平行四边形的面积教学设计

短文网

2025-10-04教案

短文网整理的平行四边形的面积教学设计(精选36篇),快来看看吧,希望对您有所帮助。

平行四边形的面积教学设计 篇1

一、课前引入、渗透转化。

1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

2、播放制作七巧板的视频。

3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

二、创设情境,揭示课题。

1、电子白板导出两个花坛,比一比,哪个大?

2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

三、对手操作,探究方法。

1、利用数方格,初步探究

2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的`方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的`铺垫。导出“初步探究学习卡”

四、白板演示,验证猜想。

1、探索把一个平行四边形转化成已学习过的图形。

2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

3、平行四边形的面积=底×高

4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

五、巩固练习,加深理解。

1、课件出示例1

2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

六、课堂小结,反思回顾。

回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

平行四边形的面积教学设计 篇2

一、教学内容:

平行四边形的面积(一)。

二、教学目标

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.使学生通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

3.培养学生初步的逻辑思维能力及空间概念,激发学生的创造意识和探究精神。

三、教学重难点

重点:推导平行四边形的面积计算公式

难点:会计算平行四边形的面积

四、教具学具

一个平行四边形纸片和一把手工剪刀,会移动的平行四边形教具,课件。

五、教学过程

(一)、激趣导入

投影出示北关小学图片(大门、门后、教学楼、西楼等),说说你发现了哪此图形,你会计算它们的面积吗?

学生回答出长方形、正方形、圆形、三角形等,并说出才长方形和正方形的面积计算公式,老师拿出平行那个四边形卡片,让学生说出图形,然后老师又问:“那么平行四边形的面积该如何计算呢?它和哪些因素有关呢?

带着这个疑问,老师给同学们讲了一个故事。《熊出没》里,吉吉国王给熊大和熊二各分了一块地,熊大是平行四边形的,熊二是长方形的。有一天熊二闲来无事,绕着两块地走了一圈,发现熊大的地需要200步,他的地需要180步,熊二不开心了,觉得熊大的地比较大,非要跟熊大换。那同学们,你们觉得着两块地哪块大呢?(引出问题)

生1:一样大。生2:熊大的大。

师:那今天我们就一起来探究这个新课题。板书:平行四边形的面积。

(二)教学实施

1、数方格

(1)师:我们在研究长方形面积的计算方法时用过数方格的方法来计算面积的大小。现在请同学也用同样的方法算出这个平行四边形的面积。(投影出示画着长方形和平行四边形的方格纸说明:每一个方格表示1cm2,不满一格的都按半格计算。请同学们数出数据,并填在教材第87页的.表中。

(2)比较。

提问:观察表格中的数据,你发现了什么?

平行四边形底高面积

6cm4cm24cm2

长方形长宽面积

6cm4cm24cm2

同桌相互讨论,得出结论:平行四边形和长方形的底与长、高与宽及面积分别相等,这个平行四边形的面积等于它的底乘高,这个长方形的面积等于它的长乘宽。

(3)小结

从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,而且不能算得精确。特别是较大的平行四边形,像一块平行四边形菜地的面积,用数方格的方法就不好数了。因此我们也要像求长方形面积那样,找出平行四边形的面积计算公式。

2.通过动手操作,推导平行四边形面积的计算公式。

(1)用数方格的方法我们已经发现平行四边形的面积等于底乘高。那么,是不是所有的平行四边形都可以用这种方法求面积呢?下面就以小组为单位研究一下。我们已经会计算长方形的面积了,能不能把一个平行四边形转化成一个长方形呢?想一想该怎么做。拿出准备好的平行四边形进行剪拼。

(2)请学生到实物投影前演示自己剪拼的过程。教师用投影演示“剪一平移一拼”的过程。

(3)引导学生比较。(黑板上贴出剪拼成的长方形和原来的平行四边形)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么关系?

③这个长方形的宽与平行四边形的高有什么关系?

小组讨论后,请代表汇报,教师归纳并板书:

长方形的面积=长X宽

平行四边形的面积=底x高

(3).教师指出用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高,请同学们用字母表示平行四边形的面积。

板书:S=ah

师:平行四边形的高有很多条,还有的是不同方向,是不是底乘任意高就是平行四边形的面积呢?

生:不是。底必须乘和它对应的高,才是平行四边形的面积。

出示图片

生通过观察得出:同(等)底等高的平行四边形面积相等。

师:回忆一下,刚才我们是怎样一步一步地研究推导出平行四边形面积的计算公式的?学生回答,教师出示结论。

(4)运用平行四边形的面积公式解决教材第88页例1。

师:从题中找出平行四边形的面积所需的各个量。

根据字母公式:S=ah,将底是6m,高是4m,直接代入公式即可求解。

学生口述,教师板书。

S=ah......先写字母代入公式=6×4......代入数求值=24(m2)......加单位名称

答:平行四边形花坛的面积是24m2。

六、巩固提高

1、填空题,让学生可以灵活运用新知,巩固加强记忆。

(1)把一个长方形木框拉成一个平行四边形,()不变,它的高和面积()。(2)()。

学生利用老师发的可移动的平行四边形教具进行操作得出结论。

2、计算平行四边形面积。

有两种方法进行计算,体验平行四边形的面积是底乘对应的高。

七、课堂小结

八、课后作业

1.从课本第89页练习十九中选取;

2.完成练习册本课时的习题。

九、课后反思

本节课教学我充分让学生自己参与学习,让学生数方格、剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

十、板书

平行四边形的面积

如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形的面积计算公式可以写成:S=ah。

平行四边形的面积教学设计 篇3

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

教学目标

1、知识与技能

1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2)使学生理解转化的思想,初步学会运用转化法来解决问题。

3)培养学生的合作意识和自主探究解决问题的能力。

2、过程与方法

让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

3、情感态度与价值观

通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

教学重点、难点

教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教学准备:

多媒体课件、平行四边形学具等。

教学过程:

一、设置悬念激发兴趣

师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

[学情预设:摇头或不知道。]

(出示:中国版图)

师:请大家仔细观察,山西省近似我们学过的什么平面图形?

[学情预设:学生根据观察可能会说:四边形或平行四边形。]

师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]

师:对,这节课我们就一起来研究“平行四边形的面积”。

(引出课题并板书:平行四边形的面积)

[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]

二、动手操作引发欲望

1、回忆平行四边形的底和高。

师:同学们,平行四边形有哪些特征,你们还记得吗?

[学情预设:

生1:平行四边形对边平行、对角相等。

生2:还有底和高。]

师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

[学情预设:学生根据不同的高,找到所对应的底。]

师:由此,你发现了什么?

生:底要和高相对应。

师:对,这一点值得注意。

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]

2、第一次探究

师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

(小组活动,教师巡视)

学情预设:

生1:直接数。

生2:间接数。

生3:沿边上的高剪开。

生4:沿中间的高剪开。

生5:沿两边的高剪开。

师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

(小组汇报)

[学情预设:组1:用直接数方格的方法。]

[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]

师:哪个小组和他们的方法不一样?

学情预设:

组2:间接数。

组3:沿边上的高剪开。

组4:沿中间的高剪开。

组5:沿两边的高剪开。

师:由此,你又发现了什么?

小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]

3、第二次探究

师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的`方格纸数出来吗?

师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

生:不能。

师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

生:有。

[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]

(板书:长方形的面积=长×宽

平行四边形的面积=底×高)

师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

[学情预设:学生汇报自学成果,教师板书字母公式。]

师:用字母表示平行四边形的面积公式:S=ah

小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

即:平行四边形的面积=底×高

[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]

三、联系实际解决问题。

师:解决课前遗留问题:山西省的面积大约有多大?

[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]

四、课后延伸渗透转化

师:吉林省近似学过的什么平面图形?

生:三角形

师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]

五、板书设计:

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

平行四边形的面积教学设计 篇4

1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。

探索并掌握平行四边形的面积计算方法。

理解平行四边形面积计算公式的推导过程。

电子白板课件、平行四边形模型、剪刀、初步探究学习卡

一、课前引入、渗透转化。

1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

2、播放制作七巧板的视频。

3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的`积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

二、创设情境,揭示课题。

1、电子白板导出两个花坛,比一比,哪个大?

2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

三、对手操作,探究方法。

1、利用数方格,初步探究

2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”

四、白板演示,验证猜想。

1、探索把一个平行四边形转化成已学习过的图形。

2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

3、平行四边形的面积=底×高

4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

五、巩固练习,加深理解。

1、课件出示例1

2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

六、课堂小结,反思回顾。

回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

平行四边形的面积教学设计 篇5

学习目标

1、利用自己的方法,探索并掌握平行四边形面积的计算公式,会计算平行四边形的面积。

2、重点理解拼成的长方形和原来平行四边形的关系

教学过程:

一:回顾以前的知识、

师:今天我们学习什么知识?

生平行四边形的面积

师:先让我们汇报一下以前学过的相关知识吧?

生:长方形的面积=长乘宽正方形的面积=边长乘边长

平行四边形对边平行且相等平行四边形有无数高(出示课件)

师:小结从平行四边形的任何一边的一点,向对边都可以做一条高

二:我有成果展示

1师:通过预习,你有什么成果要向大家展示的?

生:汇报

2:师:好,大家自己都学会了这么多有关平行四边形面积的知识,现在,谁能简单的猜猜我们本节课的学习目标是什么?

3:师出示学习目标。

4:依据学习目标,你有什么疑问要提出吗?

生:汇报

师:不管有什么疑问,我们通过以下环节,看看是否其他同学能帮助你解决?

三:自主探究

一:拿出导学案:

师:谁能汇报一下,你完成表格的情况。(教材第80页的表格)

生:汇报

师:谁能说一说,平行四边形的面积,你是怎样知道的?

谁能说一说,你是怎样数出来的吗?

生:我先数整个格的是20个,在数八个半格的是整四个格,合起来是24个整个,也就是24平方米

师:我们也可以用平移的办法来得出平行四边形的面积,(课件演示)

师:那长方形的面积呢?

生可数出来,也可以用长乘宽计算

师:请大家观察表格的数据,你发现了什么?

生:平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,平行四边形的面积等于长方形的面积。

生:我们可以看出平行四边形面积=底乘高

师:我们如果用数方格的方法来计算平行四边形的面积,你会感觉怎样?

生麻烦

三合作探究

师:那我们可以用什么方法研究呢?

生:把平行四边形转化成长方形。

师:你是怎样把平行四边形转化成长方形的吗,请拿着你的平行四边形学具边演示边说。

生:过平行四边形一个顶点,沿着平行四边形地边上的高剪开。

师还有其他不同的剪法吗?

生:沿着平行四边形这一条边上的高剪开。

师:同时出示课件

师:听了同学们的简拼方法,你还有什们疑问吗?

生:老师为什么要沿着高剪开呢?

师:谁能帮助这位同学回答。

生:这样剪可以使两边变成直角,变成我们学过的长方形。

师刚才有的同学说沿高剪成了正方形,者必须满足什么条件呢?

生:平行四边的高等于平行四边形的底,这是特殊情况。

师:小结我们从平行四边形一组对边任意一点作高,通过平移都可拼成长方形或正方形。(课件出示结论)

师:观察拼成的长方形和原来的平行四边形,你能发现什么?

小组合作交流自己预习的'成果。

请生汇报。

生:拼成长方形的面积和平行四边形的面积相等,面积不变。

拼成的长方形的长等于原来平行四边形的底,长方形的宽等于平行四边形的高

师:既然面积没变,什么变了呢?形状变了。

师:还有什么变了?

生沉默

师:周长变了吗?

生:变了

师:变大了还是变小了呢?谁能说说?

生:边指边说长方形的长就是平行四边形的底,长方形的宽比平行四边形高变短了,所以周长变小了。

师:给予积极肯定。

师:既然长方形的面积=长乘宽,那么同学们可以推导出平行四边形的面积吗?

生:平行四边形的面积=底乘高

师:为什么平行四边形的面积等于底乘高?

生:因为拼成的长方形的长等于平行四边形的底,宽等于高,长方形的面积等于长乘宽,所以平行四边形的面积的等于底乘高

师:用字母怎样表示?

生:s=ab

师:小结刚才你们用剪拼的方法,将平行四边形转化成长方形,用旧知解决了新问题,非常好!实际这种解决问题的方法是应用了数学转化方法,今后在数学中,我们会经常用到。

师:出示例1:平行四边形的花坛的底是6m,高是4m,它的面积是多少?

生:自己解决。(集体纠正)

四:达标测评

一:人人轻松来过关

选择条件计算平行四边形的面积(单位:米)

二:迈开大步跨过关:

(看大屏幕略)

三:大胆跳起闯过关:

(1)平行四边形的底越长,它的面积就越大。()

(2)形状不同的两个平行四边形,面积可能相等。()

(3)把一个长方形木框拉成一个平行四边形木框,周长不变,面积也不变。()

四:一题多解

人民公园有一个平行四边形的草坪,草坪上有一个长30m,宽2.5m的甬道,求草坪的面积

平行四边形的面积教学设计 篇6

[教学目标]

1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

[教学重点、难点]

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

[教具、学具准备]

多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

[教学过程]

一、复习旧知,导入新课。

1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

师板书:长方形的面积=长×宽

师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

二、动手实践,探究发现。

1、剪拼图形,渗透转化。

(1)小组研究

老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

(2)汇报结果

第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

板节课题:平行四边形面积计算

2、动手实践,探究发现。

(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

(2)学生重新剪拼,互相探讨。

(3)汇报讨论结果。

师板书:平行四边形的面积=底×高

(4)让学生齐读:平行四边形的面积等于底乘以高。

(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

(必须知道平行四边形的底和高)

课件展示讨论题:平行四边形的底和高是否相对应。

(6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)

(7)比较研究方法。

三、分层训练,理解内化。

课件显示练习题

第一层:基本练习

第二层:综合练习

第三层:扩展练习

下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

四、课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

附说课稿:

一、 教材与与学情分析

《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。

小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

教学目标:

1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

教学重点、难点:

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教具、学具准备:

多媒体课件、长方形纸、剪刀、直尺、

二、理念设计:

1、运用信息技术手段,优化数学课堂教学。

2、体现“数学从生活中来,再回到生活中去”。

3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。

三、教法、学法

教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。

学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

四、教学程序

为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。

(一)复习旧知,导入新课。

新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

(二)动手实践,探究发现。

1、剪拼图形,渗透转化。

心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的'面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。

2、动手实践,探究发现。

在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。

当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。

(三)分层训练,理解内化。

对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:

第一层:基本练习:

计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

第二层:综合练习:

通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

第三层:扩展练习:

1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

2、把平行四边形模型拉近,它们的面积发生变化了吗?

通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。

整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

(四)课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。

当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。

平行四边形的面积教学设计 篇7

教学目标:

1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。

2、能应用平行四边形的面积计算公式解决实际问题。

3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。

教学重点:

平行四边形的面积计算公式的推导与应用教学难点:

理解和掌握用割补法推推导平行四边形的面积计算公式

教具准备:

平行四边形纸、长方形纸、多媒体学具准备:

平行四边形纸、剪刀、尺子教学过程:

一、创设情景,引出课题

1、创设情景

同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)

2、引出课题

提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的.面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。

二、新课

1、自学,用数方格的方法计算平行四边形的面积。

(1)多媒体出示P80图和表格

(2)读一读数方格时要注意的地方

(一个方格代表1平方米,不满一格都按半格计算)

(3)让学生在电脑上填写表格

(4)提问:观察表格的数据,你发现了什么?

(5)学生汇报。

(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。

2、推导平行四边形的面积计算公式

(1)猜想

如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。

(2)验证

a、动手操作

剪——平移——拼,把一个平行四边形变成一个长方形。

b、讨论:

1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?

2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?

平行四边形的面积教学设计 篇8

教学目标:

1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2.通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3.培养学生的合作意识,初步渗透平移和转化的思想。

教学重点:

探索并掌握平行四边形的面积计算方法。

教学难点:

理解平行四边形面积计算公式的推导过程。

教具准备:

一个长方形、一个平行四边形,PPT课件一套。

学具准备:

平行四边形、剪刀、三角板。

一、以旧引新,激起质疑

1.同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?

2.老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)

二、动手操作,探究方法

(一)利用方格,初步探究

1.下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!

2.学生独立数出平行四边形和长方形的面积。

3.谁来说说你数的结果?学生汇报

4.你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现?

你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。

我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢?

(二)动手操作,推导公式

1.动手操作

a.下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的.图形呢?怎么变?

b.静静地想,想好了吗?

c.动手操作,把这个平行四边形变成以前学过的图形。

d.谁来说说,你把平行四边形变成了什么图形,怎么变的?

2.合作探究

a.我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么?

b. 小组讨论

c. 汇报。

3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式用字母怎么表示呢?

(三)指导点拨,总结方法

刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。

孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!

例1.读题后独立解答一生板演

师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗?

三、解决问题,拓展延伸

1、练习十五1题。

2、练习十五3题。

3、下面两个平行四边形,它们的面积一样大吗?

4、你能算出芸芸家这块菜地的面积吗?

四、全课小结,完善新知

这节课你有什么收获?

这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!

平行四边形的面积教学设计 篇9

教学内容:

人教版小学《数学》五年级上册,平行四边形的面积。

教学目标:

1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

教学重点:

探索并掌握平行四边形的面积计算公式。

教学难点

理解平行四边形的面积计算公式的推导过程。

教学过程:

一、巧设情境,铺垫导入

师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?

(根据学生的回答,教师适时板书:长方形的面积=长×宽)

师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)

师:这样一拉,形状变了,面积变了吗?

师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?

(平行四边形的面积等于相邻两条边的乘积)

师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。

请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确.拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.

师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)

二、合作探索,迁移创造

1、图形转换

师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)

师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)

2、探讨联系

师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)

师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

3、推导公式

师:我们知道长方形的.面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)

(教师根据学生回答板书:平行四边形的面积=底×高)

师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

(教师根据学生回答板书:S=ah)

4、验证公式

师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)

师:计算出来的结果和我们数方格得出的结果一样吗?(一样)

师:这证明我们所推导出来的平行四边形面积公式是正确的。

5、提问质疑

师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)

三、层层递进,拓展深化

1、算一算

师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

2、选一选

师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

3、画一画

师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)

4、想一想

师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)

师:你发现了什么规律?(引导学生理解等底等高的平行四边形

面积相等。)

四、总结全课,提高认识

回顾刚才我们的学习过程,你有什么收获?

教学反思:

本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。

1、前后呼应,浑然一体

利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。

把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。

2、合作探索,迁移创造

在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。

平行四边形的面积教学设计 篇10

教学目标:

1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。

重点、难点:

教学重点:掌握平行四边形面积计算公式。

教学难点:平行四边形面积计算公式的推导过程。

教学准备:

教具准备:多媒体课件,平行四边形的图形。

学具准备:剪刀、平行四边形纸片。

教学过程:

一、情境导入

1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。

2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的西头,可他家的地却在村子的东头。太不方便了,怎么办呢?

通过交换土地的想法揭示课题《平行四边形的面积》

【设计意图:教师选取孙悟空和猪八戒拼图的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的.联系,更能激发求知欲望。】

二、自主学习

1.剪一剪,拼一拼。

师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)

2.探讨联系

师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?

(1)学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。

(2)小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

(3)全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。

3.推导公式

师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)

师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】

三、巩固练习

师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。

【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】

四、课堂小结

这节课你有什么收获?

【设计意图:使学生回顾、梳理本节课的学习内容。】

平行四边形的面积教学设计 篇11

教学目标:

1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。

2、能应用平行四边形的面积计算公式解决实际问题。

3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。

教学重点:

平行四边形的面积计算公式的推导与应用教学难点:

理解和掌握用割补法推推导平行四边形的面积计算公式

教具准备:

平行四边形纸、长方形纸、多媒体学具准备:

平行四边形纸、剪刀、尺子教学过程:

一、创设情景,引出课题

1、创设情景

同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)

2、引出课题

提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的`面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。

二、新课

1、自学,用数方格的方法计算平行四边形的面积。

(1)多媒体出示P80图和表格

(2)读一读数方格时要注意的地方

(一个方格代表1平方米,不满一格都按半格计算)

(3)让学生在电脑上填写表格

(4)提问:观察表格的数据,你发现了什么?

(5)学生汇报。

(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。

2、推导平行四边形的面积计算公式

(1)猜想

如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。

(2)验证

a、动手操作

剪——平移——拼,把一个平行四边形变成一个长方形。

b、讨论:

1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?

2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?

平行四边形的面积教学设计 篇12

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

教学目标

1.知识与技能

1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2)使学生理解转化的思想,初步学会运用转化法来解决问题。

3)培养学生的合作意识和自主探究解决问题的能力。

2.过程与方法

让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

3.情感态度与价值观

通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

教学重点、难点

教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教学准备:

多媒体课件、平行四边形学具等。

教学过程:

一、设置悬念激发兴趣

师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

[学情预设:摇头或不知道。]

(出示:中国版图)

师:请大家仔细观察,山西省近似我们学过的什么平面图形?

[学情预设:学生根据观察可能会说:四边形或平行四边形。]

师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]

师:对,这节课我们就一起来研究“平行四边形的面积”。

(引出课题并板书:平行四边形的面积)

[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]

二、动手操作引发欲望

1、回忆平行四边形的底和高。

师:同学们,平行四边形有哪些特征,你们还记得吗?

[学情预设:

生1:平行四边形对边平行、对角相等。

生2:还有底和高。]

师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

[学情预设:学生根据不同的高,找到所对应的底。]

师:由此,你发现了什么?

生:底要和高相对应。

师:对,这一点值得注意。

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]

2、第一次探究

师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

(小组活动,教师巡视)

[学情预设:

生1:直接数。

生2:间接数。

生3:沿边上的高剪开。

生4:沿中间的高剪开。

生5:沿两边的高剪开。……]

师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

(小组汇报)

[学情预设:

组1:用直接数方格的.方法。]

[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]

师:哪个小组和他们的方法不一样?

[学情预设:

组2:间接数。

组3:沿边上的高剪开。

组4:沿中间的高剪开。

组5:沿两边的高剪开。……]

师:由此,你又发现了什么?

小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]

3、第二次探究

师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?

师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

生:不能。

师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

生:有。

[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]

(板书:长方形的面积=长×宽

平行四边形的面积=底×高)

师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

[学情预设:学生汇报自学成果,教师板书字母公式。]

师:用字母表示平行四边形的面积公式:S=ah

小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

即:平行四边形的面积=底×高

[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]

三、联系实际解决问题。

师:解决课前遗留问题:山西省的面积大约有多大?

[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]

四、课后延伸渗透转化

师:吉林省近似学过的什么平面图形?

生:三角形

师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]

五、板书设计:

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

平行四边形的面积教学设计 篇13

教学内容

教材第79~81页,平行四边形的面积。

教学目标

1、知识与技能:

理解并掌握平行四边形面积的计算公式,能正确计算。

2、过程与方法:

通过操作、观察和比较,使学生运用转化的方法经历计算公式的推导过程,进一步发展学生思维。

3、情感态度与价值观:

引导学生运用转化的思想探索知识的变化规律,培养学生分析和解决问题的能力;通过动手操作,使学生感悟数学知识的内在联系,激发学习兴趣。

教学重难点

重点:掌握平行四边形的面积计算公式,并能正确运用。

难点:平行四边形面积计算公式的推导。

教具、学具准备

多媒体课件,展台,平行四边形学具纸片,剪刀,尺子等。

教学过程

一、导出课题

课件出示图形,怎样求面积呢?生回答。数格子的方法比较麻烦,可以用割补法,通过剪、拼,转化成长方形,来求出面积。导出课题。

二、探究新知

1、动手操作,探究新知

展示学习目标,课件出示图形,怎样求这个平行四边形的面积呢?

小组合作,动手操作,寻找平行四边形面积的计算方法。

①生用平行四边形纸片和剪刀进行剪拼。

②师巡视,个别指导。

③生拼好后,指名上黑板实物投影拼得方法和过程。

④师课件演示剪拼过程。

得知平行四边形的面积和拼成的长方形的面积相等。

2、引导推导平行四边形面积计算公式。

师:给你一个平行四边形水池,求面积,还能去剪么?

生:不能。

师:那想一个什么方法来求平行四边形的。面积呢?

小组讨论。观察拼出的长方形和原来的平行四边形,你能根据它们的面积相等和长方形的面积公式推导出平行四边形面积计算公式么?

多媒体课件演示整个推导过程。

①拼成的长方形的面积与原来平行四边形面积相等,②拼成的长方形的长与原来平行四边形的底相等,③拼成的长方形的'长与原来平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高

用字母表示平行四边形的面积公式S=ah

师强调:高必须是和底对应的高。

[设计意图:让学生参与学习新知的全过程,充分发挥学生的主体作用,让学生通过自主探索,合作交流,“创造”出新知,发展学生的能力,让学生体验到成功的喜悦]

三、应用公式,解决问题

1、独立完计算,课件出示图形。

S=8×5=40平方厘米S=12×7=84平方米

2、提高练习

一个停车位是平行四边形,它的面积是15㎡,底是6m。它的高是多少?

h=S÷a=15÷6=

答:它的高是。

3、拓展延伸

用木条做成一个长方形框,把它拉成一个平行四边形,周长和面积有变化吗?

(周长不变;底不变,高变小,所以面积变小。)

[设计意图:通过多种形式的练习,巩固所学的知识,解决生活中的数学问题,加强数学与生活的联系。]

4、全课总结

师:说一说这节课,你学会了什么?

板书设计

长方形的面积=长×宽

↓ ↓ ↓

平行四边形的面积=底×高

S表示面积,a表示底,h表示高。那么面积公式就是S = ah

平行四边形的面积教学设计 篇14

教学内容分析:

平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。

设计的理念:

学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。

教学目标:

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。

3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。

教学重点:

使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:

通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。

教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。

教学过程:

一、创设情境、导入新课。

多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。

师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

生:会计算长方形面积,不会计算平行四边形的面积。

师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)

[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]

二、探究平行四边形的面积。

1.用数方格的方法探索计算面积。

师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?

生1:我想把平行四边形拉成一个长方形。

生2:我想用数方格子的方法来计算。

……

师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。

(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。

说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一起来交流一下是是怎样数的,请把数出的结果填在表格中。

同桌合作完成:

4.汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?

平行四边形

面积

长方形

面积

通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]

2.推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?

生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。

师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。

(3)分组合作动手操作,探索图形的转化。

各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。

生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。

引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。

用多媒体演示平移和拼的过程。剪——平移——拼。

[设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]

(4)小组讨论,合作交流,探索平行四边形的面积计算公式。

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论后,根据学生回答情况出示讨论题目给学生。

拼出的长方形和原来的平行四边形相比,面积变了没有?

拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的`面积之间的关系,掌握了平行四边形面积的计算方法。]

(5)小组交流汇报,归纳叙述出自己的推导过程。

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?

因为:长方形的面积=长×宽,

所以:平行四边形的面积=底×高

如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah

学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)

3、平行四边形面积计算公式的应用。

既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。

(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?

生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。

(2)运用平行四边形面积计算公式让学生自学例1。

师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。

学生板书例1的结果;s=ah=6×4=24(平方米)

[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]

三、巩固拓展。

1、给下面各题目填空。

(1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。

(2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。

(3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。

[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]

2、你能想办法求出下面两个平行四边形的面积吗?

3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。

[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]

四、课堂总结

通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。

请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?

板书设计:

长方形的面积=长×宽

平行四边形的面积=底×高

用字母表示是:S=a×h=a·h=ah

平行四边形的面积教学设计(精选23篇)

作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。一份好的教学设计是什么样子的呢?下面是小编精心整理的平行四边形的面积教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

平行四边形的面积教学设计 篇15

教学目标

1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

2.能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。

3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。

4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。

难点平行四边形面积公式的推导过程。

教具1、多媒体计算机及课件;

2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

教学过程

一、质疑引新:

1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

(出示平行四边形)这又是什么图形?指出平行四边形的底和高?

2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]----------请同学们打开课本69页。

二、引导探求:

㈠、提出问题:

1、用数方格法求平行四边形的面积

⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的`方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

⑵、数出方格图中平行四边形的面积。提问:

A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)

B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

1平方厘米

3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

电脑逐步显示:平行四边形的面积=长方形的面积。

平行四边形的底=长方形的长;

平行四边形的高=长方形的宽;

引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

电脑展示:(1)底、高、不变,面积不变。

(2)底、高改变,面积变化。

你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

㈡、推导公式:

1、小组合作研究:

长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

⑴、怎样剪拼才能将平行四边形转化成长方形?

⑵、转化后的图形与原平行四边形有什么关系?

(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

2、各小组实验操作,教师巡视指导。

3、各小组交流实验情况:

⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!

⑵、有没有不同的剪拼方法?(继续请同学演示)。

⑶、电脑演示各种转化方法。

4、小组合作讨论归纳总结规律:

⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶、剪样成的图形面积怎样计算?

⑷、小组上台汇报,指着图形说一次得出:

因为:长方形的面积=长×宽

所以:平行四边形的面积=底×高(同位指着图形说)

7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

㈢、巩固公式:

1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

㈣、应用解决:

1、自学教材P70例题

下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

板书:32.6×8.4≈274(平方米)

答:它的面积约是274平方米.

(挑一学生的作业投影评讲)

平行四边形的面积教学设计 篇16

教材分析

本内容在教科书的第79至81页。包括引入、用数方格的方法计算面积和探究平行四边形面积计算公式三个环节。

学情分析

在此之前学生已经掌握了平行四边形的特征以及长方形、正方形面积计算方法,它们是进一步学习其他平面图形面积和立体图形表面积的基础。

教学目标

1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

教学重点 理解公式并正确计算平行四边形的面积。

教学难点

用割补的方法把一个平行四边形转化为一个长方形,推导出平行四边形面积的计算公式。

教学准备每人准备一个长方形、平行四边形和一把剪刀。

教学过程

(一)剪剪拼拼,渗透转化。

(每生发一个长为10厘米,宽为15厘米的长方形)

师:同学们,这种形状的图形你们可是再熟悉不过了,你们能根据老师给的条件快速算出它的面积吗?

师:今天我们要给长方形来变变样。

师:你有办法马上算出这个图案的面积吗?

师:为什么这么快就算出来了。

师:大家想一想,这个图案和变样之前的长方形相比,什么变了,什么没变?

师小结:转化思想。

(二)创设情境,探究新知。

1、猜测平行四边形面积的计算方法。

师:我们手中都有一个平行四边形,如果让你来计算它的面积你想知道它的哪些数据?这么多方法,到底哪种对呢?

2、组织探究活动。

同桌合作活动,活动前思考:

想一想,你准备把平行四边形转化成什么图形,为什么?

提示:在分割时,先用直尺和铅笔画出直直的虚线,再用剪刀小心地剪开。

边操作边思考:

转化后的图形与平行四边形有什么关系?

你认为平行四边形的面积该如何计算?

4、交流探究结果

师:先请这组同学来给大家介绍他们是如何将平行四边形转化成长方形的`。

5、推导面积公式

师:我们成功地把平行四边形转化成了长方形,你还发现了什么关系?

小结:回顾一下观察的全过程:我们是沿着平行四边形的一条高将它剪开,通过平移转化成一个长方形。因为这是一次等积变形,所以长方形的面积等于平行四边形的面积。我们还看到长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积等于长乘宽,所以推导出平行四边形的面积等于底乘高。

长方形的面积=长×宽

平行四边形的面积=底×高

师:如果用S表示平行四边形的面积,用a表示它的底,用h表示它的高,平行四边形面积的字母公式是什么呢?S=ah

(三)练习巩固,课堂拓展

1、求下面平行四边形的面积。

2、出示练习十五第一题,独立完成。(强调书写规范,点一下为什么要把停车位设计成平行四边形的)

3、判断:哪个平行四边形的面积是2×3=6

4、看谁算得快

5、睁大眼睛,别看花眼啦

6、书本练习十五第7题。

7、书本第83页第5题。

平行四边形的面积教学设计 篇17

教学目标:

1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。

重点、难点:

教学重点:掌握平行四边形面积计算公式。

教学难点:平行四边形面积计算公式的推导过程。

教学准备:

教具准备:多媒体课件,平行四边形的图形。

学具准备:剪刀、平行四边形纸片。

教学过程:

一、情境导入

1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。

2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的西头,可他家的地却在村子的东头。太不方便了,怎么办呢?

通过交换土地的想法揭示课题《平行四边形的面积》

【设计意图:教师选取孙悟空和猪八戒拼图的.事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。】

二、自主学习

1.剪一剪,拼一拼。

师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)

2.探讨联系

师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?

(1)学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。

(2)小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

(3)全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。

3.推导公式

师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)

师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】

三、巩固练习

师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。

【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】

四、课堂小结

这节课你有什么收获?

【设计意图:使学生回顾、梳理本节课的学习内容。】

平行四边形的面积教学设计 篇18

教学目标:

1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3、培养学生的合作意识,初步渗透平移和转化的思想。

教学重点:

探索并掌握平行四边形的面积计算方法。

教学难点:

理解平行四边形面积计算公式的推导过程。

教具准备:

一个长方形、一个平行四边形,PPT课件一套。

学具准备:

平行四边形、剪刀、三角板。

一、以旧引新,激起质疑

1、同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?

2、老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)

二、动手操作,探究方法

(一)利用方格,初步探究

1、下面我们就用数方格的方法,数出长方形和平行四边形的.面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!

2、学生独立数出平行四边形和长方形的面积。

3、谁来说说你数的结果?学生汇报

4、你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现?

你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。

我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢?

(二)动手操作,推导公式

1、动手操作

a、下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的图形呢?怎么变?

b、静静地想,想好了吗?

c、动手操作,把这个平行四边形变成以前学过的图形。

d、谁来说说,你把平行四边形变成了什么图形,怎么变的?

2、合作探究

a、我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么?

b、小组讨论

c、汇报。

3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式用字母怎么表示呢?

(三)指导点拨,总结方法

刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。

孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!

例1、读题后独立解答一生板演

师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗?

三、解决问题,拓展延伸

1、练习十五1题。

2、练习十五3题。

3、下面两个平行四边形,它们的面积一样大吗?

4、你能算出芸芸家这块菜地的面积吗?

四、全课小结,完善新知

这节课你有什么收获?

这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!

人教版平行四边形的面积教学设计

作为一名无私奉献的老师,有必要进行细致的教学设计准备工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。我们该怎么去写教学设计呢?下面是小编为大家收集的人教版平行四边形的面积教学设计,欢迎阅读,希望大家能够喜欢。

平行四边形的面积教学设计 篇19

一、教材分析

本课时是北师大版八年级上册第四章《四边形性质的探索》的第二节第二课时,是在七年级下册学习了全等三角形之后,继续深入学习几何推理问题的开始,而有关四边形的探索中重点探究的就是平行四边形的有关问题。在第一节平行四边形性质的研究基础上,在第二节逆向研究了平行四边形的五种判定方法之后,为了使学生能够对所学知识灵活运用,并更清楚地区分每一条性质和每一种判定法所安排的一节练习课。

二、教学目标

1。综合运用平行四边形的五种判定方法和性质解决实际问题;

2。进一步理解平行四边形的性质与判定的区别与联系;

3。通过练习提高学生的逻辑思维能力以及分析问题的能力。

三、教学重难点

重点:能灵活运用平行四边形的性质和五种判定方法解决实际问题。

难点:在应用中明晰性质与判定的区别与联系。

四、教学方法

通过简单,典型,针对性质和判定的.应用的实际问题搭建学生探索的平台,由简到难地设计了三个问题,并通过学生“独立思考————组内有效交流讨论————组内归纳方法————全班展示————及时评价”,让学生对知识的灵活应用有一个逐步熟练并掌握的过程。

五、教学反思

题目“平行四边形的周长为56cm,两邻边的比是3:1,那么这个平行四边形的边长分别是多少?”处理时没有留够独立思考的时间,虽然题目简单但效果不佳。所以在处理第二个题目“平行四边形ABCD中,E、F是对角戏BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上且AG=CH,连接GE、EH、HF、FG,求证:四边形GEHF是平行四边形”时,先让每个学生进行独立思考5分钟————小组交流5分钟————小组展示————全班讲评,小组展示因小组的有效讨论而显得更有章法,虽然推理论证的能力还有待提高但课堂气氛活跃组间竞争激烈,代表小组讲解的同学思路清晰语言准确更是体现了小组合作的有效性。最后老师的简单讲评及时评分将学生自主发展小组的作用发挥到了极致,整个题处理下来,不但让学生在过程中收获了多个解题思路,重要的是体现了全员参与及自主发展小组在课堂中的作用。

平行四边形的面积教学设计 篇20

教学目标:

使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

教学重、难点:

探索并掌握平行四边形的面积计算公式及推导过程。

教具学具

课件、平行四边形卡片、剪刀、三角板、直尺等。

教学模式:

“我能行”四步教学法。(详见文后注)

教学流程:

课前交流:

同学们,你们想了解老师吗?你想知道关于我的什么情况?

预设:

老师的年龄是多少?教几年级?

师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

师:想得真好,许老师就是(30)岁。

师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的.许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。这节课我们就用这种数学“转化”思想来学习本节课。

一、情境导入,确定目标

师:

1.在数学课堂上哪些地方用到了“转化”?

预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

生:演示方法。

3.师:为什么把它拼成一个长方形呢?

预设:学过长方形面积的计算,而且能够拼成长方形。

这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

4.刚才的图形“转化”过程,什么变了,什么没变?

5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。

(2)我会用平行四边形面积公式解决实际问题。

【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

二、互动展示,生成问题

师:

1.你猜一猜平行四边形的面积会与什么有关?

预设:长方形、正方形、底、高、夹角、相邻的边等。

2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。

3.请带着问题自学。(课件)

4.四人小组交流一下你是怎样“转化”平行四边形面积的。

【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

三、启发思路,引导归纳

师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

2.平行四边形的面积怎么算?

3.板书:平行四边形的面积=底×高

4.你是怎样推导的?说一下你的操作过程。

5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)

6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

7.这个平行四边形与剪拼的长方形之间有什么关系?

预设:平行四边形的面积与长方形的面积相等(板书)

8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)

【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

四、练习检测,拓展链接

1.练习检测卡一题。

2.课件:判断、选择题、口答列式。

3.练习检测卡二、三题。

4.谈谈你对这节课的收获,好吗?

拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

板书

(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)

平行四边形的面积教学设计 篇21

教学目标:

使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

教学重、难点:

探索并掌握平行四边形的面积计算公式及推导过程。

教具学具

课件、平行四边形卡片、剪刀、三角板、直尺等。

教学模式:

“我能行”四步教学法。(详见文后注)

教学流程:

课前交流:

同学们,你们想了解老师吗?你想知道关于我的什么情况?

预设:

老师的年龄是多少?教几年级?

师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

师:想得真好,许老师就是(30)岁。

师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。

一、情境导入,确定目标

师:

1.在数学课堂上哪些地方用到了“转化”?

预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

生:演示方法。

3.师:为什么把它拼成一个长方形呢?

预设:学过长方形面积的计算,而且能够拼成长方形。

这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

4.刚才的图形“转化”过程,什么变了,什么没变?

5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

(1)我会用“转化”的`数学思想推导平行四边形的面积计算公式。

(2)我会用平行四边形面积公式解决实际问题。

【设计意图】

情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

二、互动展示,生成问题

师:

1.你猜一猜平行四边形的面积会与什么有关?

预设:长方形、正方形、底、高、夹角、相邻的边等。

2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。

3.请带着问题自学。(课件)

4.四人小组交流一下你是怎样“转化”平行四边形面积的。

【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

三、启发思路,引导归纳

师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

2.平行四边形的面积怎么算?

3.板书:平行四边形的面积=底×高

4.你是怎样推导的?说一下你的操作过程。

5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)

6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

7.这个平行四边形与剪拼的长方形之间有什么关系?

预设:平行四边形的面积与长方形的面积相等(板书)

8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)

【设计意图】

在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

四、练习检测,拓展链接

1.练习检测卡一题。

2.课件:判断、选择题、口答列式。

3.练习检测卡二、三题。

4.谈谈你对这节课的收获,好吗?

拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

【设计意图】

归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

平行四边形的面积教学设计 篇22

【教学内容】

义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。

【教学目标】

1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。

2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。

3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。

【教学重点】

平行四边形面积的推导过程、平行四边形的面积公式。

【教学难点】

平行四边形到长方形的转化过程。

【教学关键】

长方形和平行四边形的对比。

【教学方法】

猜想,动手操作,转化。

【知识基础】

长方形面积公式的推导过程、长方形的面积。

【教具准备】

活动的长方形边框

【辅助手段】

Ppt课件

【教学过程】

一、情境导入,揭示课题

1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)

(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)

我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。

(板书课题)

二、探究新知,操作实践

(一)激发思维,寻求探究策略

1、要比较这两个图形的.面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?

方法一:数方格

方法二:将平行四边形转化为长方形

2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)

测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?

3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)

请同学们拿出学具,四人一小组研究研究。

学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。

方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。

方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。

无论哪种方法,我们都是把平行四边形转化成长方形。

4、比较归纳,推导公式

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,

提问:比较这两个图形,你发现了什么?(形状变了,大小没变)

学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。

这个长方形的长与平行四边形的底相等

这个长方形的宽与平行四边形的高相等

因为:长方形的面积=长×宽

所以:平行四边形的面积=底×高

学生汇报公式,教师板书。同学们在心里默默的记记。

5、用字母表示公式

如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?

S=ah(学生说字母公式,师板书)

(二)解决问题

1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。

用公式验证前面数方格的平等四边形的面积。

平行四边形花坛的底是6m,高是4m,

它的面积是多少?

学生说,师板书

(三)实际应用

一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?

学生自己解答。

三、智力闯关

这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。

(一)有空就填

1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。

2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。

3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。

(二)明辨是非

1、平行四边形的面积等于长方形的面积。()

2、平行四边形的底边越长,它的面积就越大。()

3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()

3、6cm

5cm

4、5cm

4cm

4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()

(三)鱼目混珠

如图,你能计算出这个平行四边形的面积吗?

四、课堂反思。

1、学生谈收获。

2、师生共同总结。

五、拓展延伸。

用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。

平行四边形的面积教学设计 篇23

教学内容:人教版五年级上册第六单元第一课时P87-88

教学目标 :

1.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。

3.感受数学在生活中的作用,体验学习数学的乐趣。

教学重点和难点

教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。

教学难点:使学生理解平行四边形面积计算公式的推导过程。

教具学具:课件、一个平行四边形、剪刀

教学过程

一、创设情境,生成问题

1.故事导入

2.从平行四边形的地中引出课题“平行四边形的面积”。

二、探索交流,解决问题

1.用数方格的方法计算面积。

(1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)

(2)学生完成,汇报结果。

(3)观察表格的数据,你发现了什么?

通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。

2.推导平行四边形面积计算公式。

(1)提问:如果不数方格,能不能计算平行四边形的面积呢?

(2)引导解决方法:把平行四边形转化成长方形

(3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平

行四边形和剪刀进行剪拼,教师巡视指导。

(4)学生汇报演示剪拼的过程及结果。

(5)教师用课件演示剪—平移—拼的过程。

(6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

(7)出示讨论题,小组讨论。

(8)小组汇报交流,教师归纳:

把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

因为 长方形的面积=长×宽,

所以 平行四边形的'面积=底×高。

3.教师指出如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式用字母怎样表示?

S=ah

三、巩固应用,分层提高

1.教学例1

例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?

(1)读题并理解题意。

(2)学生试做,交流做法和结果。

S=ah=6×4=24(m2),

答:它的面积是24平方米。

2.练一练

(1)一个停车位是平行四边形,它的底长5米,高2.5米。它的面积是多少?

(2)判断题

(3)选择题

(4)求平行四边形的面积

(5)扩展题

四、回顾整理,反思提升

1.通过这节课的学习,你有哪些收获?

2.用本课所学的知识证明老财主没有偏心。

五、板书

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

平行四边形的面积教学设计 篇24

设计理念:

利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

教学内容:

五年级上册第79-81页《平行四边形的面积》。

教学目标:

1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。

学情分析:

平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

教学重点:掌握平行四边形面积计算公式。

教学难点:平行四边形面积计算公式的推导过程。

教具准备:课件、平行四边形纸片、剪刀、直尺、三角板等。

学具准备:2块平行四边形彩色纸片、三角板、直尺、剪刀。

教学过程:

课前活动:

1、游戏:小小魔术师。教师出示不规则图形。

你能将这些图形分别变成我们学过的一个平面图形吗?(强调变形后的图形形状变了,面积不变。)

2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。

一、故事引入,激起质疑

1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。

一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?

阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的`钱全部付清,怎么样?”

巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”

2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?

我们说的毛毯的大小指的是毛毯的什么?

以前我们学过哪些图形的面积,计算公式是什么?

3、这节课我们继续研究面积:平行四边形的面积。(板书课题)

以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。

设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。

二、动手操作,探究方法

(一)猜想

请同学们拿出学具袋中中的平行四边形,看一看,摸一摸、想一想,大胆猜测一下:平行四边形的面积怎样计算呢?

根据学生猜测,板书:可能出现(底×高或底×邻边)

根据学生的回答随机让学生画高,指名板演并强调平行四边形的高有无数条

(二)验证

1、到底哪种猜测正确呢?这就需要我们进行验证才知道。

2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?

3、静静地想,想好了吗?

(三)操作

1、探究活动步骤:

想好了,我们来看“深入探究活动”,分三步进行:

第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。

第二步:结合剪拼过程,思考这三个问题:大声读出来!

深入探究学习卡

①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?

②剪拼后的图形与原来的平行四边形相比,什么不变?”

③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系

第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。

明白了吗?比比看,哪个小组进行的又快又好!开始吧!

2、学生活动,教师参与。

请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。

3、汇报交流

(1)汇报剪拼过程。

一边演示,一边说说你的剪拼过程。

(2)指导规范叙述:

(板书:沿高剪平移)并追问:为什么要沿高剪?

(四)推导

1、汇报探究的三个问题。

结合剪拼过程,谁来说说你对这三个问题的思考?

①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。

②剪拼后的长方形与原来的平行四边形相比,面积不变。

③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。

2、汇报交流:面积不变,长---底,宽---高

追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?

请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。

师板书:平行四边形的面积=底×高

长方形的面积=长×宽

设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。

(五)结论

1、证实猜想,得出结论:平行四边形的面积=底×高是正确的

2、用字母表示:S=ah

三、解决问题,拓展延伸

1、算一算:在我们的生活当中,平行四边形随处可见,出示情境图,你发现了哪些平行四边形?你会计算吗?

2、你能算出芸芸家这块菜地的面积吗?

题上给了这么多信息,应该怎么选择呢?试试看,你一定行!

看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!

3、接下来大家要加油噢!看,向你挑战!怕不怕?

下面两个平行四边形,它们的面积一样大吗?

小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?

四、全课小结,完善新知:

现在大家看:哪块毛毯的面积大呢?

你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!

同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了平行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!

设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。

平行四边形的面积教学设计 篇25

教学目标:

1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。

2、通过操作、分析讨论等活动,培养学生

动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。

3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。

4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

教学重点:

使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。

教学难点:

能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。

教学过程:

一、情景引入

1、联系实际选择建房用地。

(1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?

(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。

让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?

(3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……

二、探究新知

1、面积计算公式的推导:

引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?

(1)讲解相关的要求。明确小组研究要求。

(2)操作验证。巡视,个别指导。

(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。

问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)

(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。

引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)

教师逐步点击交互,得出:

长方形的面积=长×宽

平行四边形的面积=底×高

(5)用字母表示面积计算公式。

(6)小结。(明确转化的方法。)

2、面积计算公式的应用:

(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。

讨论后,给出底和高,进行计算。

(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。

(3)试一试:计算平行四边形的面积。

3、教学小结。进行推导:

(1)明确研究的要求。

(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)

(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。

(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。

(5)了解认识、明确:S=a×h,S=a·h或者S=ah。

(6)进行小结。

4、初步运用公式。

(1)教学试一试,(2)练一练。

三、巩固应用

1、练习二“第1题”。

先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。

2、练习二“第2题”。

可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。

3、练习二“第3题”。

这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。

4、练习二“第5题”。

让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。

四、课堂总结

今天学习了什么?你有什么收获?(让学生自由发挥。)

教学反思:

上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

(一)创设生活情境,激发探究欲望

小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的.兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

(二)重视学生的自主探索和合作学习

动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自己的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。

(三)培养学生的问题意识

问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。

平行四边形的面积教学设计 篇26

教材分析

1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。

2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。

学情分析

五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。

教学目标

(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。

教学重点和难点

教学重点:

使学生通过探索、理解和掌握平行四边形的'面积、计算公式、会计算平行四边形的面积。

教学难点:

通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。

教学过程

一、情感交流

二、探究新知

1、旧知铺垫

(1)、说出平面图形名称并对它们进行分类。

(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)

设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。

2、 导入新课

3、 探究平行四边形面积计算方法。

(1)、在方子格中数出长方形的面积。

(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。

(3)、通过观察表格,试着猜测平行四边形的面积计算方法。

(4)、共同探讨如何计算平行四边形的面积。

①出示平行四边形,引导学生明确其底和高。

②学生在学具上标明其底并画出对应的高。

③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)

④小组交流如何操作的。(割补法)

⑤学生代表汇报各组的操作方法以及得到的结论。

⑥幻灯片演示割补的过程。

⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)

4、 课堂小练笔。

设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。

三、课堂练习

四、小结本课

五、课堂作业

板书设计

平行四边形 面积 = 底 × 高

长方形 面积 = 长 × 宽

S表示平行四边形的面积 a表示底 h表示高

S=a×h s=a.h S=ah

平行四边形的面积教学设计(通用11篇)

教学设计就是课程与教学之间的一个重要环节,目的在于实现教学效果最优化。以下是小编整理的平行四边形的面积教学设计,欢迎阅读参考,希望您喜欢。

平行四边形的面积教学设计合集15篇

作为一位不辞辛劳的人民教师,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。教学设计要怎么写呢?下面是小编整理的平行四边形的面积教学设计,欢迎阅读与收藏。

平行四边形的面积教学设计 篇27

教学内容:

试验教材小学数学五年级上册内容。

教学目标:

1、用转化的方法探究并把握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

2、经受探究平行四边形面积计算方法的过程,培育初步的观看力量、抽象力量,进一步进展空间观念。

3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的亲密联系,培育初步的数学应用意识和解决简洁实际问题的力量。

教学预备:

学生:方格图、平行四边形纸片、直尺、剪刀、三角尺

教师:课件、投影仪

教学过程:

一、谈话引入,提出问题

师:同学们,你们喜爱吃水产品吗?比方:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)认真观看图中的信息,你能提出什么数学问题?

(1:虾池的面积是多少?2:虾池是什么外形的?……)

师:虾池是什么外形的?(平行四边形)

师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)

二、合作探究,解决问题

1、猜测

师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)

师:希不盼望通过自己的探究找到这个公式?

师:信任你们肯定能行!在探究之前,先请同学们猜测一下:平行四边形的面积计算公式可能是什么?并说说你的理由。

(学生独立思索)。

师:谁来说?

(1、我猜平行四边形的面积计算公式是“底×邻边”。我是依据长方形的面积计算公式猜的。)

师:谁有不同想法?

(2、我猜平行四边形的面积计算公式是“底×高”。我发觉沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)

师:现在消失两种猜测,各有各的理由,而真正的计算公式确定只有1个。我们怎么办?(验证)

师:对!我们要逐个进展验证,看看正确的公式毕竟是什么。

为了便利大家探究,教师为每个小组都预备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮忙。在动手验证之前,教师有几点小提示,请看屏幕:(课件出示,指名读)

1.小组同学先争论验证的方法,再动手验证。

2.小组成员要团结合作,合理分工。

3.每组推选1名代表进展汇报,其他组员可以补充

4.使用学具时留意安全,用完后装入信封。

2、验证“底×邻边”

师:先来验证“底×邻边”这个猜测对不对。

比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开头。

(学生合作,教师巡察)

3、沟通

师:经过大家的动手操作,信任都有答案了。哪个小组情愿先来沟通?

(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜测公式算出的面积是35平方厘米。所以“底×邻边”的猜测是错误的。)

师:听明白他们小组的做法了吗?(找两人共享)感谢你们的介绍。还有不一样的小组吗?(没有)

师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,依据“底×邻边”的猜测公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜测是错误的。虽然这个猜测是错误的,但我们要感谢提出这个猜测的同学,由于你的猜测很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地熟悉。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用其次个信封的帮忙再来验证“底×高”这个猜测对不对。肯定要沟通好验证方法再动手操作,开头。

4、验证“底×高”

(学生活动,教师参加)

5、沟通

师:信任大家又有了新的发觉和收获。哪组先来共享你们的讨论成果?

(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜测是正确的。

师评价:他们小组的这种方法怎么样?我发觉他们小组很会利用资源。刚刚知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?留意听,看看他们采纳的毕竟是什么方法。)

(2、我们小组是沿着平行四边形的'高剪下来,把它拼成长方形,我们发觉长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展现。)

师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?

师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。依据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)

师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简洁问题了。

师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)

师:我还有其次个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?

(平行四边形没有“长”和“宽”。)

师:说的真好,我们可不能混淆了。

三.应用公式,稳固训练

师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)

师:假如教师再给你供应这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)

师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162023(尾))

师:听说你们很顺当的猎取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信念迎接挑战吗?

(出示课件:四个挑战)

1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?

为什么?(单位:厘米图略)

2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)

3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?

4、聪慧小屋:下列图中正方形的周长是24厘米,平行四边形的面积是多少?

师:真不错,挑战胜利。

四.收获平台,课外延长

师:不知不觉中就要下课了。想一想,这节课你有哪些收获?

(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)

师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进展的?

(猜测--验证--结论。这是数学上常用的探究方法,信任你们在以后的学习中会常常使用它。这节课,同学们不仅仅学到了学问,而且把握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简洁的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间相互沟通一下。)

平行四边形的面积教学设计 篇28

教学目标:

1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

教学重难点:

总结出平行四边形的面积公式。灵活运用平行四边形面积公式。

教具准备:

教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。

教学过程:

一、复习导入

师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。

(学生说出长方形面积板书出来)

师:你还知道哪些平行四边形的知识?

(如有学生说不出高,师提醒)

师:长方形和平行四边形有哪些相同点,又有哪些不同点?

(平行四边形没有直角)

师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?

(学生说,比较)

师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?

(学生说自己的想法)

师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?

师:那我们这节课就一起来探索平行四边形的面积。(板书课题)

二、讲授新知

师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?

师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的,将平行四边形转化成长方形我们再来探究呢?

师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)

师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)

师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?

(生:说想法)

(课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)

师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?

(不是,并不是所有的平行四边形面积都等于长方形的面积)

师:如果用S表示面积,那平行四边形的面积公式的字母表达是?

(板书:S=ah)

师:同学们今天很了不起,通过自己探索得到了平行四边形的面积公式,那就下来带着这个知识我们来完成几道题好吗?

三、巩固练习

师:1、计算下面平行四边形的面积,快速列算式不计算。

师:2、同学们答得很快,都正确。那接下来将这两题写在本上。

(集体订正答案)

师:如果要想求平行四边形的'面积的必备条件是什么?

师:哦,也就是知道高和底就能求出它的面积,是吗?

师:3、让我们一起来看看这道题。

(让学生说说想法)

师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?

(板书:S=ahh=S/aa=S/h)

四、知识拓展

师:同学们现在请比较一下这两个平行四边形的面积。

(学生说想法)

师:那这个呢?对它们的都是相等的,因为它们等底等高。

五、小结

师:本节课你学会了哪些知识?

平行四边形的面积教学设计 篇29

教学内容:

人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。

教学目标:

①理解并掌握平行四边形的面积计算公式。

②会运用公式正确计算平行四边形的面积。

③培养操作能力和推理能力,养成积极思考的良好学习习惯。

教学重点:

理解并掌握平行四边形的面积计算公式。

教学难点:

平行四边形的面积计算公式的推导。

教具和学具:

电脑、课件、平行四边形、长方形、剪刀、尺。

教学过程:

一、前提测评。

1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?

3、指出平行四边形对边上的高。

二、认定目标。

1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]

2、看到这个课题,大家想学习哪些知识呢?

三、导学达标。

(一)用数方格的方法求平行四边形的面积。

(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)

(2)引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?

(3)谈话:虽然我们用数方格的`方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?

(二)推导平行四边形的面积计算公式。

⑴、学生实验操作。

谈话:请拿出你的平行四边形, 想办法把平行四边形剪、拼成长方形。

在剪、拼前,大家想一想长方形的特征是怎样的?

a、学生实验操作。

b、问:你是怎样把平行四边形剪、拼成长方形的?

c、电脑显示剪拼过程。

⑵、讨论拼成的长方形与原平行四边形的关系。

a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?

①平行四边形与拼成的长方形的面积有什么关系?

②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?

③长方形的面积公式怎样表示?

④平行四边形的面积公式怎样表示?

b、谈话:请看屏幕, 根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)

c、板书:

长方形的面积=长×宽

‖ ‖ ‖

平行四边形的面积=底×高

d、齐读两遍公式

(三)实际运用。

1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?

2、学生运用公式计算方格图中的平行四边形的面积。

⑴、学生计算。[板书:6×3=18(平方厘米)]

⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。

3、强调运用公式计算平行四边形面积的条件。

师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?

4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。

⑴、出示例题,学生默读一遍:

一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)

⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?

(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?

⑶、学生列式计算,一生板演。

⑷、评讲。

(五)、实际应用训练。

①课本p72.2

②p73.5

四、教师总结:你有什么收获?

五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?

看谁算得最快?

六、作业:72页

评议记录:

本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。

本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。

平行四边形的面积教学设计 篇30

教学内容:

小学数学五年级上册第87——88页

教学目标:

知识与技能目标:

理解并掌握平行四边形面积计算公式。

过程与方法目标:

能够运用公式解决实际问题。

情感态度与价值观:

通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

教学重难点:

(1)教学重点:平行四边形面积计算公式的推导和运用。

(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

教学用具:

1、课件

2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

学情分析:

这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

教学过程:

一、激情导课

(大屏幕出示校园情景图)

同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)

看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)

1、探究平行四边形面积计算公式。

2、运用公式解决生活中的实际问题。

师随着学生的回答在课题前板书:探究和运用

师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)

二、民主导学

任务一:自主探究平行四边形的面积计算方法。

同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)

任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)

自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

展示交流:

1、先请数方格的小组上台展示。

预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。

我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

(对小组进行评价)

师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的'平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

2、请用割补法的小组上台展示自己的研究成果。

预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

(师随着生的表述板书)

长方形的面积=长×宽

平行四边形的面积=底×高

(对小组进行评价)

预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......

(对小组进行评价)

预设:(3)、师演示。

师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。

师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)

任务二:解决问题

出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

自主学习:独立在练习本上解答,完成后与小组内同学交流。

展示交流:注意指导学生的书写格式。

三、检测导结

1、计算下面每个平行四边形的面积。

2、已知下面图形的面积和底,怎样求出它的高?

以上三题,做对一道得一颗星,全部做对得三颗星。

集体订正,组内互批。

反思总结:请同学们谈谈这节课的收获吧!

平行四边形的面积教学设计 篇31

学习目标

1、利用自己的方法,探索并掌握平行四边形面积的计算公式,会计算平行四边形的面积。

2、重点理解拼成的长方形和原来平行四边形的关系

教学过程:

一:回顾以前的知识、

师:今天我们学习什么知识?

生平行四边形的面积

师:先让我们汇报一下以前学过的相关知识吧?

生:长方形的面积=长乘宽正方形的面积=边长乘边长

平行四边形对边平行且相等平行四边形有无数高(出示课件)

师:小结从平行四边形的任何一边的一点,向对边都可以做一条高

二:我有成果展示

1师:通过预习,你有什么成果要向大家展示的?

生:汇报

2:师:好,大家自己都学会了这么多有关平行四边形面积的知识,现在,谁能简单的猜猜我们本节课的学习目标是什么?

3:师出示学习目标。

4:依据学习目标,你有什么疑问要提出吗?

生:汇报

师:不管有什么疑问,我们通过以下环节,看看是否其他同学能帮助你解决?

三:自主探究

一:拿出导学案:

师:谁能汇报一下,你完成表格的情况。(教材第80页的表格)

生:汇报

师:谁能说一说,平行四边形的面积,你是怎样知道的?

谁能说一说,你是怎样数出来的吗?

生:我先数整个格的是20个,在数八个半格的是整四个格,合起来是24个整个,也就是24平方米

师:我们也可以用平移的办法来得出平行四边形的面积,(课件演示)

师:那长方形的面积呢?

生可数出来,也可以用长乘宽计算

师:请大家观察表格的数据,你发现了什么?

生:平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,平行四边形的面积等于长方形的面积。

生:我们可以看出平行四边形面积=底乘高

师:我们如果用数方格的方法来计算平行四边形的面积,你会感觉怎样?

生麻烦

三合作探究

师:那我们可以用什么方法研究呢?

生:把平行四边形转化成长方形。

师:你是怎样把平行四边形转化成长方形的吗,请拿着你的平行四边形学具边演示边说。

生:过平行四边形一个顶点,沿着平行四边形地边上的高剪开。

师还有其他不同的剪法吗?

生:沿着平行四边形这一条边上的高剪开。

师:同时出示课件

师:听了同学们的简拼方法,你还有什们疑问吗?

生:老师为什么要沿着高剪开呢?

师:谁能帮助这位同学回答。

生:这样剪可以使两边变成直角,变成我们学过的长方形。

师刚才有的同学说沿高剪成了正方形,者必须满足什么条件呢?

生:平行四边的高等于平行四边形的底,这是特殊情况。

师:小结我们从平行四边形一组对边任意一点作高,通过平移都可拼成长方形或正方形。(课件出示结论)

师:观察拼成的长方形和原来的平行四边形,你能发现什么?

小组合作交流自己预习的成果。

请生汇报。

生:拼成长方形的面积和平行四边形的面积相等,面积不变。

拼成的长方形的长等于原来平行四边形的底,长方形的宽等于平行四边形的.高

师:既然面积没变,什么变了呢?形状变了。

师:还有什么变了?

生沉默

师:周长变了吗?

生:变了

师:变大了还是变小了呢?谁能说说?

生:边指边说长方形的长就是平行四边形的底,长方形的宽比平行四边形高变短了,所以周长变小了。

师:给予积极肯定。

师:既然长方形的面积=长乘宽,那么同学们可以推导出平行四边形的面积吗?

生:平行四边形的面积=底乘高

师:为什么平行四边形的面积等于底乘高?

生:因为拼成的长方形的长等于平行四边形的底,宽等于高,长方形的面积等于长乘宽,所以平行四边形的面积的等于底乘高

师:用字母怎样表示?

生:s=ab

师:小结刚才你们用剪拼的方法,将平行四边形转化成长方形,用旧知解决了新问题,非常好!实际这种解决问题的方法是应用了数学转化方法,今后在数学中,我们会经常用到。

师:出示例1:平行四边形的花坛的底是6m,高是4m,它的面积是多少?

生:自己解决。(集体纠正)

四:达标测评

一:人人轻松来过关

1:选择条件计算平行四边形的面积(单位:米)

二:迈开大步跨过关:

(看大屏幕略)

三:大胆跳起闯过关:

(1)平行四边形的底越长,它的面积就越大。()

(2)形状不同的两个平行四边形,面积可能相等。()

(3)把一个长方形木框拉成一个平行四边形木框,周长不变,面积也不变。()

四:一题多解

人民公园有一个平行四边形的草坪,草坪上有一个长30m,宽2。5m的甬道,求草坪的面积

平行四边形的面积教学设计 篇32

教学目标:

1、知识与技能:

(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。

(2)能运用平行四边形的面积公式解决相应的实际问题。

2、过程与方法:

使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。

3、情感、态度与价值观:

(1)渗透转化的数学思想方法。

(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

教学重点:

探索并掌握平行四边形面积的计算公式。

教学难点:

1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。

2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。

教具、学具准备:

1、多媒体课件、自制教具。

2、每个学生准备1把剪刀、一张平行四边形纸片。

教学流程:

一、创设情境,引入课题:

师:同学们,今天老师将要和大家一块儿探讨怎样的数学问题呢?首先老师给大家讲一个有趣的故事,大家想听这个故事吗?从前有一个老财主,他感觉自己的年龄越来越大了,身体也一天不如一天了,就决定把自己最好的两块儿地分给他最疼爱的两个儿子。(课件)于是他把左边的这块儿地分给了第一个儿子,把右边的这块儿地分给了另一个儿子,可两个儿子分到地后都不满意。都说我那个老爹呀,真偏心把大的地分给了他,小的.留给了我,老财主伤心的落泪了。谁能帮帮他呢?你们有什么好的办法吗?

生:

现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)

师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。

(通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)

师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)

二、探究新知,导出公式:

1、猜想:

师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)

生:

师:我们发现长方形的长和平行四边形的底都是6米,长方形的宽和平行四边形的高也都是4米,而且它们的面积也相等。那么根据这些数据,我们能不能大胆的猜想一下平行四边形面积公式呢?

生:

师:你们是怎么推导出这个公式的呢?

师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)

2、验证:

(1)学生动手操作

(2)小组演示

(3)师课件演示

边演示边说:我们沿着平行四边形的一条高剪开,把它平移到右边,就拼成了一个长方形。我们发现了什么?

生:

板书:长方形的面积=长×宽

平行四边形的面积=底×高

师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?

(4)推导过程:(课件显示)

我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。

(5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。

师:下边请同学们想一想如果用字母S表示面积,用字母a和h分别表示底和高,那么平行四边形的面积用字母怎么表示呢?

师板书:S=ah

3、面积公式的运用

课件出示例题:有一块平行四边形的麦田,底是85.8米,高是75米,这块麦田的面积是多少平方米?

三、巩固发展、实际运用:

1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)

2、一幅平行四边形的装饰画高5是分米,底是高的3.5倍,这个平行四边形的面积是多少?(课件)

四、课后延伸:

师拿出活动的长方形木架,沿对角一拉,变成一个平行四边形,请同学们想想这两个图形的面积还相等吗?它们的周长呢?请同学课后来讨论这个问题好吗?

五、反思与体会:

同学们,想一想,这节课你有哪些收获呢?(生)

师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!

平行四边形的面积教学设计 篇33

教学目标:

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:理解公式并正确计算平行四边形的面积。

教学难点:理解平行四边形面积公式的推导过程。

教学方法:动手操作、小组讨论、启发、演示等教学方法。

教学准备:

1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。

2、课外延伸思考题。

3、平行四边形转化为长方形的课件。

教学过程

一、创设情境,导入新课:

1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?

2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?

师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)

二、合作交流,探究新知

1、数方格比较两个图形面积的`大小。

(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

学生讨论,鼓励学生大胆发表意见。

3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。

学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件演示剪——平移——拼的过程。(多种方法)

4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。可以出示讨论题。

(1)拼出的长方形和原来的平行四边形比,面积变了没有?

(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。

同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。

板书:

平行四边形面积= 底 × 高。

5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。

平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

板书:S=a×h=ah=ah

6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

三、分层运用新知,逐步理解内化

1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)

3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)

4、 求下列平行四边形的面积 。

(2)判断对错:

师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)

(3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)

生读题。

师:等底等高的平行四边形面积一定相等。

3. 思考题:你有几种方法求下面图形的面积?

四、总结全课,深化认识

通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?

今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

平行四边形的面积教学设计 篇34

教学内容:苏教版第八册第42页“平行四边形面积的计算”

教学目标:

1、发现平行四边形面积的计算方法。

2、能类推出平行四边形面积的计算公式。

3、能准确进行平行四边形面积的计算。

4、培养学生的动手操作、观察、分析、类推能力。

5、渗透转化思想,培养学生的空间观念。

教学重点:掌握平行四边形面积的计算公式,准确计算平行四边形面积。

教学难点:平行四边形面积公式的推导过程。

教学具准备:自剪平行四边形,作业纸,课件。

教学过程:

一、复习铺垫:

1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答)

2、再看第二个图形,面积是多少呢?你是怎样知道的?第三个呢?

3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分)

二、引导探索、揭示新知:

1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的.底是多少?高是多少?(指名回答)

有谁知道它的面积是多少?你怎么知道的?

那不数方格,能不能也象计算长方形的面积那样,用一个公式来计算平行四边形的面积呢?

这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算)

2、实验操作

(1)提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形)

(2)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!

(3)拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示)

(4)为什么要沿高剪开呢?(因为长方形的四个角都是直角)

3、演示:下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。

第一步画:从平行四边形一个钝角的顶点向对边作高。

第二步剪:沿高把平行边形剪成两部分。

第三步移:把左边的直角三角形平行移动到右面边。也可以这样:沿平行四边形中间的任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。请大家把剪掉的部分还原,再平移一次。

4、公式推导

(1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系?

根据回答板书:

长方形的面积长宽

平行四边形的面积底高

(2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书

同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。

请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先…发现…因为…所以)指名说说推导过程。

师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。

5、教学字母公式

如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成:

s=a×h再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s=a.h或s=ah齐读一遍

三、应用公式、尝试例题

1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米?

问:题目中要求的是什么形状物体的面积?告诉了什么条件?请试着做一做

(1)指名板演(其余学生做在课堂练习本上)

(2)集体评讲

2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便?

四、巩固练习

同学们拿出你的平行四边形,根据你的数据,通过今天学习的知识来考考大家。(?~3名)

五、全课总结

通过这堂课的学习你有什么收获?

师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。

六、学到这儿,你有没有这方面知识的思考题来让大家动动脑?

机动思考题:

1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少?

2、选择条件,用两种方法算出平行四边形的面积,看看是否相等?

平行四边形的面积教学设计 篇35

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

教学目标

1.知识与技能

1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2)使学生理解转化的思想,初步学会运用转化法来解决问题。

3)培养学生的合作意识和自主探究解决问题的能力。

2.过程与方法

让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

3.情感态度与价值观

通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

教学重点、难点

教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教学准备:

多媒体课件、平行四边形学具等。

教学过程:

一、设置悬念激发兴趣

师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

[学情预设:摇头或不知道。]

(出示:中国版图)

师:请大家仔细观察,山西省近似我们学过的什么平面图形?

[学情预设:学生根据观察可能会说:四边形或平行四边形。]

师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]

师:对,这节课我们就一起来研究“平行四边形的面积”。

(引出课题并板书:平行四边形的面积)

[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]

二、动手操作引发欲望

1、回忆平行四边形的底和高。

师:同学们,平行四边形有哪些特征,你们还记得吗?

[学情预设:

生1:平行四边形对边平行、对角相等。

生2:还有底和高。]

师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

[学情预设:学生根据不同的高,找到所对应的底。]

师:由此,你发现了什么?

生:底要和高相对应。

师:对,这一点值得注意。

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]

2、第一次探究

师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

(小组活动,教师巡视)

[学情预设:

生1:直接数。

生2:间接数。

生3:沿边上的`高剪开。

生4:沿中间的高剪开。

生5:沿两边的高剪开。……]

师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

(小组汇报)

[学情预设:

组1:用直接数方格的方法。]

[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]

师:哪个小组和他们的方法不一样?

[学情预设:

组2:间接数。

组3:沿边上的高剪开。

组4:沿中间的高剪开。

组5:沿两边的高剪开。……]

师:由此,你又发现了什么?

小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]

3、第二次探究

师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?

师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

生:不能。

师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

生:有。

[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]

(板书:长方形的面积=长×宽

平行四边形的面积=底×高)

师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

[学情预设:学生汇报自学成果,教师板书字母公式。]

师:用字母表示平行四边形的面积公式:S=ah

小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

即:平行四边形的面积=底×高

[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]

三、联系实际解决问题。

师:解决课前遗留问题:山西省的面积大约有多大?

[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]

四、课后延伸渗透转化

师:吉林省近似学过的什么平面图形?

生:三角形

师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]

五、板书设计:

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

平行四边形的面积教学设计 篇36

[课程标准]

探索并掌握平行四边形的面积公式,并能解决简单的实际问题。

[学情分析]

学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。

[学习目标]

1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)

2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)

[评价任务]

评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。

评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。

[资源与建议]

1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。

2、相关的资源:

(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。

(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。

3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。

4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。

[教学过程]

一、情境导入

出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?

师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]

二、探究新知

1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。

(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。

(2)活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)

(3)活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)

生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。

生:我发现平行四边形的面积=底×高

师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。

[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]

2、合作交流探究新知

(1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的`哪个图形?怎样转化?

(2)、活动4:动手操作:以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)

(3)、活动5:学生汇报、交流。

师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,(边演示边说剪拼过程,并贴剪拼图于黑板。)

师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?

你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?

哪个小组和他剪的不一样?

师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。

(4)、大屏幕演示不同的拼法。

(5)、活动6:小组讨论

师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)

小组讨论:

a、拼成的长方形的面积和原来平行四边形的面积。

b、拼成的长方形的长与原来平行四边形的底。

c、拼成的长方形的宽与原来平行四边形的高。

(6)学生汇报,教师总结板书:

师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

教师板书平行四边形的面积=底×高

(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)

(8)介绍板书字母式。

师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。

观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?

[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]

三、实践应用

活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)

[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]

四、课堂检测

1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)

2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)

3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)

[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]

五、全课小结。

想一想你这节课学到了什么?

板书设计:平行四边形的面积

长方形的面积=长×宽

↓↓↓

平行四边形的面积=底×高

S=a×h

=ah

=ah

大家都在看