数的基本性质与商不变性质有什么相通的地方吗?

生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。

师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。

[评析:引导学生沟通分数的基本性质与商不变性质之间的联系,可以使学生体会到知识与知识之间有时是可以联系起来的。这样的设计有效的培养了学生的比较、分析、综合的能力。]

出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)

师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。

生:分数的基本性质。

[评析:数学中的概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。

例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要破译它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。

这样设计可以使学生在回答什么是分数的基本性质时,先想到动画,再用语言表达出内容。同时也可以使学生体会到运用这样的思维方式为以后遇到难以解决的问题是可以提供一定的帮助的。内容情感与态度目标:做事或解题时不能粗心大意。]

师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?

三、应用性质,解决问题。

1、出示例2

思考:要把1/3和16/24分别化成分母是6而大小不变的分数,分子、分母怎么变化?变化的依据是什么?板书

2、多层练习,巩固深化

(1)书本试一试

游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)

[评析:练习设计层次安排合理、形式多样、由浅入深。采用游戏的形式,抓住学生好胜的心理,在不知不觉中完成了练习,节约了练习的时间。体现了趣味性、生动性、开放性。既巩固了新知,又发展了思维。]

四、课堂总结

师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?

生1、我们是用举例的方法学的。

生2、我们是用验证的方法学的。

生3、我们是通过比较发现了规律。

师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。

师:我这里还为大家准备了一个故事。(哥德__猜想加陈景润的故事)

师:你听了有什么启发吗?课后同学们可以互相讨论一下。

[评析:让学生回忆这节课的学习历程和发现的一些规律,这样做更能体现“过程”。让学生带着问题下课,把对数学研究的兴趣延伸至课外,鼓励学生大胆创新。]

苏教版小学五年级数学上册教案

作为一名人民教师,常常需要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么优秀的教案是什么样的呢?以下是小编整理的苏教版小学五年级数学上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

小学五年级数学上册教案 篇9

教学内容:

北师大版数学第九册教科书第77—78页内容。

教学目标:

1、知识与技能:能正确估计不规则的图形面积的大小,能用数方格的方法计算一些不规则图形的面积,掌握数方格的顺序和方法。

2、过程与方法:能借助方格图估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养初步的估算意识和估算习惯,体验估算的必要性和重要作用。

3、情感态度价值观:体会数学与现实生活的密切联系,感受数学的应用价值。

教学重点:

利用方格图估计不规则图形面积。

教学难点:

估算的习惯和方法的选择。

教学思想:

在现实生活中,学生将接触到大量的不规则图形的面积问题,根据标准的'要求,让学生掌握估算不规则图形的面积,是培养学生空间观念的一个方面,同时也是提高学生解决实际问题能力的一个方面。本课时的教学正是为学生顺利掌握解决数学问题的方法而展开的。

教具准备:

树叶若干片,方格纸一张,写有“你知道吗”的小黑板。

教学流程:

一、情境引题,揭示新知。

师:今天,老师带来了两个有特殊意义的脚印图片。(出示月球上的第一个脚印)也许若干年后的一天,在月球上留下第一个中国人的脚印的人就是在座的某一位了。再请看第二个脚印:(出示?小华的脚印)这是一张千年之际出生的婴儿脚印的图片,怎样才能知道这个脚印的面积有多少呢?

二、参与探索,经历新知

1、自己先独立进行估计,然后小组内进行交流。

2、全班交流:

(1)说明估计的结果及过程

(2)数方格的方法验证估计值

(3)师:大家都是用数方格的方法估计的,还有没有其他的估算法呢?

引导学生把图形看成了近似的已学图形,根据图形的面积公式,算出面积

3、出示小华两岁时的脚印,学生估计面积:

三、小结方法,实践新知:

(1)师:刚才大家对像脚印这样的不规则图形的面积进行了估算,想想刚才大家用什么方法进行估算的?

师板书:1、借助方格图数一数所占的格数。

2、把它看成一个近似的规则图形,测量后进行计算。

(2)请同学们算一算自己脚印的面积约是多少?

学生自己先独立取脚印,然后借助附页3的方格图估算脚印面积。

四、新知实践,解决问题:

1、估算第78页的不规则图形的面积:(课件依次出示)

(1)学生独立进行估计:

(2)交流汇报时让学生说说自己是怎样估计的。

2、估算手掌的面积:

(1)师:每估一估自己手掌的面积:

(2)学生合作估算并在方格纸上验证:(学生在此环节开展好帮差活动)

(3)展示汇报:(师:我们在认识平方分米时,说手掌的面积大约是1平方分米)

六、课堂回顾,总结提高:

同学们,今天你们有什么收获?有什么体会?说来听听。

板书设计:

成长的脚印

不规则图形面积的估算:

1、借助方格图数一数。

2、把它看成一个近似的规则图形,测量后进行计算。

第二课时:

实践活动――估测树叶的面积

教学内容:北师大版数学第九册教科书第79页内容。

教学过程:

(一)揭示活动内容

(二)活动过程

1、选择树叶

2、估算一片树叶的面积:

(1)师:每个小组拿出准备好的树叶,先互相估算一下它的面积。能不能直接用数格子的方法来求出它的面积呢?

(2)学生分小组讨论交流,指名回答:

(3)生汇报:(a)放在格子上数数。(b)可以把外轮廓在网格纸上画出来,再数。

(4)同桌互相交流一下结果,看看谁估算的最准确。

3、体会绿树对环保的重要性:

(1)如果一棵树有10000片树叶,估算这棵树所有树叶的总面积。

(2)在有阳光时,大约每25 m2的树叶能在一天里释放足够一个人呼吸所需的氧气。这棵树在有阳光时,一天里释放的氧气能满足多少人呼吸的需要?

注:(出示你知道吗)

你知道吗?

一个人要生存,每天需要吸进0、8公斤氧气,排出0、9公斤二氧化碳。1万平方米的森林所制造的氧气能供给一千人呼吸。

资料介绍:

10平方米的森林或25平方米的草地就能把一个人一天呼出的二氧化碳全部吸收,并供给所需氧气。就全球来说,森林绿地每年为人类处理近千亿吨二氧化碳,为空气提供60%的净洁氧气。全球现有的森林,每年生产的氧气达555亿公斤。

4、说说本节课的感受。

小学五年级数学上册教案 篇10

单元导学

本单元的主要内容有:比较图形的面积;认识平行四边形、三角形与梯形的底和高;平行四边形、三角形和梯形的面积计算方法;解决有关面积计算的实际问题。

多边形的面积是《数学课程标准》图形与几何领域中的重要内容,也是本册教材的重点和难点知识,是小学生应该掌握的一项基本技能。

学生在以前的学习过程中已经初步认识了长方形、正方形、三角形、平行四边形和梯形,学习了面积与面积单位及长方形、正方形的面积等有关知识,初步感受了解决有关图形面积计算问题的思维方式,即用面积单位去度量一个图形的面积。本单元在此基础上展开图形面积计算公式的探索,解决有关图形面积与组成图形要素之间的数量关系的问题。

备内容

比较图形的面积(1课时)→比较图形面积大小的基本方法;体验图形形状的变化与面积大小变化的关系

认识底和高(1课时)→认识平行四边形、三角形、梯形的底和高;会用三角尺画平行四边形、三角形与梯形的高;能画出指定底和高的平行四边形、三角形与梯形

多边形的面积

探索活动:平行四边形的面积(2课时)→探索平行四边形面积的计算公式;运用平行四边形面积的计算公式解决实际问题

探索活动:三角形的面积(2课时)→探索三角形面积的计算公式;运用三角形面积的计算公式解决实际问题

探索活动:梯形的面积(1课时)→探索梯形面积的计算公式;运用梯形面积的计算公式解决实际问题

备目标

知识与技能

1.借助方格纸直接判断图形面积的大小,初步体验数方格及割补法在图形面积探索中的应用。

2.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

3.掌握平行四边形、三角形、梯形面积的计算公式。

过程与方法

1.通过动手操作、实验观察等活动,体验图形形状变化与面积大小变化关系,发展空间观念。

2.经历利用割补、转化等方法探索图形面积计算公式的过程,理解并掌握平行四边形、三角形和梯形的`面积计算公式,体验转化的数学思想。

情感、态度与价值观

1.在数学活动中,培养学生的创新意识。

2.在具体的操作探究活动中体验学习数学的乐趣。

3.在探索图形面积的计算公式的过程中,获得成功探索问题的体验。

备重难点

重点

1.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

2.掌握平行四边形、三角形、梯形面积的计算公式。

难点

1.能画出平行四边形、三角形、梯形的高。

2.运用平行四边形、三角形和梯形的面积计算公式解决实际问题。

小学五年级数学上册教案 篇11

教学目标

1、知识与技能:使学生在具体的情境中认识“列”与“行”的含义,知道确定第几行、第几列的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

2、过程与方法:使学生体验数学与生活的密切联系,进一步提高用数学的眼光观察生活的意识。

3、情感、态度与价值观:培养学生的空间意识能力,进一步培养数感。

教学重难点

1、教学重点:会用数对确定物体的位置。

2、教学难点:正确区分“列”和“行”的顺序。

教具准备

多媒体

教学过程

一、情境引入:

1、导入:同学们,你们想不想知道其他班级上课的情境是什么样的呢?今天咱们就去五年级某班看一看。看,这是张亮所在班级的学生,多整齐!你能告诉老师张亮的位置吗?

(出示教材第19页情境图中张亮那一列同学的座位)

学生可能说:第3个、从前面数第3个、从后面数第3个等。

教师引导学生分析,要在一列座位中确定一个人的位置只要清数方向和第几个就行了。

2、揭题:今天我们就来学习如何用数对来表示物体的位置。

(板书课题:用数对确定物体的位置)

二、互动新授

(一)明确行、列的意义

1、师引导:这么多表示方法有些乱,同学们所说的“排”,在数学上竖排叫“列”,横排叫“行”。(板书:列行)

并明确:数“列”的时候习惯上从左往右数,依次为第1列、第2列……数“行”的时候习惯上从前往后数,依次为第1行、第2行……把教材第19页情境图上的每一列和每一行按顺序写上,同桌互相指一指。

说明:通常情况下,描述物体位置时先说列,再说行。

让学生用正确的方法描述张亮的位置。(第2列、第3行)

2、引导:你能用刚学习的知识描述一下其他同学的位置吗?(举例王艳、赵雪,周明的位置等)

让学生随便指图上一人,同桌互相说一说他的位置。(学生练习)

(二)认识数对

1、引导:表示位置我们还可以用“数对”来表示。这就是今天我们要学习的主要内容:用数对确定位置。张亮在第2列、第3行的位置,可以用数对(2,3)表示。

2、质疑:根据描述的习惯,你认为括号里这两个数各表示什么?

(第一个数表示第几列,第二个数表示第几行。)

强调并让学生明确数对的第一个数表示第几列,第二个数表示第几行。

(三)用数对表示位置,根据数对确定位置

1、让学生用数对分别表示图中其他同学的位置。(王艳、赵雪等)

学生回答:王艳的位置用数对表示是(3,4),赵雪的位置用数对表示是(4,3)。

2、讨论我们用数对表示物体位置时要注意什么问题?

(不要把列和行弄颠倒了。)

(四)应用知识

1、先说一说自己班里,哪里是第一列,哪里是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。

2、你能用数对表示你的前后左右邻居的位置吗?说一说,并思考有什么发现。

(1)让学生互相说一说,并讨论。

(2)师引导:前后邻居数对的第一个数与自己相同,左右邻居数对的第二个数与自己相同。

3、做游戏:教师说数对,学生根据数对找出相应的同学。

4、找数对:大家来找一找生活中的数对。

学生自由发言,指名学生说一说,如找座位,找楼座等。

三、巩固拓展

完成教材第19页“做一做”。

先让学生分组讨论,然后再说一说。

四、课堂小结

师:同学们,这节课你们都学会了哪些知识?

生1:我学会了怎样用数对表示位置。

生2:我知道了数对中第一个数表示列,第二个数表示行。

师:除了以上两位同学所说的之外,在用数对表示物体的位置时还要注意,列是从左往右数,行是从前往后数。

五、作业:教材第21页练习五第1、2题。

板书设计

用数对确定物体的.位置

竖排一列左一右

横排一行前一后

作业设计

课后小结

第二课时

在方格纸上用数对确定物体的位置

教学目标

1、知识与技能:理解方格纸上数对的含义。

2、过程与方法:结合方格纸用数对来确定物体的位置,能依据给定的数对在方格纸上确定位置。

3、情感、态度与价值观:在确定位置的过程中,增强学生解决实际问题的能力,提高应用意识。

教学重难点

1、教学重点:掌握在方格纸上用数对确定物体的位置。

2、教学难点:正确描述物体所在的位置。

教具准备

师:多媒体。生:方格纸。

教学过程

一、情境引入

1、复习:上节课咱们学习了用数对来表示物体的位置,谁来说一说数对中的第一个数字表示什么,第二个数字表示什么?

(数对中的第一个数字表示“列”,第二个数字表示“行”。)

2、导入:(出示如下示意图)那么,今天我们继续来学可数对的知识,先来看下面的示意图,你们能用数对分别表示出各场馆的位置吗?

引导学生用数对分别表示出各场馆所在的位置。

指学生回答,并说一说是怎么确定它们的位置的。

二、互动新授

1、出示教材第20页“动物园示意图”。

(1)引导学生观察图,并比较它和刚才的示意图有什么不同。

引导学生理解图意:横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。

(2)提出问题:图上的数字表示什么?

引导学生理解:纵向排列的数字表示行,从下往上数;横向排列的数字表示列,从左往右数。图上的数字表明行和列的起点均为O。

(3)引导学生观察这幅方格图,问:你能用数对表示出大门的位置吗?

指生回答:大门(3,0)。

组织同桌互相说一说其他场馆的位置。

小组互相交流、探讨,教师进行相应的指导。

集体订正,并用多媒体出示各场馆的位置:

大象馆(1,4)、猴山(2,2)、大门(3,0)、熊猫馆(3,5)、海洋馆(6,4)。

2、指生到黑板指一指下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

并说说自己是怎样标出各个场馆的位置的。

引导学生回答:飞禽馆(1,1)是在第1列第1行,猩猩馆是(1,3)在第1列第3行,狮虎山是(4,3)在第4列第3行。

3、拓展延伸。

(1)引导学生分别观察飞禽馆、大象馆以及猩猩馆和狮虎山在图中的位置,并表示它们位置的数对。你有什么发现?

引导学生说出:大象馆和飞禽馆在同一列,它们的数对第一个数相同;猩猩馆和狮虎山在同一行,它们的数对第二个数相同。

师小结:表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

(2)质疑:如果用(某,4)表示某场馆的位置,能确定在哪里吗?

小组交流,并指生汇报。

教师引导学生总结:由于字母表示的数不确定,所以这样的数对只能确定这个场馆在哪一条横线上,但不能确定这个场馆的具体位置,使学生明确必须要有两个数才能确定一个位置。

4、找生活中的数对。

用数对表示位置在生活中有着广泛的应用,你能举出例子吗?

小组讨论交流,如:地球仪上的经纬网、十字绣、围棋棋盘等。

三、巩固拓展

1、完成教材第20页“做一做”第1题。

先让学生自主完成,然后再说一说你是怎么确定的。

2、完成教材第20页“做一做”第2题。

先把题目的要求读一读,自主完成,然后同桌互相交流。

四、课堂小结

师:同学们,这节课你们都学会了哪些知识?

生1:我学会了在方格图上用数对表示位置。

生2:我知道表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

五、作业:P21~22练习五第3、4、6题。

板书设计

在方格纸上用数对确定物体的位置

熊猫馆(3,5)海洋馆(6,4)

猴山(2,2)大象馆(1,4)大门(3,0)

表示同一列物体位置的数对,它们的第一个数相同;

表示同一行物体位置的数对,它们的第二个数相同。

作业设计

课后小结

小学五年级数学上册教案 篇12

一、教学目标

1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

2、结合具体情境,进一步体会“整数”与“部分”的关系。

二、重点难点

重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。

难点:充分体会“整数”与“部分”的关系。

三、教学过程

(一)复习旧知,导入新课

1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗?说说它们分别表示什么意义?

2、今天我们一起来学习《分数的再认识》。

(二)创设情境,学习新知

活动一:分笔游戏,体会单位一

1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

3、另找4名同学检查。

4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)

6、师总结:最初每位同学笔的“整体”不同,也就是单位“1”不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识?

活动二:教材P34说一说。

1、带着新的认识,我们来判断两个小朋友看的书一样多吗?

2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。

3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)

4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)

5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:“我俩吃的一样多”。李晓阳说:“我吃得比你多。”他们谁说得对呢?

(三)巩固练习

1、教材P34画一画。

2、教材P35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

四、板书设计

分数的再认识

整体不同,相同分数表示的数量也不同。

整体相同,相同分数表示的数量也相同。

五、教学反思

本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

2022北师大版小学五年级数学上册教案

作为一位无私奉献的人民教师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。那么应当如何写教案呢?下面是小编精心整理的2022北师大版小学五年级数学上册教案,仅供参考,欢迎大家阅读。

小学五年级数学上册教案 篇13

教学目标

1、使学生理解小数乘以整数的计算方法及算理。

2、培养学生的迁移类推能力。

3、引导学生探索知识间的练习,渗透转化思想。

教学重点

小数乘以整数的算理及计算方法。

教学难点

确定小数乘以整数的积的小数点位置的方法。

教具准备

放大的复习题表格一张(投影)。

教学过程

一、引入尝试:

孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。

1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:

(1)例1:风筝每个元,买3个风筝多少元?(让学生独立试着算一算)

(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)

用加法计算:++=元元=3元5角

3元×3=9元5角×3=15角9元+15角=元

用乘法计算:×3=元理解3种方法,重点研究第三种算法及算理。

(3)理解意义。为什么用×3计算?×3表示什么?

(3个或的3倍.)

(4)初步理解算理。怎样算的?把元看作35角

3.5元扩大10倍35角

×3×3

10.5元105角

缩小到它的1/10

105角就等于元

(5)买5个要多少元呢?会用这种方法算吗?

2、小数乘以整数的计算方法。

象这样的元的几倍同学们会算了,那不代表钱数的×5你们会算吗?(生试算,指名板演。)

⑴生算完后,小组讨论计算过程。

板书:0.72

×5

3.60

(2)强调依照整数乘法用竖式计算。

(3)示范:0.72扩大100倍72

×5×5

3.60360

缩小到它的1/100

(4)回顾对于×5,刚才是怎样进行计算的?

使学生得出:先把被乘数扩大100倍变成72,被乘数扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)

(5)专项练习

①下面各数去掉小数点有什么变化?

②把353缩小10倍是多少?缩小100倍呢?1000倍呢?

③判断

1

×2

0

(6)小结小数乘整数计算方法

计算7×4×425×7×7

观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?

①先把小数扩大成整数;

②按整数乘法的法则算出积;

③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

二、运用

1、填空。

4.5()0.74()

×3×3×2×2

()135()148

2、做一做书p2

三、体验:

(1)今天我们学习了什么?(板书课题)

(2)小数乘以整数的计算方法是什么?

四、作业:

口算:

70×30

45×100

×10

×1000

5×10

×100

注意:如果积的`末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。

板书小数乘整数1

3.5元35角

×3×3

10.5元105角

例2

0.72扩大到它的100倍72

×5×5

3.60360

缩小到它的1/100

教后反思:

学生基本能理解小数乘法的算理,但是在计算完后小数点经常点错。下节课要进行专项练习。

教学目标

1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

2、比较正确地计算小数乘法,提高计算能力。

3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。

教学重点

小数乘法的计算法则。

教学难点

小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

教具准备

投影、口算小黑板。

教学过程

一、引入尝试

1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:×)

2、尝试计算

师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算×呢?

如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

示范:

1.2扩大到它的10倍12

×0.8扩大到它的10倍×8

6缩小到它的1/10096

3、×,刚才是怎样进行计算的?

引导学生得出:先把被乘数扩大10倍变成12,积就扩大10倍;再把乘数扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。

4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:×2的积中有几位小数?2×2呢?

5、小结小数乘法的计算方法。

师:请做下面一组练习(1)练习(先口答下列各式积的小数位数,再计算)(2)引导学生观察思考。

①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)

③计算×时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

(3)根据学生的回答,逐步抽象概括出页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

(4)专项练习①判断,把不对的改正过来。

2413

×4×26

9678

2426

3600338

三、应用

1、在下面各式的积中点上小数点。

0.586.252.04

×4.2×0.18×28

11650001632

232625408

2436112505712

2、做一做:先判断积里应该有几位小数,再计算。

67××

3、页5题。

先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

四、体验回忆这节课学习了什么知识?

五、作业:P87、9题。P913题。个人修改

口算:

×

×1

76×3

75×5

5×6

×

②根据1056×27=,写出下面各题的积。

10×=6×7=056×27=×7=

教后反思:

小数乘小数的乘法是本单元的难点,学生在计算时错误较多,要继续多练,重点练习点小数点。

小学五年级数学上册教案 篇14

教学内容:

课本第11页上的内容。

教学目标:

1、通过找因数,观察它们的特点,初步理解质数和合数的含义。

2、培养孩子的观察、比较、抽象、概括能力,通过探索找出寻找质数的简单的方法。

3、使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。

教学重点:

在教学活动中,帮助学生理解质数和合数的意义。

教学难点:

培养孩子的观察,通过探索找出寻找质数的简单的方法。

教具准备:

投影仪、小正方形纸片等。

教学过程:

一、 揭示课题

1、 先复习自然数按能不能被2整除的分类。

2、 教师引入:同学们已经学习并掌握了找因数的方法,这一节课,我们再一起学习找质数。

板书课题:找质数。

二、组织活动,探索新知。

活动:拼一拼

1、用12个小正方形拼成长方形,看谁拼的方法多,动作还快。

(同桌用12个小正方形拼长方形,可以合作,并完成书第10页的表格。)

2、学生 汇报,教师填表(投影出示下表)

小正方形个数(n) 拼成的长方形种数 n的因数

(1)让学生观察左表中各数的因数,看看有什么发现?

(2)结合上面的发现,将212各数分为两类,说一说这两类数分别有什么特点。

3、教师提示质数和合数的意义。

一个数只有1和它本身两个因数,这个数叫做质数;

一个数除了1和它本身以外还有别的因数,这个数叫做合数。

4、教师:1是质数还是合数呢?(1既不是质数,也不是合数。)

三、巩固练习(做一做)

1、在1 4 7 10 11 15 17 18 21这些数中,哪些是质数?哪些是合数?

2、完成课件练一练1、2题

四、总结。

通过今天这节课的学习,你有什么收获?你还有什么要问的?

五、作业。

优化作业

小学五年级数学上册教案 篇15

一、创设知识迁移情景,揭示课题明确目标

1.呈现知识迁移情景。

(1)师:这里有一张医生给数学病人开的处方,不知药用对了没有,请各位小医生给以指导。

(2)出示(小黑板)

病症 药名

432-2 =412

43.2+2 =43.2

8厘米 + 3米 =11米

3元 + 3角 =6元

2、交流信息,重点了解异分母分数加减法的前提是计数单位相同。

3、揭示课题,明确目标。

(1)师:同学们,同分母分数加减法,由于分数单位相同,可以直接相加减,那么,异分母加减法呢?(揭示课题)

(2)师:看到课题你想学到那些知识?

二、自主探究,获取新知。

1、指导自学,合作交流。

(1)告诉学生按照读想划的过程自学课本内容,并给学生提纲自学提纲供参考(小黑板出示)。

(2)小组讨论,提出问题,解决问题。

2、汇报交流,获取新知。

(1)小组汇报,得出结论。

(2)探究异分母分数加减法的计算法则(合作讨论,引导小结,并看书验证)。

(3)形式质疑。

三、精心设练,创新思维。

1、巧设训练,巩固新知。

(1)师:下面老师带领同学们到数学乐园去游玩。进入乐园后,以小组学习为主,喜欢玩什么就玩什么,玩开心点哦。

课件出示:

数 学 乐 园

填空池: 方程河:

+ = + = x+ =

- = - = x- =

+ = + = 1-x=

迷宫: 计算园:

请你把 - 的计算过程用学具表示出来? + - +

(2)反馈信息,汇报收获。

(3)由计算园的收获,强化异分母分数加减法的计算法则,并强调计算结果的合理性(板书相关内容)。

(4)师:同学们学的不错,敢接受挑战吗?(举手抢答)

师出示口算卡: + = + = + = - = + =

2、自主探究,拓展思维。

师:下面我们利用学到的本领,探究这几道题的聪明方法。

(1)自主探究,合作交流/

课件出示:

+ = + = 讨论:(1)它们的加法有什么特点

+ = + = ( 2)它们的和有什么特点?

+= + = (3)从中你发现了什么规律?

(2)汇报交流,得出结论,并验证。

四、全课总结(小组交流研讨、汇报)。

师:1.这节课你有那些收获?

2.你还有什么问题吗?

小学五年级数学上册教案 篇16

教学内容:

课本第12~17页上的内容。

教学目标:

1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数= 奇数。

2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。

3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。

4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。

教学重点:

从生活中的摆渡问题,发现数的奇偶性规律。

教学难点:

运用数的奇偶性规律解决生活中的实际问题。

教具准备:

投影、杯子。

教学过程:

一、揭示课题

自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。

二、组织活动,探索新知

活动一:示图(右图)

小船最在南岸,从南岸驶向北岸,

再从北岸驶回南岸,不断往返。

1、

(1)小船摆渡11次后,船在南岸还是北岸?为什么?

(2)有人说摆渡100次后,小船在北岸。

他的说法对吗?为什么?

2、请任说一个摆渡的次数,学生回答在南岸还是北岸?

3、请学生画示意图和列表并观察。

4、想:摆渡的次数与船所在的位置有什么关系?

摆渡奇数次后,船在 岸。

摆渡偶数次后,船在 岸。

试一试

一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝 ,反动19次后杯口朝 。

1、想一想:翻动的次数与杯口的朝向有什么关系?

翻动奇数次后,杯口朝 。

翻动偶数次后,杯口朝 。

2、把杯子换成硬币你能提出类似的问题吗?

活动二

圆中的数有什么特点?正方形中的数有什么特点?

圆中的数都是偶数,正方形中的数都是奇数

试一试:(投影)

三、巩固练习(投影出示习题)

四、总结

这节课同学们有什么收获和体会?

五、作业

1、课本第17页试一试的题目。

2、优化作业

大家都在看