短文网整理的平均数教案(精选14篇),快来看看吧,希望对您有所帮助。
平均数教案 篇1
教学内容:
教材第43页例2,练习十一第4、5题。
教学目标:
1.使学生进一步掌握平均数的意义和求平均数的方法。
2.懂得平均数在统计学上的意义和作用。
3.培养学生能够灵活运用所学的知识,灵活的.解决一些简单的实际问题。
教学重点:
掌握平均数的意义。
教学难点:
掌握求平均数的方法。
教学过程:
一、复习引入
三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?
提问:题目的已知条件和问题分别是什么?
要求平均每一组投中多少个?应该怎样列?
提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?
二、快乐体验,学习新知
1、出示教科书第43页的例题2。
提问:从这两张统计表中,大家发现了什么?
在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?
场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。
2、学生动手列式计算。
3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。
三、巩固练习
1、科书第45页练习十一的第4题:
(1)完成第1小题。提问:什么叫月平均销售量?
要求哪种饼干月平均销售量多?多多少?应该怎样列式?
(2)完成第2小题让学生自由发表看法。
(3)完成第3小题。你从图中还得到什么信息,告诉全班同学。
2、练习十一的第5题。
学生独立完成,集体订正。
四、课堂小结:
本节课学习了什么?你有什么收获?
平均数教案 篇2
一、教学目的
1.使学生了解计算器上有关统计计算的符号.
2.使学生会用计算器求一组数据的平均数、标准差与方差.
3.使学生体会到用计算器统计的省时、省力的优越性.
二、教学重点、难点
重点:掌握用计算器计算平均数、方差的方法.
难点:计算器上符号的准确识读与应用.
三、教学过程
复习提问
1.我们学过哪些计算一组数据的平均数的方法?
2.我们学过哪些计算一组数据的方差与标准差的方法?
引入新课
随着科学的进步,一些先进的计算工具逐步进入千家万户,我们可以用这些计算工具来进行计算.本课我们学习用计算器计算一组数据的平均数与方差的方法.
新课
让学生阅读并在教师指导下计算教材例中两组数据的平均数、标准差与方差.同时,通过应用计算器,了解的作用.
接下来让学生作如下练习:
填空题:
2.计算器中,STAT是____的.意思,DATA是____的意思.
3.计算器键盘上,符号σ与书中符号____意义相同,表示一组数据的____.
4.在CZ1206型计算器上设有标准差运算键,而未设____运算键,一般要通过将标准差____得到____.
选择题:
1.通过使用计算器比较两组数据的波动大小,只需通过比较它们的____即可[ ]
A.标准差B.方差
C.平均数D.中位数
2.如果有重复出现的数据,比如有10个数据是11,那么输入时可按[ ]
3.用计算器计算样本91,92,90,89,88的标准差为[ ]
A.0 B.1 C.约1。414 D.2
4.用计算器计算7,8,8,6,5,7,5,4,7,6的平均数、方差分别为[ ]
A.6。3,1。27 B.1。61,6。3
C.6。3,1。61 D.1。27,1。61
教师可先用投影片(或小黑板或示意图纸)写好操作效果图和学生的计算结果进行对比.
接下来师生共同继续作课本上练习
小结
1.熟悉计算器上各键的功能.
2.学会算(用计算器)平均数、标准差、方差.
四、教学注意问题
1.本课教学内容关键是动手,要让学生动手作,为帮助学生中动手能力差者,要提倡互相帮助.
2.学生做作业时可提示他们可核对以前的题目的准确性.
平均数教案 篇3
教学目标
1.理解平均数的含义,初步学会简单的求平均数的方法,理解平均数的统计意义。进一步积累分析和处理数据的方法,发展统计观念。
2.在具体的问题情境中,感受求平均数是一些实际问题的需要,体会平均数的意义,学习求简单数据的平均数。
3.感悟数学知识的现实性,体会平均数在现实生活中的实际意义及广泛应用。
学情分析
通过对任教的三年级(2)班学生进行课前调研,了解到全班59.1%的学生面对“比总数不公平”的情境,能够想到“先求出平均每人投中的个数再比较”的建议,但没有学生能够清晰地回答“为什么求出平均每人投中的个数再比较就公平了?”。退一步说,就算学生真正理解了其中的意义,那么“平均每人投中的个数”是否就能直接与“每人投中个数的平均数”画上等号?细微的文字表述差异的背后,又表征着学生怎样微妙的思维差异呢?
事实上,“求出平均每人投中的个数”,对于一个三年级学生而言,其心理活动的表征往往是“先求总和,再除以人数”。而这一心理运算对学生而言,其直观背景十分模糊。至于其最终运算后得出的结果又是如何成为这组数据的代表的,其意义的“联结点”对学生而言更是很难直接建立。由此可见,仅仅从“比较的维度”揭示平均数的意义,潜藏着学生难以跨越、且教师也很难察觉的认知障碍与思维断点。
于是,教师将备课的思维焦点再次落到“数据的代表”上来。能不能从“数据的代表”的角度,重新为平均数寻找一条诞生的新途径?于是,便有了本节课的尝试。
重点难点
教学重点理解平均数的含义,掌握平均数的求法。
教学难点理解平均数的统计意义。
教学过程
活动1【活动】一、建立意义
(一)体验平均数的代表性
1.谈话:
(1)上个星期,于老师和体育来老师比赛投篮,1分钟看谁投得多。
(2)想不想知道比赛结果?我给同学们提供一些数据,请你判断一下,我们俩谁投篮的水平更高一些。(课件分别依次出示来老师和于老师三次1分钟投篮的成绩)
2.提问:
(1)我们俩谁投篮的水平更高一些?为什么?
预设:分别计算出两位老师三次投篮的总数,进行比较,得出结论。
小结:在以前的学习过程中,要想比较谁的水平高我们经常先把总数算出来,看总数谁多。
(2)观察观察数据,还有别的办法很快地比较出我们俩谁的水平高吗?
预设:直接将两位老师每次投篮的个数进行比较,得出结论。
提问:为什么直接比5和3?
小结:如果每一次投篮的数量一样,那在这种情况下我们选一次的成绩作为我投篮水平的代表就可以了。
提问:选择哪个数量来代表来老师的投篮水平呀?那于老师呢?方便不方便?
【设计意图:创设“1分钟投篮比赛”的情境,精心设计数据,引发学生对平均数的“代表性”的理解。】
(二)强化对平均数意义的理解
1.谈话:不过,我可不服气,就找了一个理由:你是体育老师,我是数学老师,我要求再多投一次,结果来老师还真同意了,我就又投了一次。
2.提问:
(1)你们说于老师再投一次的'话,会不会对我目前投篮的成绩有影响?
(2)想不想知道于老师最后一次投篮的结果?(课件出示于老师第四次1分钟投篮的成绩)
(3)我这次1分钟投了几个?我太高兴了,我为什么高兴呀?你们认为来老师会同意我的观点吗?
(4)你认为在这种情况下应该怎么比?
(5)我平均每次投中了几个?
a.谈话:有很多同学有自己的想法了,请你试着在图上圈一圈、画一画,或者在图下面写一写、算一算把你的想法表示出来。
b.谁愿意跟大家交流一下自己的想法?
方法一:移多补少
预设:从第四次投的7个中拿出3个分别给前3次各1个,就得到平均每次投中4个。
谈话:你这个办法可真好!这样一移实际就是把几次不相等的数匀乎匀乎,看起来每次都一样了。数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程有个名字就叫“移多补少”。(板书:移多补少)
【设计意图:首先利用直观形象的象形统计图呈现“移多补少”求得平均数的过程,而不是先通过计算求平均数,强化平均数“匀乎匀乎”的产生过程,帮助学生进一步直观理解平均数能反映一组数据的整体水平。】
方法二:先合后分
提问:还有同学用计算的方法算出了于老师平均每次投中的个数。谁愿意给大家介绍一下?
预设:3+3+3+7=14(个)16÷4=4(个)于老师平均每次投中了4个。
谈话:实际上就是把于老师四次投中的个数先全部合在一起再平均分成4份。(板书:先合后分)
小结:无论是移多补少,还是先合后分,目的就是要把原来几个不同的数变得一样多了,数学上我们把同样多的这个数就叫做原来这几个数的平均数。(板书:平均数)3、3、3、7的平均数是4。
提问:再来看看,来老师水平高还是我水平高,这种情况下我干嘛要用到平均数来比较我们俩谁的水平高呀?
【设计意图:帮助学生理解投篮次数不同的情况下,比较总数不公平。这时就需要用平均数作为几次投篮个数的代表来反映投篮的整体水平进行比较。加强学生对平均数在统计学上的意义和作用的理解。】
活动2【讲授】二、深化理解
提问:
1.那你们觉得于老师要是再投一次的话,这个平均数会不会发生变化?为什么?
2.我们举个例子来看看吧,如果我第五次就投了1个,你们觉得于老师投篮的整体水平是上升了还是下降了?为什么?(课件出示于老师第五次1分钟投篮的成绩)
3.你可没算,为什么你一下子就告诉我下降了呢?你是怎么判断出来的?
4.那我要想让我的投篮水平再上涨一点儿,你们觉得我得投几个?算算我投篮的水平上涨了没有?( 根据学生回答课件出示于老师第五次1分钟投篮的成绩)
5.要想让我投篮的整体水平上升点,你觉得我这次得投几个才行?(根据学生回答课件出示于老师第五次1分钟投篮的成绩)
【设计意图:初步认识了统计学的意义后,进一步设计活动让学生借助于具体问题、具体数据初步理解平均数的敏感性,丰富学生对平均数的理解。】
活动3【练习】三、拓展提升
(一)进一步丰富学生对平均数的理解
1.估计平均数(课件出示)
提问:
(1)不能算,直接看,有这样5个数据,估计一下平均数可能会是几呢?
(2)为什么一下就能想到平均数是5呢?平均数可不可能是2,为什么?
(3)真的是5吗?你怎么知道是5?用计算的方法会算吗?怎么算?
【设计意图:在估计的过程中,学生发现平均数总是介于最小数与最大数之间,强化学生对平均数意义的理解。】
2.判断直条所在位置(课件出示)
提问:
(1)仔细观察、认真思考,第五个数据如果我也要画一个直条,它会在这条红线上面?还是在红线下面?请同学们用投票器进行选择。
(2)来选一个代表,谁愿意告诉大家为什么在红线的下面?
【设计意图:变化思路,由已知平均数逆求部分数,加深学生对平均数意义的理解。】
(二)利用平均数解决问题(课件出示)
1.平均身高
提问:
(1)篮球队队员的平均身高是160厘米。李强是学校篮球队的队员,可是他的身高才155厘米。你觉得可能吗?
(2)那平均身高是160厘米是每个人都是160厘米吗?
(3)既然李强的身高是155厘米,根据这个信息猜想一下,可能有的同学身高是多少厘米呢?有可能超过160厘米吗?为什么?
【设计意图:学生借助平均数的意义进行推理判断,深化对平均数的理解。】
2.平均水深(课件出示)
(1)提问:
a.从图中你了解到了哪些数学信息?(冬冬身高130厘米 池塘平均水深115厘米)
b.冬冬心想,这也太浅了,我的身高130厘米,下水游泳一定没危险。你们觉得,冬冬的想法对吗?
c.冬冬的身高不是已经超过平均水深了吗?
(2)谈话:想看看这个池塘水底下真实的情形吗?(利用课件,呈现池塘水底的剖面图)
(3)小结:虽然平均水深能够很好地反映这条小河水深的总体情况,但并不能反映出小河某一处的深度。看来,平均数也不是万能的,如果使用得不恰当,也会给我们带来麻烦,甚至发生危险,今后我们还会研究中位数、众数……在具体应用的过程中还要联系实际去思考,平均数只有用在恰当的地方才能发挥它的作用。
【设计意图:处理这一题目时,教师适时呈现小河的截面图,并标注出5个距离,将复杂的问题简单化,达到学生仍能借助平均数的意义理解东东下水的危险性。在此过程中学生也会感悟到平均数在反映一组数据总体情况时存在的局限性,适时提出今后还要学习其它反映一组数据总体水平的统计量,做好统计知识由中年级到高年级的衔接。】
平均数教案 篇4
教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的.方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。
二、探究体验
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、实践应用
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。
2、根据统计表算一算,三年段平均每班踢几下?
班级 三(1) 三(2) 三(3) 三(4)
踢的次数 632 654 668 646
3、生独立完成练习十一第2题。
四、全课总结
1、通过今天的学习,你学到了什么新的知识?
2、师总结。
平均数教案 篇5
教学目标:
1. 经历用平均数描述一组数据特征的过程,在具体的问题情境中体会平均数的意义,掌握求简单平均数的方法。
2. 自主探究移多补少及先合后分的求平均数的方法,会估计平均数的范围,能灵活选择合适的方法解决求平均数的实际问题。
3. 体会平均数在生活中的应用价值,在运用平均数知识解决问题的过程中,增强应用意识,发展统计观念。
教学重点:
体会平均数的意义,掌握求平均数的方法.
教学难点:
根据平均数的意义,对一些简单事件做出合理的分析和判断.
教学过程:
一.问题导学,自主学习:
1.创设问题情境:
师: 在光明小学举行的趣味运动会上,二年级第一小组的男女生进行了一场激烈的套圈比赛.让我们一起去看看比赛情况.(课件演示,引导学生观察)
a.问题:观察男女生套圈成绩统计图,从图中你知道些什么?
b.设疑:你认为男生套得准一些还是女生套得准一些?
c.说明:要想判断谁套得准一些,为了体现公平性,就要用到平均数.
2.揭示课题:认识平均数明确学习目标:
a.了解平均数的意义.
b.掌握求平均数的方法.
3.预习交流:
[小组内简单交流对平均数含义的理解和求平均数的方法,提出质疑.]
过渡:
回归课前的疑问,让我们一起去探究有关平均数的问题.
4.自主预学:
a.男生队套圈总数:6+9+7+6=()个
b.女生队套圈总数:10+4+7+5+4=()个
思考:
a.比较男女生套圈总数,这样比,你认为公平吗?为什么?
b.怎样比才够公平?
学情分析:
[能否从男女生参赛人数上的不同去衡量.]
二.小组合作探究:
问题:
1.怎样求男生,女生平均每人套中的个数呢?
2.你认为先求什么?再求什么?
学法指导:
a.明确总数份数和每份数三者之间的关系.
b.根据求每份数的方法,引导学生探索求平均数的方法.
三.展示交流,点拨提升:
1.探究展示:
学情预设:
男生:6+9+7+6=28(个)
28÷4=7(个)
女生:10+4+7+5+4=30(个)
30÷5=6(个)
说明:7和6就是男女生套圈个数的平均数,它反映了一组数据的一般水平,并不表示每个人套中的实际个数.
2. 质疑:
分别用套圈的总个数去除以他们的什么?(总人数).
3. 精要点拨:
明确:求平均数,要找准和总数对应的份数.
方法:总数÷份数=平均数
过渡:
师:除了用先合后分的方法求平均数,还有其他求平均数的方法吗?
课件演示:移多补少的方法.
说明:
先合后分和移多补少都是求平均数的方法,在计算时,我们可以选用先合后分的方法求平均数,而移多补少的方法适合于操作时使用.
4. 平均数的范围:
观察与思考:
平均数7和6,相比它们所在的一组数据的大小,有什么特点?
重难点突破:
明确::在一组数据中,平均数比最大的数小,比最小的数大.
四.训练检测,总结反思:
小华家1月~5月用水情况统计表
1月2月 3月 4月 5月
13吨 10 吨 11吨 9吨 12吨
(1).小华家平均每月的用水量在( )吨和( )吨之间.
(2).算一算:平均每月的用水量是多少吨?
[学生独立完成,小组内交流]
想一想:
1. 怎样确定平均数的取值范围?
2. 求平均数的方法是什么?你先求的什么?
归纳与总结:
a.最大的数>平均数>最小的数
b.平均数等于总数除以对应的份数
五.综合实践与应用:
1.想一想,下面的说法是否正确,简单说明理由。
①、小明期中考试语文、数学、英语三门功课的均分是95分,那么他的三门功课一定都是95分.()
②、小马过河:河的平均水深为130厘米,小马身高140厘米,小马过河不会有危险。( ) [学生独立思考后,小组里交流判断依据]
重点明确:
根据平均数的意义,并不表示:1.每门的成绩都是95分,有的高于95分,有的低于95分.
2.处处水深130厘米,有的低于130厘米,而有的地方比130厘米深的多.
2.知识达标:
同学们收集标本,小红收集了14个,小兰收集了12个,小丽收集了11个,小明收集了15个,平均每人收集多少个标本?
[进一步巩固求平均数的方法]
3.智能积累:
三年级的8名同学分两组向灾区捐款,一组捐了220元,二组捐了180元。
①、平均每名同学捐款多少元?
②、平均每组同学捐款多少元?
思考:两道题在解答时,有什么相同点和不同点?
重点明确:
相同点:都是先求捐款的总数.
不同点:各自对应的份数不同.
知识延伸:
小力前5次英语测验的平均分是91分,第6次得了97 分,他6次测验的.平均分是多少分?
六.全课总结:
通过学习,你有什么收获?还有哪些疑惑?
当堂检测:
有3条彩带,长度分别是9厘米,17厘米,10厘米,平均每条彩带长多少厘米?
板书设计:
认识平均数
(一)1.移多补少
2.先合后分 男生:6+9+7+6=28(个)
28÷4=7(个)
女生:10+4+7+5+4=30(个)
30÷5=6(个)
方法:总数÷份数=平均数
(二)平均数的特点
最大的数>平均数>最小的数
教学反思:
“平均数”是苏教版小学数学三年级下册《统计》里面的内容,它与我们的现实生活紧密联系,本课教学把重点放在掌握求平均数的方法上,而难点则是运用平均数的意义分析数据,从而体会到平均数的应用价值。
“平均数”的概念比较抽象,如何让学生初步理解它的概念并掌握正确的求平均数方法?我一开始就设计了贴近学生生活的熟悉的活动情境,通过引导学生观察统计图,获得数学信息,提出数学问题,自主预学和小组合作探究来解决数学问题,掌握问题解决的多种有效方法,引导学生在解决问题的过程中,让学生体会到平均数在生活中的应用价值,较好的完成了本节课的教学目标。这节课我为学生提供了充分的从事数学活动的时间和空间,让学生参与到知识的发生,发展,形成过程中去,引导学生利用数学知识解决实际问题,提高了学生的综合学习能力。
平均数教案 篇6
素质教育目标:
1。知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。
2。能力目标:理解平均数在统计上的意义。
3。情感目标:体会数学与生活的密切联系,培养学生的实践能力。
重点难点
重点:理解平均数的含义。
难点:初步学会简单的求平均数的方法。
教具准备:多媒体课件
教学过程
一、创设情境,提出问题
上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)
师:你们觉得这样分公平吗?怎样才能公平?
学生讨论,指名汇报。
(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)
很好。谁能给这种方法取个名字?(“移多补少法”。板书)
(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)
这种方法也很好!我们也给它取个名字。(“先合再分”板书)。
刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。
教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数
通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)
几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。
师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)
师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。
同学们在生活中还听到过哪些平均数?说一说。(见课件)
看来平均数的用处还真大,同学们要好好学习哟!
二、寻找方法,解决问题。
同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。
第一小组上月获小红星个数统计表
单位:个
叶茹李新吴玉刘超
14111013
第二小组上月获小红星个数统计表
单位:个
叶雨付涛张新江南夏丽
15128119
其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?
生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。
师:那你们说怎么比呢?
生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。
生3:可第一小组比第二小组少了一个人呀!怎么能比?
同学们认为怎样比最合适呢?(平均数)
对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)
下面,我们就各显神通,先求出第一小组的平均数吧!
小组讨论、汇报。
(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)
不错,方法很简洁,他用的什么方法?有不同的方法吗?
(先求出四个人的总个数,再求出平均每人的个数。)
他用的方法就是——先合再分法。
看来,大家都非常聪明,第二小组的平均个数会求吗?
你们觉得这时我们求平均数用哪种方法比较合适?为什么?
学生在练习本上计算,指名板演,集体订正。
为什么这里求得的总数除以的是5而不是4?
(先合再分法)
小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。
我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。
平均数教案 篇7
一、教学过程
(1)谈话导入
师:统计表的相关知识你了解多少?
预设
生1:把收集到的数据进行整理后制成表格,用来分析情况、反映问题,这种表格叫作统计表。
生2:统计表一般包括名称、项目、数量、单位等基本信息。
生3:统计表也分为单式统计表和复式统计表。
生4:制作步骤:一是收集整理数据;二是设计表格;三是填写数据。
师:我们在以前的学习中都接触过哪些统计图?(条形统计图、折线统计图、扇形统计图)
这些统计图的特点同学们还记得吗?这节课我们就来共同复习一下条形统计图的相关知识。(板书课题:条形统计图和平均数)
二、回顾与整理
1、条形统计图的特点。
提问:请同学们回忆一下,我们以前学过的条形统计图有哪些特点?
(学生小组讨论后进行汇报)
教师根据学生的汇报情况进行小结并板书
条形统计图的特点:能够清楚地看出数量的多少。
2、条形统计图的分类。
提问:条形统计图可以分为几类?
在学生充分讨论的基础上指名回答。
预设
生1:条形统计图按照形式来分,可以分为横向条形统计图和纵向条形统计图。
生2:条形统计图按照实际需要可以绘制成单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的`数据。
3、条形统计图的绘制方法。
(1)提问:同学们在制作条形统计图时应注意些什么?
(2)学生充分讨论后指名回答。
预设
生1:注意直条的宽窄应一致。
生2:要注意单位长度。
生3:还要注意美观。
生4:应先在格子图上画出纵轴和横轴,并分别标上名称。
生5:还应在横轴上确定直条的间隔,在纵轴上确定每格代表的数量。
生6:如果是复式条形统计图,不同类别要用不同的颜色或形式的直条加以区分,便于比较。
生7:还要写统计图的名称、日期、单位等。
师:下面就请同学们根据绘制条形统计图的注意事项,结合下面提供的数据信息绘制一幅条形统计图。(学生以小组为单位在方格纸上尝试完成条形统计图,教师巡视指导)
(3)课件出示数据信息:希望小学和光明小学六年级各班人数统计表。
(4)学生绘制出条形统计图后在全班展示,并说出自己的绘制方法。
(5)教师根据学生的汇报总结绘制条形统计图的方法:
①根据纸张的大小,画出两条互相垂直的射线,作为纵轴和横轴。
②在横轴上适当分配直条的位置,确定直条的宽度和间隔。
③在纵轴上确定单位长度,并标出数量和计量单位。
④用不同的图例区分两组数据。
⑤根据数据的大小,画出长短不同的直条,并标上统计图的名称、制图日期和图例。
平均数教案 篇8
教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的'一样多。
3、引入“平均数”象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?
二、学习计算平均数
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、巩固训练
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?
2、根据统计表算一算,三年段平均每班踢几下?
班级三(1)三(2)三(3)三(4)
四、小结:
通过这节课的学习,你们有什么收获,还有什么问题?
五、布置作业:
练习十一1、2、3
平均数教案 篇9
教材分析:
平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。
本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。
学情分析:
本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。
教学目标:
1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。
重难点:
重点:理解平均数的含义,会求平均数。
难点:平均数的统计意义。教学准备:PPT、教具。
教学过程:
一、激情引入
师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)
师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)
师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)
师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。
二:学习新知
师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)
师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)
师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)
师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。
师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。
师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)
师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)
师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。
师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。
师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。
师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?
三、知识运用
师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?
(播放踢毽比赛的视频)
师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?
生:不公平,人数不同,不应该比较总数,应该比较平均数。
师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。
师:那同学生动手计算出男女两队的平均成绩,判出胜负。
师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)
师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。
四、课堂小结
师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)
五、作业
92页做一做第二题
六、板书
平均数代表总体水平
总数÷ 份数=平均数
(14+12+11+15)÷ 4 =13(个)
最大的数>平均数>最小的数
平均数教案 篇10
第一步:引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
第二步:讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:
95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92
甲小组:X==91(分)
甲小组做得对吗?有不同求法吗?
乙小组:
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a,则每个数分别与90的差为:
5、9、-3、0、0、-4、……、2、2
求出以上新的一组数的平均数X’=1
所以原数组的平均数为X=X’+90=91
想一想,丙小组的计算对吗?
2、议一议:问:求平均数有哪几种方法?
①平均数:一般地,如果有n个数x1,x2,……,xn,那么,叫做这n个数的平均数,读作“x拔”。
②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次,(这里f1+f2+……+fk=n),那么,根据平均数的定义,这n个数的平均数可以表示为 这样求得的平均数叫做加权平均数,其中f1,f2,……,fk叫做权。
③利用基准求平均数X=X’+a
问:以上几种求法各有什么特点呢?
公式(1)适用于数据较小,且较分散。
公式(2)适用于出现较多重复数据。
公式(3)适用于数据较为接近于某一数据。
平均数教案 篇11
教学目标:
1、在具体问题情境中,感受求平均数是解决一些问题的需要,使学生进一步明确平均数的特点,丰富对平均数统计意义的理解和认识。
2、能运用平均数解释简单生活现象,掌握平均数计算方法,学会计算简单的平均数。
3、培养学生在解决实际问题过程中,进一步积累分析和处理数据的方法,发展学生的统计意识和观察。
教学重点:
在解决问题的过程中,理解平均数的意义,探索求平均数的方法,并体会到学习平均数的现实价值。
教学难点:
体会平均数在统计的意义上的理解。
一、创设情境,使学生产生需求
1、凭直觉体验平均数的代表性
师:咱们在美术课上学会了剪各种各样的窗花,上周有个班举行了剪五角星的比赛,这次比赛很激烈,你们想知道这次比赛的结果吗
生:(齐)想!
师:那么这节课老师就想把这次比赛的结果给大家说道说道,让大家帮老师参考参考。到底哪个小组该得冠军?
生:(齐)好的
师:剪纸班分成了四个小组,比赛就在这四个小组进行。首先是1小组,1小组有三个人,我呢就随便从这三个人中抽出了一个人。瞧,他一分钟剪了几个?生:5个。
师:我用这个人的成绩代表1小组1人1分钟剪纸的一般水平,合不合理?如果你是我,你会同意我这样做吗?
生:我不同意。万一其他人剪得比他多,那不是不输了。
师:呵呵,当时老师就让其余2个同学也参加了比赛,有趣的事情是他们的比赛成绩很有意思
(师出示后两次剪纸成绩:5个,5个)
师:还真巧,现在你觉得用几表示1组1分钟剪纸的一般水平比较合理了呢?
生:用5。
师:为什么这回用5就行了?
生:因为每个人都是在1分钟剪了5个,用5来表示他1分钟投中的个数最合适了。
2、通过两组求平均数方法,强化对平均数的概念的理解。
(第2组)师:说得有理!也就是说他们三个人剪纸剪得一样多,用5表示他们这1分钟的剪纸水平很合理。看着大家的剪纸水平产不多,在第二组我就随便点了一个参加比赛。我们也一起来看看
平均数教案 篇12
一、教学目的
1.进一步理解平均数的意义。
2.掌握求较复杂的平均数的解题方法,会根据收集到的数据求平均数。
3.培养学生具体问题具体分析的能力。
4.使学生认识到求平均数这一知识在现实生活中的意义,激发学习兴趣。
二、教学重点
使学生掌握较复杂的平均数应用题的解题方法。
三、教学难点
通过学习,使学生能够找准问题与条件,条件与条件之间相对应的关系,运用所掌握的方法灵活解答相关问题。
教学对象分析
低年级学生思维的'基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。
教学策略及教法设计
教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用。
1.多媒体教学
运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性。
2.动手操作法
引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化。
四、教学过程
1.复习较简单的平均数问题
出示复习题。
求平均数需要知道哪两个条件?怎样求平均数?
把复习题稍微改动一下,就是我们今天要学习的较复杂的求平均数问题。
2.学习例题①
(1)指名读题。
(2)启发提问。
①例题①的已知和问题与复习题的有什么不同?
②要求全班平均每人投中多少个,必须先知道什么条件?
③怎样求全班共投中多少个?
怎样求全班共有多少人?
怎样求平均数?,
(3)列综合算式并解答问题。
3.学习例题②
(1)指名读题。
(2)启发提问。
①例题②与刚学过的例题①有什么异同?
②要求全班平均每人投中多少,必须先知道什么条件?
③怎样求全班一共投中多少人?
怎样求全班一共有多少人?
怎样求平均数?
(3)列综合算式并解答问题。
(教师应告诉学生,求得的平均数有时不能恰好除尽,这时只要根据具体情况取近似值就可以了。这道题中已知数只有一位小数,因此得数取一位小数就可以了。)
(4)例题①与例题②有什么不同,解答时应注意什么?
(再次强调例题①与例题②的区别,培养学生具体问题具体分析,防止死套公式。)
4.完成书后“做一做”
五、课堂练习
●基础练习
1.填空。
(1)平均数=( )÷( )
(2)( )×( )=总数量
(3)总份数=( )÷( )
2.选择题。
(1)五年级两个班为希望工程捐款,一班42人共捐168元,二班45人共捐210元,平均每个班捐款多少元?正确列式为 ( )
A.(168+210)÷2 B.(168+210)÷(42+45)
(2)一个工厂前3天烧煤4.8吨:后4天烧煤7.8吨,这个工厂一星期平均每天烧煤多少吨 ( )
A. (7.8+4.8)÷(4—3) B. (4.8+7.8)÷(4+3)
●综合练习
1.劳动实践。
(1)同学们在校办工厂里糊纸盒。第一小组10人,平均每人糊7个;第二小组8人,平均每人糊6个;第三小组5人,平均每人糊4个。三个小组平均每人糊多少个?
(2)春光小学五年级同学参加春季植树,领来白杨树苗140棵,梧桐树苗60棵,桑树苗25棵,共分给5个班种,平均每班种多少棵?
2.下表是四年一班各组同学寒假阅读课外读物情况统计表。全班平均每人看多少本课外读物?(得数保留整数)
各组人数
12
14
13
12
平均每人阅读本数
6
4.5
5
5
●实践与应用
王华同学五次语文、数学单元练习成绩如下:
第一次:语文92.5分 数学100分
第二次:语文88分 数学97分
第三次:语文94分 数学98.5分
第四次:语文98.5分 数学100分
第五次:语文99分 数学97分
先分别算出五次语文、数学两科的平均分,再制成统计表。
王华同学五次语文、数学单元练习成绩统计表
年 月
板书
求平均数
① 五年级一班分成3组投篮球第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
综合算式:(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
② 下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数。)
各组人数
12
11
10
平均每人投中数
2.5
3
3.2
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
(2)全班一共有多少人?
12+11+10=33(人)
(3)全班平均每人投中多少个?
95÷33≈2.9(个)
综合算式:(2.5×12+3×11+3.2×10)÷(12+11+10)≈2.9(个)
答:全班平均每人投中2.9个。
平均数教案 篇13
教学目标:
1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。
2、运用平均数的知识解释简单生活现象、解决简单实际问题的过程专用,进一步积累分析和处理数据的方法,发展统计观念。
3、在活动中,进一步增强与他人交流的意识与能力,提高合作学习的效率。
4、在解决实际问题中,能体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重点:
理解平均数的意义,学会求简单数据的平均数。
教学难点:
理解平均数的意义。
教学准备:
课件、练习纸。
教学过程:
一、问题引入
1、出示例3的主题图
谈话:四年级的男、女生进行套圈比赛,每人套15个圈。你想了解他们的比赛情况吗?
第一轮:
课件出示空白的男、女生套圈成绩统计图,谈话:我们来看这两个小组同学的套圈情况,第一个出场的男生是小刚,女生是小燕(分别出示表示两位同学套中个数的直条),他们各套中多少个?(6、4)谁套的准些?你是怎样看出来的?
谈话:这数字6可以代表男生组的水平,那么女生组的水平可以用?来代替。
第二轮:
谈话:第二个出场的男生分别是小明(课件出示直条6),女生是小娟课件出示直条4),(结合手势,表示整体)比较每组中同学的比赛成绩,你认为是男生套的准还是女生套的准些?你是怎样比较出来的?(预设:生1,比总数,生2,比每个人套中的个数)
提问:这时,你能用哪个数来表示男女生的水平吗?(预设:生1,6、4,生2,12、8)让学生说说分别表示什么意思。
第三轮:
谈话:第三、四个出场的男生是小宇和小杰(7、9),第三、四、五个出场的女生分别是小敏、小芸和小芳(7、5、10)(完整出示条形图),现在,你能比较是男生套的准些还是女生啊?你想怎样来比较呢?学生讨论
提问:我们先来想想,你能用哪个数来表示男女生的一般水平?
生交流,总结出(28、30)来表示不合适,也就是比较总数不合适。
那你认为要找哪个数,才能代表男生组的一般水平呢?(这个数要基本反映一组数的一般水平,在数学上,我们把这种数叫做平均数)(板书课题)
二、探究求平均数的方法
1、探究男生求平均数的方法
谈话:我们先来仔细找一找男生组的这个数,男生的得分各不相同。我们怎么来找这个数呢?套的最多的和最少的能代表整体水平吗?那你觉得这个数应该在什么范围呢?
给大家3分钟,在练习纸上想办法找到男生组的那个数。(练习纸)
交流:
方法一:移多补少(课件演示)
方法二:先合后分(说说各数表示的`意思)
预设:
如果只答出方法一:除了像这样局部调整,得出平均数,还有其它调整方法了吗?给大家一个小提示:可以把所有男生的个数先看成一个整体,然后再把这些个数平均分配给他们。
如果只答出方法二:除了像这样,把他们的得分先加起来,再重新平均分配给他们。还有其它调整方法了吗?给大家一个小提示:能否只移动其中一小部分个数,使得男生的个数一样多。
交流。
小结:同学们,刚才我们用两种不同的方法找到了能表示男生组的这个数7,我们来回顾一下。
一种方法,通过移动来局部调整,把多的一部分,移给少的,从而得到男生的平均个数,你想帮它取个名字吗?(板书“移多补少”);
另一种方法,通过整体重新分配,先把所有的个数先加起来,再平均分给他们,也得到了男生的平均个数,你也能取个名字吗?(板书“求和平分”)。
2、揭示课题
谈话:两种方法都得到了一个新的、能够反映男生组整体情况的数据,就是7个。没错,这个数就是男生组(6、6、7、9)的平均数。
用课件显示图中平均数画线,直观感知平均数的范围。
让学生也在练习纸上画线。请你用一条线把这个数7表示到图上来
提问:得到的这个数7表示什么含义?你觉得这个数是一个怎样的数?能不能说男生组中每人都套中了7个?这个数7与小宇套中的7表示的意思一样吗?平均数比最厉害的个数?比最差的呢?
3、迁移类推,感悟意义
谈话:现在,请你们也来找一找女生组的平均数吧。(学生在练习纸上操作并交流)
说说“6”的意义
交流,提问:现在可以比较出哪组套的准了吗?(完整板书)
提问:仔细观察这两组的平均数,你想说些什么?原来的数据和平均数的大小,有什么发现?高于、低于平均数的有几个?(其中的个数有的比平均数高,有的比平均数低,初步感受平均数的范围)
感受平均数的优势:老师啊觉得平均数真厉害,因为它在人数不等的情况下也能公平的比较出男生和女生哪组的水平高,老师说的对吗?
三、巩固练习,应用平均数
1、书本练一练。(课件逐个出示笔筒)
第1个笔筒有( )枝,第2个有( )枝,第3个笔筒有( )枝。
怎样移动笔筒中的铅笔,找到平均每个笔筒有多少枝铅笔。(课件动态显示移多补少的过程,然后逐步变化为条形图)我们也可以用条形统计图来表示,这样更直观。(显示移的过程)
交流:当然,你还可以怎样来解决这个问题?(求和平分)
如果用求和平分,怎么计算?综合算式?
2、第一题
出示丝带图,提问:这时你能用移多补少的方法一下子找出它们的平均数吗?
估一估,平均长度到哪儿?
想一想,应该在多少厘米到多少厘米之间?(平均数在最小数和最大数之间)
算一算,让学生独立列式解答,再交流
提问:如果每条丝带都增加1厘米,平均长度会有什么变化?(相当于每条丝带的长度增加了1厘米,也就是平均长度在原来的基础上增加1厘米)
如果把其中一条丝带的长增加3厘米,3条丝带的平均长度是多少厘米?如果减少3厘米呢?(刚刚每条丝带增加1厘米,总体增加了3厘米,那么现在呢?)
指出:一组数中有一个数据变化了,这组数据的平均数也会发生变化,平均数很敏感。
3、第4题(假如我当经理)
先估计一下苹果和橘子平均每天卖出的箱数,再同桌分工计算,然后画出表示平均数的那条线。
提问:如果你是水果店的经理,看到这样的数据和平均数的情况,你会有什么想法?
4、第3题(篮球队员的身高)
提问:小强是学习篮球队队员,他身高155厘米,可能吗?学校篮球队可能有身高超过160厘米的队员吗?
(出示篮球队5名队员的身高统计表)
小结:同学们,平均数是反映一组数据整体情况的数,如果只知道平均数,要去推测其中一个数据是多少,这个数据会有很多种可能性,这就体现了依据平均去推测其中一个数据的(不确定性)。
但是,知道了一组数据的每一个数据,可以用“移多补少”或者“先合后分”明确地得到平均数是多少,体现了求平均数的(确定性)
思考:如果姚明加入学校篮球队,平均身高会如何变化呢?(图片显示)
出示现在的平均身高,提问:这时得到的平均身高,具有什么样的特点?为什么增加了姚明,小队员的身高都在平均数一下了?(太高的人,对平均数的影响很大,所以姚明的身高在这组数据中属于极端数据,具有极端数据的话,平均数就变得不一样了)
介绍:在生活中,也会遇到像这种不一样的平均数,你想知道吗?课件出示“你知道吗?”(生读)
谈话:通过xx的介绍,我们对平均数又有了一些新的认识,那么我们就带这这个新认识去看看吴萌的诗朗诵比赛吧。
完成练习八第9题。(口答综合算式)
四、总结经验,感悟平均数。
通过这节课,你有什么收获?你对平均数有那些认识?
总结:通过今天的学习,我们知道平均数在生活中有很大的作用,愿大家能带上今天的学习内容,更好地认识生活中与平均数有关的各种问题。
平均数教案 篇14
教学目标
知识技能:结合解决问题的过程,使学生理解平均数的含义,初步掌握求平均数的方法,体会平均数的必要性,能根据简单的数据解决一些简单的实际问题。
过程与方法:在合作探究与交流的过程中体验运用所学知识,理解平均数。
情感态度:向学生渗透统计思想,使学生感悟到数学知识内在联系的逻辑之美,进而培养好数学的信心。
教学重点
明确平均数的意义,掌握求简单平均数的方法。
教学难点
通过进一步的操作和思考,运用平均数的相关知识解决问题体会平均数的意义。
教法学法
操作法、观察法、自主、合作、探究
教学准备
课件,表格。
教学过程
一、创设情境,激发兴趣
游戏导入:同学们看过最强大脑吗?今天这节课,老师想在我们选出属于我们班的最强大脑,你们想挑战吗?
出示游戏规则:课件出示数字,学生进行活动,保留游戏结果,待最后揭晓答案。
设计意图:给学生留有神秘猜想的空间,使学生有浓厚的接受新知的兴趣。
二、探究交流,解决问题
(一)认识平均数
淘气记住几个数字?
1、引导思考:平均每次记住6个数字是怎么得来的?
2、学生合作交流,反馈
A、移多补少
B、总数÷个数=平均数
3、引出:平均数是一组数据平均水平的代表。“6”是匀出来的.。
(二)生活中的平均数。
1、学生举例说
2、计算平均数,思考极端数对平均数的影响。
小红语文99分,数学100分,英语95分,平均分多少分?再加一门科学46分,均分会有什么变化?
思考:平均分在什么范围内?大约是多少?并计算平均分。
同桌合作交流,全班汇报。
小结:极端数据会影响平均数的结果。
设计意图:通过学生熟悉不过的考试分数例子,来内化极端数字对平均数的影响。这样理解起来更容易。
(三)联系实际,拓展应用
根据平均数知识,解释现象。
每小组选做一题,小组合作交流思想,全班汇报。
1、评委打分;
2、争做小法官
3、猜年龄
师:揭晓答案:38岁、9岁、8岁、11岁、8岁、12岁、8岁、9岁、8岁、9岁
设计意图:让学生体会平均数是一组数据的平均水平的体现,但每一个数字都会影响平均数。
4、计算自己记数水平,评选本班最强大脑。
(四)课堂小结
谈谈这节课你的收获。
板书设计
平均数
移多补少
总数÷个数=平均数
《平均数》 教案这篇文章共2848字。