短文网整理的《解决问题》教案(精选21篇),快来看看吧,希望对您有所帮助。
《解决问题》教案 篇1
教学目标
1.使学生初步学会列式解答求一个数比另一个数多几、少几的问题,并进一步培养学生的计算能力。
2.通过操作,培养学生的动手操作能力。
3.初步培养分析推理能力。
教学内容
教科书72~74。
教具、学具准备
自制多媒体课件;学生每人圆形5个,三角形10个,红花20朵。
教学设计
组织教学,创设情境
1.同学们,今天有这么多老师来听课,你高兴吗?王老师今天也非常高兴,现在咱们以热烈的掌声对各位领导和老师们的到来表示欢迎。(师生鼓掌欢迎。)
师:小朋友们,掌握很热烈,但不够整齐。请听一听,王老师是怎么拍的?拍了几下?(教师有节奏地拍4下)。小朋友学老师的样子,拍6下。
师:根据刚才拍的,请你提出一个数学问题吗?
生1:我们比老师多拍了几下?
师:你知道吗?
生1:我们比老师多拍了2下,因为6比4多2,列式:6-4=2。
生2:老师比我们少拍了几下?少拍了2下,列式:6-4=2。
生3:老师和小朋友一共拍了几下?6+4=10。
师:小朋友们提的问题都很有价值。今天咱们来研究第一和第二种情况。课件显示:
6下比4下多2下,6-4=2,4下比6下少2下,6-4=2。
2.摆一摆。
a.请小朋友第一行摆5个○,第二行摆5个△。摆完后,你看到了什么?想说什么?
生:○和△同样多。
师:你是怎么知道的?
生:我是这样摆的:,这样一个○对着一个△,正好就看出它们同样多。
师:小朋友们真聪明!
b.请小朋友继续摆:第一行5个○,第二行摆7个△,如图:
看着你摆的图,谁能提出问题?
生1:△比○多几个?列式:7-5=2。
○比△少几个?列式:7-5=2。
师:同学们真聪明!今天咱们来进一步学习这种求一个数比另一个数多几、少几的问题。板书课题:求一个数比另一个数多几、少几,学生齐读。
[本节课教师能够根据实际情况,即兴创设教学情境,鼓掌欢迎听课领导的到来,由掌声到比较谁多谁少,导入新课,比较新颖、有趣,一下子调动了全班学生的学习积极性。]
探索学习
1.课件出示下图,教师讲解:同学们,这是前四周小组得红花情况的记录图,通过看图,你知道了什么?
生1:我看出了1组同学得红花最多,他们表现最好。
生2:3组表现差一点,得的红花数最少。
生3:我知道了1组共得了11朵红花,2组得了8朵,3组得了6朵,4组得了10朵。
教师边听边板书上每组得红花的数量。
生4:我看出了1组的红花比2组多3朵。
2.师:小朋友们观察的都非常仔细,下面请小朋友们拿出自己的红花学具,摆出1组和2组的所得的红花情况,好好看一看1组比2组多得了几朵。
学生动手操作,摆出如下图形:
生:1组比2组多摆了3朵。从图上可以看出,1组得的红花左边部分与2组同样多,右边部分是比2组多的3朵,所以说1组比2组多摆了3朵。
师:你会列式吗?
生:11-8=3(朵)。
师:根据你自己摆的图,你还能提出问题吗?
生:2组比1组少得几朵?
师:谁会列式?
生2:11-8=3(朵)。
根据学生的回答,完成板书。
师:刚才小朋友们回答得都很好!现在请小朋友看着这四个小组的红花图,现在我要请你当老师提出问题,你还可以找一名同学回答。
学生提问、回答、活动。
1.比较关系。
师:刚才的小老师当得好,学生做得也很棒!现在请小朋友们看板书,小组讨论:求1组比2组多几与求2组比1组少几有什么关系?(小组讨论。)
小组汇报讨论结果,教师小结:1组比2组多几,2组就比1组少几,实际上表达的是一个意思,只是说的角度不同罢了。因此都用相同的方法计算。
[从学生的生活入手,通过小组内同学得红花的多少,来学习求一个数比另一个数多几、少几的应用题,学生学起来较轻松,比较感兴趣;在学习知识的过程中,先让学生初步感知,再操作体会,层次性强。]
巩固拓展
1.说到这里,我忽然想起了森林中发生的一件事(电脑出示):
2.在咱们学校体育节的跳绳比赛中,咱们绿队有两个小朋友表现非常出色,咱们一起看一看。(课件出示图。)
a.小清比小芳多跳了多少下?
b.小芳比小清少跳了多少下?
3.看到咱们比赛这这么好玩,小猫们沉不住气了,它们每人拿来一只小桶,一根钓杆,你猜它们要比什么吗?对,钓鱼比赛。现在看图,你能提出问题吗?小组比赛星级合作小组评选,看哪个组提的问题多?解答得好?
小组讨论汇报讨论情况,教师及时评价鼓励,评选出星级合作小组。
[练习的设计穿插在故事中进行,让学生边听故事边学习,充满情趣,学习效果较好。]
小结
今天你学会了什么?
求一个数比另一个数多几、少几都可以用大数减去小数来计算。一个数比另一个数多几与一个数比另一个数少几在某种意义上是相同的。
《解决问题》教案 篇2
教学目标:
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
教学过程:
一、直接导入:
1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。
2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。
二、以鸡兔同笼为例,探究假设
1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。
分别板书:假设都是鸡 假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗? 现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。
师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)
表示假设全部是兔总共有32条腿。32-22=10(条)
表示实际多画了10条腿。4-2=2(条)
表示一只兔比一只鸡多2条腿。102=5(只)
表示鸡有5只。8-5=3(只)
表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。
教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。
2、刚才我们假设了全部是兔,如果假设全部是鸡,应该怎样想?先让学生小组内交流,然后有能力的学生独立完成,其他学生画图完成或看提示完成。在交流时分别对每步提问。问:82=16表示什么?(假设全部是鸡总共有16条腿)22-16=6表示什么?(实际少画了6条腿)4-2=2表示什么?(一只兔比一只鸡多2条腿)。102=5表示什么?(鸡有5只)8-5=3表示什么?(兔有3只)师:上面的方法有什么共同的特点?
3、师:除了全部假设为鸡或兔,我们还可以假设每种各有一半,可以怎样假设?师:如果是总过8只可以假设鸡有4只,兔有4只。如果是11只呢,我们可以怎样假设?师:如果是偶数,我们可以假设每种各有一半;如果是奇数,我们可以假设一种为一半多一点,另一种为一半少一点。而且,此类假设我们用表格来解决。师出示表格 鸡的只数
兔的只数
腿的条数
和22条腿比较
师根据学生的回答分别板书。
4 4 42+44=24
多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。
4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。
5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。
三、以引入题为辅,再次巩固假设法。
1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。
2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。
方法一:354=140(条) 方法二:352=70(条) 140-94=46(条) 94-70=24(条) 4-2=2(条) 4-2=2(条) 鸡 462=23(只) 兔 242=12(只) 兔 242=12(只) 鸡 462=23(只)方法三: 鸡的只数
兔的只数 18 20 23
腿的条数 17 15 12
和94条腿比较 182+174=104 多10条 202+154=100 多6条 232+124=94 正好
小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
四、以例题为练,提炼假设方法。
1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。
2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
五、总结。师:你什么收获?
《解决问题》教案 篇3
设计说明
本节课是本单元的最后一节新课,教学目的是让学生应用乘法口诀解决实际问题。针对本节课的教学内容和特点,我特做如下设计:
1、为新知做好知识铺垫。
复习能帮助学生沟通新旧知识的联系,分散难点,从而顺利地完成学习任务,教学中应根据教学内容的特点和学生原有的认知结构适时、适度地安排复习,在“短、精、新”上下功夫,达到“未成曲调先有情”的教学效果,使后面的“好戏”顺理成章。在课前复习环节,我精心设计了两道复习题目,旨在唤起学生对前面知识的回忆,为新知的学习打下知识基础。我首先出示一组加法与乘法的对比练习,让学生感受到加法与乘法的意义有所不同;然后设计一道与新课密切相关的题目,既能复习乘法和加法的意义,又能为新课中画图解决问题做好知识铺垫。
2、在自主探究中经历学习过程。
《数学课程标准》强调:让学生经历数学学习的过程与获得数学结论同样重要。为此,在教学过程中让学生经历自主探究、思考、操作等活动对于发展学生的数学能力有着重要的作用。在探究新知的过程中,首先让学生找出两道例题的异同,并动笔尝试计算。然后设计了“两道题目中都有4和5,为什么解答方法不同”的问题,引发学生思考,通过分组讨论、设计摆学具的方法,将两道题目的条件和问题表示出来,使具体问题抽象为数学模型。接着让学生说出两幅图的意思,突出理解乘法和加法的意义,使学生有理有据地选择计算方法。这样的设计能让学生经历学习的过程,加深学生对知识的理解。
课前准备
教师准备PPT课件学情检测卡
学生准备正方形纸板
教学过程
⊙复习导入
1、直接写得数。
5+4=6+6+6=3+4=
5×4=6×3=3×4=
(引导学生说出每组算式的相同点和不同点)
2、看图列式计算。
■■■■■■■■■■■■
■■■■■■■■■
■■■■■■
师:这节课我们就来解决关于乘法和加法的一些实际问题,请同学们认真读题、审题,理清题中的数量关系。(板书课题:解决问题)
设计意图:通过对比复习乘法和加法计算题,为本节课做好知识上的铺垫,使学生更容易接受本节课的知识。
⊙探究新知
1、引导学生读题,对比两道题目的'相同点和不同点。
例7
比较下面两道题,选择合适的方法解答。
(1)有4排桌子,每排5张,一共有多少张?
(2)有2排桌子,一排5张,另一排4张,一共有多少张?
预设
生1:两道题目的数量相同,所求的问题相同。
生2:(1)题中的4表示4排,5表示每排有5张桌子;(2)题中的4和5都表示桌子的张数。
2、自主解题。
(1)提问:根据刚才分析的数量关系,同学们打算怎样解决这两个问题?
(2)学生分组讨论、汇报。
预设
生1:(1)题是把4个5加起来,可以列乘法算式。
5×4=20(张)
生2:(2)题是把4和5合起来,用加法计算。
5+4=9(张)
(3)讨论:两道题目中都有4和5,为什么解答方法不同呢?
(学生分组讨论,利用学具摆一摆,表示出两道题目的条件和问题,明确原因)
《解决问题》教案 篇4
设计说明:
教材要求引导学生借助线段图分析数量关系,列方程解决问题。为遵循学生的思维特点,结合教学要求,特从以下几方面解决本节课的重难点:
1、复习导入,引出新知。
本节课是运用速度、时间、路程的数量关系来列方程解决问题的,因此针对本节课的教学内容,在导入中安排了相关的复习题,旨在唤起学生原有的知识经验,进一步明确路程、速度与时间之间的关系,为更好地学习本节课的知识做好铺垫。
2、创设情境,探究新知。
出示教学情境图,引导学生观察图中所提供的信息,并用自己的语言将图中的信息表述出来,并指导学生如何在线段图上标出数据,根据线段图分析题中的数量关系,然后列方程解决问题。这样既培养了学生的观察能力与对信息的搜索、整理能力,又锻炼了学生的语言表达能力和解决问题的能力。在教学中,创设不同层次的问题,针对学生之间存在的差异性,将问题由浅入深、由易到难地排列,使不同层次的学生都能够得到锻炼的机会。
3、课堂总结,学用结合。
通过课堂总结,让学生回顾这节课自己学到了哪些知识,有什么收获与体会,并和全班同学交流与分享。在这个过程中,不仅使学生互相交流了心得与体会,更加了解了本节课的学习内容,还锻炼了学生的口头表达能力,使学生在轻松愉快的氛围中学会本节课的知识。
课前准备:
1、教师准备:PPT课件、学情检测卡、课堂活动卡
2、学生准备:练习卡片
教学过程:
⊙复习导入,引出新知
师:以前我们学习过的行程问题中有几个量,分别是速度、时间和路程,你们还记得它们之间的关系吗?
(速度×时间=路程;路程÷时间=速度;路程÷速度=时间)
师:今天我们就来应用这几个量之间的关系解决生活中的实际问题。(板书课题)、
设计意图:通过复习铺垫,使学生深入掌握行程问题中速度、时间和路程三者之间的关系,进一步巩固有关这几个数量关系的计算方法,为下一步的学习奠定基础。
⊙创设情境,探究新知
1、创设情境,搜集信息。(课件出示例5)、
(1)、引导学生观察课件,汇报发现了哪些数学信息。
(2)、学生汇报。
(知道了总路程和两个人的速度,求相遇的时间)、
2、阅读理解,整理信息
(1)、教师指导学生画线段图分析题中的数量关系。
师:为了帮助我们正确理解题意,你们有没有办法将题中的信息更加直观地表示出来?
预设生:可以画线段图来表示。
师:刚才同学们说到了画线段图的方法,那么就让我们一起来试一试。
(学生在小组内讨论,试着画一画)、
师:题中还有很多其他信息,在线段图中又该怎样表示出来呢?请同学们自己先动手画一画,再与同学交流。
(学生按要求画图,并与同学交流画法)、
(2)、在学生汇报的基础上在黑板上完成线段图,并提示学生将单位统一之后再画。
3、分析题意,尝试解答。
(1)、根据等量关系列方程解决问题。
师:观察线段图,你能找出题中的等量关系吗?
(小林骑的路程+小云骑的路程=总路程)、
(2)、引导学生根据题中的等量关系列方程,独立解答,指名板演。
250m=0.25km200m=0.2km
解:设两人x分钟后相遇。
025x+0.2x=4.5
0.45x=4.5
x=10
早上9:00出发,10分钟后是早上9:10。
答:两人在早上9:10相遇。
《解决问题》教案(精选22篇)
作为一位兢兢业业的人民教师,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。我们应该怎么写教案呢?以下是小编帮大家整理的《解决问题》教案,欢迎阅读与收藏。
《解决问题》教案 篇5
解决问题
教学内容:教材第69页例3及相关题目。
教学目标:
1.结合具体情境认识与圆相关的组合图形的特征;掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思 考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化教育;通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:掌握计算组合图形面积的方法,并能准确计算。
教学难点:对组合图形进行分析。
教学准备:多媒体课件。
教学过程
学生活动(二次备课)
一、情境导入同学们,图形世界是美丽的、奇妙的,世界因为有了五彩的图案而更加美丽。古时候,由于人们的活动范围小,往往凭自己的直觉认识世界。看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(课件展示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。比如,精美的雕窗、鸟巢和水立方等建筑,这里面也蕴含了很多数学知识。
二、预习反馈点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
课件出示例3中的雕窗图案。
1.观察一下,这两种设计图案有什么联系和区别?每个图案中的圆和正方形有什么关系?都是由正方形和圆组成的,但左边是外方内圆,正方形的边长等于圆的直径;右边是外圆内方,圆的直径等于正方形的对角线的长。
2.理解题意。如果两个圆的半径都是1m,求出正方形和圆之间部分的面积。抽象成我们学过的数学图形就是:思考:怎样求正方形和圆之间部分的面积?先想一想,再同桌交流。左图求的是正方形比圆多的面积,即用正方形的面积减去圆的面积。右图求的是圆比正方形多的面积,即用圆的面积减去正方形的面积。
3.分析解答。知道两圆的半径,就可以求出它们的面积,关键是求正方形的面积。观察图可知,左图正方形的边长等于圆的直径,由此可求面积;右图正方形的边长不知道,不能直接用公式求面积,可以将正方形看成两个底是圆的直径,高是圆的半径的三角形。学生自己计算,集体订正。
4.回顾反思,理解算法。师:如果两个圆的半径是r,结果又是怎样的?结合图形算一算。学生分小组探究、汇报结论。想一想:当r=1时,和前面的结果一致吗?代入看看。小结:不管圆的大小如何改变,外方的正方形与圆之间的面积都是半径平方的0.86,而内方的正方形与圆之间的面积都是半径平方的1.14倍。
四、巩固练习
完成教材第70页做一做。
五、拓展提升
求下面各图中阴影部分的面积。
(1)3.14×52÷2-5×2×5÷2=14.25(cm2)(2)12×12÷2-3.14×(12÷2)2÷2=15.48(cm2)
六、课堂总结
通过本节课的学习,你有哪些收获?你还有哪些问题?
七、作业布置教材练习十五第9、11题。
观看欣赏美丽的图片。教师根据学生预习的情况,有侧重点地调整教学方案。观察两个图案,找出组成两个图案的基本图形,并找出它们的特点关系。先独立思考再交流、分析后可得:其实就是求图中阴影部分的面积。以小组为单位进行讨论计算。
板书设计
解决问题例3左图:
2×2—3.14×12
右图:3.14×12-
×2×1
×2=4-3.14
=3.14-2=0.86(m2)
=1.14(m2)
(2r)2-3.14×r2=0.86r2
3.14×r2×2r×r×2=1.14r2
教学反思
成功之处:本节课设计让学生经历观察思考、分析推理等学习活动,解决问题,提高学生对数学的好奇心和求知欲。不足之处:对组合图形的面积的计算没有进行回顾和总结。教学建议:教学时在每个环节结束后让学生进行总结或说一说感受,使知识能够得到沉淀。
《解决问题》教案 篇6
【教学内容】
课程标准实验教科书苏教版六年级上册教材第89页例1和“练一练”、练习十七第1题。
【教材简析】
本节课主要教学用替换的策略解决简单的实际问题。在此之前,学生已经学习了用画图、列表、一一列举和倒过来推想等策略解决简单的实际问题,并在学习和运用这些策略的过程中,感受了策略对于解决问题的价值,同时也逐步形成了一定的策略意识。
通过解决例1这个问题,让学生初步理解并掌握等量替换的策略。解决这个问题的关键,一是能够由题意想到可以把“大杯”替换成“小杯”,或把“小杯”替换成“大杯”;二是正确把握替换后的数量关系,从而实现将复杂问题转化为简单问题的意图。
“练一练”依然是把一种物体分装在两种不同容器中的实际问题。与例1的区别在于,大盒和小盒的关系不是用分数表示,而是用差数表示。因此在依据题意将大盒替换成小盒或者将小盒替换成大盒后,原题中的数量关系就有了不同的变化。
【教学目标】
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
【教学重点】
使学生掌握用“替换”的策略解决一些简单问题的方法。
【教学难点】
使学生能感受到“替换”策略对于解决特定问题的价值。
【教学用具】
多媒体课件、一个大杯和几个小杯(大杯的容量正好是小杯的3倍)
【教学过程】
一、激趣导入
1、谈话:我们先来看一段动画。
2、问:看出是什么故事了吗?
3、问:曹冲用了什么巧妙的办法称出了大象的重量?(教师引导说出“替换”并板书。)
4、谈话:曹冲用替换的策略解决了生活中的难题,这节课我们也来学习用“替换”的策略解决一些数学难题,有信心吗?
【设计意图:引导学生通过欣赏曹冲称象的故事,不但激发了学生的学习兴趣,而且使他们了解替换的策略不仅能解决数学问题,还能解决生活中的问题。从而培养了学生自觉地把数学知识应用于实际生活的意识。】
二、探索新知
(一)、理清大小杯的关系
1、师出示一个大杯和几个小杯(5个)说:猜一猜,一个大杯可以倒满几个小杯?
过渡:事实胜于雄辩!我们来倒一倒。
2、师演示。(正好3杯)
3、问:谁来说一说大杯容量和小杯容量的关系?
4、师:假如老师再装满一大杯水,分给每个小朋友每人一杯水,一共可以给几个小朋友?你是怎么想的?(引导学生说出一个大杯可“替换”三个小杯)
5、师:假如有30小杯的水,老师分给每个小朋友一大杯水,可以分给几个小朋友?你是怎么想的?(引导说出三个小杯可替换成一个大杯)教师板书。
【设计意图:让学生根据实验结果说出大、小杯容量之间的关系,意在让学生确立起倍和比的关系意识,能顺利进行转化,为新知的学习奠定良好的基础。】
(二)学习例题。
过渡:小明在倒果汁的时候给我们出了个难题,我们一起去看看吧!
1、[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的'。小杯和大杯的容量各是多少毫升?
2、读题获取信息:有哪些信息,求什么问题?
3、指名说你是怎么理解“小杯的容量是大杯的”这句话的?
过渡:直接求出小杯和大杯的容量来容易吗?你们准备用什么策略来解决这个问题?
4、小组讨论。
要求:
1、把什么替换成什么?
2、替换后的数量关系是什么?
5、交流讨论结果
学生汇报教师演示课件。
6、小结策略。
虽然是两种不同的替换方法,但它们有什么共同的地方?(两种不同的物体替换成一种物体)
7、列式解答。
根据刚才的两种思路让学生自选一种喜欢方法进行计算,教师指名解法不同的两名学生板书,并让其再说说自己的解题思路。
【设计意图:这一层次安排了观察、操作、交流、归纳等数学活动,让学生自己感受、探索替换策略的应用。在交流中,学生把自己的想法表述出来,大家互相借鉴、互相补充,这样不仅调动了学习主动性,而且提高了独立获取知识的能力。】
(三)、教学检验。
过渡:跟他们一样的举手,确定百分之百做对了吗?那要确定做对怎么办?(检验)
1、学生自己尝试检验。
2、实物投影交流学生的检验方法。
3、课件交流“只检验满足一个条件”的检验方法的不足之处。
4、课件出示检验同时满足两个条件的检验方法。
5、小结检验方法。
【设计意图:使学生能够掌握这类题目的检验方法,检验时解答的结果必须满足题中所给的各个条件,培养学生的数学“还原思想”。】
(四)、小结:
你觉得“替换”的这个策略如何?
三、巩固策略
过渡:学到这儿有点累了,进段广告,轻松一下。[电脑播放广告]
这则广告不仅教育我们好东西一定要和亲人、朋友分享,还给我们带来了一道题目。
(一)、巩固练习。
1、出示巩固练习题。
[电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1杯牛奶呢?
2、学生独立完成,先好的同桌可小声交流。
3、教师选择学生作业实物投影交流。并要求学生说出解题思路。
4、口头检验。
5、为什么不把饼干替换成牛奶来考虑?
6、小结:我们还需选择适合自己的“替换”策略来解题。
【设计意图:广告的插入可以很好的调节课堂气氛,学生感觉非常新鲜,既吸引了学生的注意力,又很好的对学生进行了思想教育。】
(二)教学“练一练”
过渡:小明在装网球时又给我们出了个难题,让我们一起来解决它!
1、[电脑出示]小明在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?
2、齐读题,从题目中获得哪些信息?
3、问:与例1相比,有什么不同的地方?
4、“每个大盒比小盒多装8个”这句话你是怎么理解的?
5、你准备怎样替换?替换后的数量关系是什么?
6、同桌讨论。
6、交流:学生说,教师课件演示。
方法一:把2个大盒换成2个小盒。在学生交流中,教师穿插提问:
①现在7个小盒还能装下100个球吗?为什么?
②现在一共可以装多少个?
方法二:把5个小盒换成5个大盒。在学生交流中,教师穿插提问:
①现在7个大盒要都装满,100个球还够吗?为什么?
②现在一共可以装多少个?
7、学生选择一种解法解题。
8、实物投影交流。
9、口头检验。
10、小结:
【设计意图:这道“练一练”实际也是本堂课的难点,通过图示的方法使学生能比较清楚的看出球的个数总量变化和盒子数量的不变,帮助学生较好的梳理解题的渠道,找准解题的依据,策划出比较明确的解题方案,同时也能进一步拓展学生的思维和能力,感受数学的趣味。】
四、全课总结。
1、例题和练一练,两种替换的方法有什么不同?我们要注意什么?
指导学生明确:例题是倍比关系:替换时总量不变,数量会变;练一练是差比关系:替换时总量变了,数量不变。
2、替换时你还注意到什么?有什么值得提醒大家注意的地方吗?
明确:
倍比关系:替换时,可以是“一个物体换几个物体”或“几个物体换一个物体”。
差比关系:替换时,只能是“一个物体换一个物体”。
3、在实际生活中如果遇到数学难题时,不要害怕,要像曹冲一样开动脑筋,合理选择策略,难题一定会迎刃而解的。
【设计意图:这时的小结,是使学生能较好的掌握本节课的重点和难点,使学生能针对两种不同类型的问题,怎样抓住它们的依据特点,采用不同的“替换”策略去解答问题。】
五、课后作业:
练习十七第1题(可做为机动练习题)
《解决问题》教案 篇7
解决问题
教学内容:二年级下册教科书第4页例1、例2。
教学目标:
1.生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
2.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
3.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
教学过程:
一、创设情境,激发兴趣。
1.谈话:同学们,元旦快到了,你们高兴吗?(高兴)为了迎接新年的到来,我们学校举行了一次游园活动。小朋友你们想不想参加?(想)好!老师就带小朋友们一起去参加游园活动,我们唱着歌出发好吗?(唱新年快乐歌)
2.情境图
谈话:我们来到了游园点,你们看小朋友们在做什么?(在看木偶戏)
提问:你从这幅图上看懂了什么?获得了什么信息?
学生回答:原来有22人在看戏;又来了13人;走了6人。
二、主动探索,协作交流,领悟解法。
1.同学们,你们看得真仔细,通过这些信息,你能提出什么数学问题?
(1)原来有22人在看戏,又来了13人。一共有多少人在看戏?
(2)原来有22人在看戏,走了6人。还剩多少人?
对于这两个问题,让学生提出后很快就解答。
(3)原来有22人在看戏,走了6人,又来了13人。现在看戏的有多少人?
(4)原来有22人在看戏,又来了13人,又走了6人。现在看戏的有多少人?
对说出(3)(4)两题的学生给予表扬。
2.解决问题
提问:你们会解决“现在看戏的有多少人?这个问题吗?
(1)独立思考
谈话:在四人小组中说说你的想法,你是怎样算的?
(2)让学生在四人小组中充分地交流,说自己的想法,老师参与学生的讨论之中了解情况。
(3)汇报:并说想法
3.把学生解决问题的方法记录在黑板上。
(1)22+13=35(人)
(2)22-6=16(人)
35-6=29(人)
16+13=29(人)
(3)22+13-6=29(人)
(4)22-6+13=29(人)
让学生明确(1)、(3)的解题思路是一样的,是同一种方法;(2)、(4)的解题思路是一样的,是同一种方法。
4.比较(1)、(3)和(2)、(4)两种方法的联系。
明确两种方法的结果都是求现在看戏的有多少人,在解决问题的思路上略有不同。
5.谈话:小朋友们看木偶戏看得多高兴呀!你们看这边发生了什么事情?(出示练习一的第1题)
《解决问题》教案 篇8
教学目标:
1、让学生经历解决问题的过程,学会用乘法两步计算解决问题。
2、通过解决具体问题,让学生获得一些用乘法计算解决问题的活动经验,感受数学在日常生活中的作用。
教学重、难点:使学生学会从实际生活中发现问题、提出问题,并运用所学知识解决问题。
教具准备:运动会广播操表演录像或幻灯片。
教学过程:
一、复习铺垫
下面老师有几个问题想请大家帮忙解决。
接着,口述下面的问题。
二(1)班一些学生为布置教室做纸花。每两位小朋友一小组,每位小朋友做3朵花,8个小组一共做了多少朵花?
待学生解决问题后,请两、三名学生说一说解决问题的过程和结果。
教师评价解决问题的方法,并鼓励学生探讨解决新的问题。
二、自主探究,解决新问题
1.创造情境,引出问题。
展示运动会开幕式上广播操表演情境,吸引学生“进场”。接着,定格在表演广播操的一个方阵上(与例1一致),由小精灵提出问题(画外音)。
2.探讨解决问题的方法。
请学生独立观察画面,收集解决问题的信息数据,思考解决问题的方法。允许遇
师生活动
到困难的学生与伙伴交流意见。
3.组织交流。
请学生说一说解决问题的过程和结果。在“说”的过程中,加深学生对解决问题的步骤和方法的理解,并获得用数学知识解决问题的成功体验。
三、自主解决问题。
1.请学生独立解决教科书第99页“做一做”中的问题。
注意留给学生充足的时间。
1.组织交流。
鼓励学生展示自己解决问题的方法。
由于学生观察事物的角度不同,收集到的数学信息不同,思考探索的解决方法也就不同。解决“一共有多少个?”的方法可能会出现多种。例如,
①5×6×8②5×6×(5+3)③5×6×7+5×6
④5×6×7+30⑤30×8⑥30×5+30×3
学生说得有道理,答案正确,就给予肯定和鼓励,激发学生探索的欲望,增强学生学好数学的信心。
四、练习
1.请学生解决练习二十三中第1、3、4题中的.问题。
(1)要求学生独立完成。可以不受习题顺序的限制,想先解决哪个问题,就先解决那一个。
解决问题时,如果有不理解的词语,可以问同学和老师。
(2)适时鼓励学生,寻找不同的方法解决问题。
(3)组织交流。
①在小组内交流自己解决问题的方法。
让每个学生都参与表达解决问题过程和结果的学习活动。
②各组推出代表向全班学生展示解决问题的方法。
2.请学生联系身边的事,提出需要用乘法两步计算解决的问题,并解决问题。
五、课堂总结(略)
《解决问题》教案 篇9
教材分析:
这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。
学情分析:
学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。
教学目标:
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百
分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学难点:对一些百分率的理解。
教具准备小黑板、口算卡片
参考的有关数据:
稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%
教学过程
第一课时
活动(一)创设情境,提出问题:补充(点评)
1、口算比赛:(时间:1分钟)
5/6―1/23/102/91―1/44/51/54/54/3
5/8+3/47/124/77/8+1/41/5+1/33/45
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占
总题数的几分之几?)
2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?
3、提出问题:能否将做对的.题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)
(将做对的题数占总题数的几分之几改成做对的题
教学设计
校对并让学生说说自己的口算情况,
补充(点评)、
数占总题数的百分之几)
活动(二)相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。
2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。
(二)共同探讨
1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数发芽的个数
产品的合格率=────────100%发芽率=───────100%
产品总数种子的总数
3、尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?
(2)完成第113页的做一做
活动(三)运用知识,解决问题:
1、口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3、课堂作业:
1、我国鸟类种数繁多,约有1166种。全世界鸟类约有
8590种。?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)
活动(四)、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
一、补充练习:
1、判断题
①五年级98个同学,全部达到体育锻炼标准,达标率为98%.
②今天一车间102个工人全部上班,今天的出勤率是102%
③甲工人加工103个零件,有100个合格,合格率是100%.
2、应用题
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.
二、作业:结合练习二十九第6题进行课外调查。
《解决问题》教案 篇10
【教学内容】
运用加法和减法两步计算解决问题,并学会使用小括号;运用乘法和加法(或减法)两步计算解决问题。
【教学目标】
知识与能力:
1.结合现实生活中的具体情境,使学生初步理解数学问题的基本含义。
2.学会用两步计算的方法解决问题。
3.知道小括号的作用。
4.初步培养学生在实际生活中发现问题、提出问题、解决问题的能力。
5.培养学生多角度观察问题,解决问题的能力。
过程与方法:
发现法,问题教学法,研究性学习,小组合作等方法。
情感与态度:
1.培养学生认真观察、独立思考等良好的学习习惯。
2.培养学生结合生活发现数学问题并解决问题的学习习惯。
3.培养学生多角度观察问题,解决问题的态度。
【教学重难点】
多角度观察问题,解决问题。不只是单纯的计算题有不同的算法,对于一个实际问题也可以有不同的解答方法。学生可以根据自己的实际情况,选择自己容易理解或比较喜欢的方法。
学会使用小括号列综合算式,并了解小括号的作用。
【教具准备】
口算卡片,课本插图。
【课时按排】
本单元可用4课时进行教学。
1.看木偶戏
【教学内容】教科书第2~4页例1。
【教学目标】
知识与能力
1.使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
情感与态度
1.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
2.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
过程与方法:合作探究
【课前准备】教科书第1~3页游乐园情境放大图片
【教学过程】
一、创设情境
1.谈话:同学们,休息日的时候,你最喜欢做什么?
2.出示游乐园情境图,谈话:“我们看看画面中的小朋友们在做什么?”把学生的注意力吸引到画面上来。
3.让学生观察画面,提出问题。
教师适当启发引导:有多少人在看木偶戏?学生自由发言,提出问题。
二、探求新知
1.利用木偶戏场景插图。
谈话:看到这个画面,你得到了什么信息?学生自由发言。教师有意识、有目的地板书:现在看戏的有多少人?
2.明确画面中所提供的信息。
谈话:从图中你知道了什么?
3.小组交流讨论。
(1)应该怎样计算现在看戏的'有多少人?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班级交流解决问题方法。
4.把学生解决问题的方法记录在黑板上。
(1)22+13=35(人) (2)22-6=16(人)
35-6=29(人) 16+13=29(人)
5.观察比较两种方法的联系。
明确两种方法的结果都是求现在看戏的有多少人,在解决问题的思路上略有不同。
6.提问:把分步解答的两个算式合成一个算式该怎么办?
学生自己尝试列综合算式。
板书:(1)22+13-6 (2)22-6+13
交流:你是怎么想的?
7.小结。
三、巩固应用
1.练习一的第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
2.练习一的第4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
3.让学生互相交流,在生活中还有哪些类似的问题可以用本节课学习的知识来解答。学生自编题目,互相解答。
四、全课总结
1.请同学们说一说,这节课有哪些收获。
2.教师强调:请同学们尝试用本节课学习的知识去解决我们生活中的问题。
【板书设计】
(1)22+13=35(人) (2)22-6=16(人)
35-6=29(人) 16+13=29(人)
22+13-6=29(人) 22-6+13=29(人)
2.买面包
【教学内容】教材第5页例2
【教学目标】
知识与能力:
1.使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
2.学会使用小括号列综合算式,并了解小括号的作用。
过程与方法:合作-探究
情感与态度:
1.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
2.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
【课前准备】教科书第5页游乐园情境放大图片
【教学过程】
一、创设情境
1、谈话:同学们都和爸爸妈妈一起去买过面包,今天老师也带大家去买一次面包。
2、出示买面包的情境图,“你能从图中提供的信息提出什么有关的数学问题?”
二、探究新知
1、利用买面包场景插图。让学生自由说出从图中给出的信息,知道了什么?
谈话:看到这个画面,你得到了什么信息?学生自由发言。教师有意识、有目的地提示:现在还剩多少个面包?
2.明确画面中所提供的信息。
谈话:从图中你知道了什么?
3.小组交流讨论。
(1)应该怎样计算现在还剩多少个面包?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班级交流解决问题方法。
4、把学生解决问题的方法记录在黑板上。
(1)54-8=46(个) (2)8+22=30(个)
46-22=24(个) 54-30=24(个)
5.观察比较两种方法的联系。
明确两种方法的结果都是求现在还剩多少个面包?在解决问题的思路上有什么不同。
6.提问:把分步解答的两个算式合成一个算式该怎么办?
学生自己尝试列综合算式。
(1)54-8-22
(2)能不能列成54-8+22?小组里讨论?
交流:你是怎么想的?
7.老师今天能给大家介绍一个新朋友“括号”,把(2)中的算式“54-8+22”变成“54-(8+22)”,就可以了。这样我们就可以先算8+22,然后再算54-30。大家说说括号在这里起什么作用?
8.小结。
三、巩固应用
1.练习一的第2、3题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
2、请学生尝试解决第5题。有困难时给学生以启发。
3.让学生互相交流,在生活中还有哪些类似的问题可以用本节课学习的知识来解答。学生自编题目,互相解答。
四、全课总结
1.请同学们说一说,这节课有哪些收获。
2.教师强调:请同学们尝试用本节课学习的知识去解决我们生活中的问题。
【板书设计】
(1)54-8=46(个) (2)8+22=30(个)
46-22=24(个) 54-30=24(个)
54-8-22=24(个) 54-(8+22)=24(个)
3.跷跷板
【教学内容】教科书第8~9页例3。
【教学目标】
知识与能力:
1.使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
情感与态度:
1.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
2.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
过程与方法:合作探究
【课前准备】教科书第8~9页跷跷板乐园情境放大图片
【教学过程】
一、创设情境
1.谈话:同学们,休息日的时候,你最喜欢做什么?
2.出示跷跷板乐园情境图,谈话:“我们看看画面中的小朋友们在做什么?”把学生的注意力吸引到画面上来。
3.让学生观察画面,提出问题。
教师适当启发引导:有多少人在玩跷跷板?学生自由发言,提出问题。
二、探求新知
1.利用跷跷板场景插图。
谈话:看到这个画面,你得到了什么信息?学生自由发言。教师有意识、有目的地板书:现在玩跷跷板的有多少人?图中有多少人?
2.明确画面中所提供的信息。
谈话:从图中你知道了什么?
3.小组交流讨论。
(1)应该怎样计算现在玩跷跷板的有多少人?图中有多少人?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班级交流解决问题方法。
4.把学生解决问题的方法记录在黑板上。
(1)2×6=12(人) (2)4×3=12(人)
12+7=19(人) 12+7=19(人)
(3)……
5.观察比较解题方法的联系。
明确解题方法的结果都是求玩跷跷板的有多少人,在解决问题的思路上略有不同。
6.提问:把分步解答的两个算式合成一个算式该怎么办?
学生自己尝试列综合算式。
板书:(1)2×6+7 (2)4×3+7
交流:你是怎么想的?
7.小结。
三、巩固应用
1.第9页的做一做,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
2.练习二的第1、4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
3.让学生互相交流,在生活中还有哪些类似的问题可以用本节课学习的知识来解答。学生自编题目,互相解答。
四、全课总结
1.请同学们说一说,这节课有哪些收获。
2.教师强调:请同学们尝试用本节课学习的知识去解决我们生活中的问题
【板书设计】
(1)2×6=12(人) (2)4×3=12(人)
12+7=19(人) 12+7=19(人)
2×6+7=19(人) 4×3+7=19(人)
4.整理复习
【教学内容】教科书第10~11页2、3、5。
【教学目标】
知识与能力:
1.使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
情感与态度:
1.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
2.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
过程与方法:合作探究
【课前准备】教科书第10~11题图。
【教学过程】
一、创设情境
1.谈话:同学们,看看第10页第2题中小白兔们在干什么?你最喜欢说什么?
2.出示情境图,谈话:“我们看看画面中的小白兔们在做什么?”把学生的注意力吸引到画面上来。
3.让学生观察画面,提出问题。
二、探求新知
1.利用木偶戏场景插图。
谈话:看到这个画面,你得到了什么信息?学生自由发言。
2.明确画面中所提供的信息。
谈话:从图中你知道了什么?
3.小组交流讨论。
(1)应该怎样计算?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班级交流解决问题方法。
交流:你是怎么想的?
7.小结。
三、巩固应用
1.说说生活中你了解的哪些事与这几节课的内容相似,把它编成一道应用题。
2、请学生尝试解决第5题。有困难时给学生以启发。
四、全课总结
1.请同学们说一说,这节课有哪些收获。
2.教师强调:请同学们尝试用本节课学习的知识去解决我们生活中的问题。
《解决问题》教案 篇11
教学内容:
义务教育课程标准实验教科书(人教版三年级上册第55页例4及55页做一做。)
教学目标:
1、通过对熟悉的生活事例的探讨和研究,初步学会用有余数的除法解决生活中的简单实际问题。
2、学会正确解答简单的有余数问题,能正确地写出商和余数的单位名称。
3、在解决问题中,感知数学的应用价值,获得运用知识解决问题的成功体验。
教学重点、难点:
运用恰当的方法和策略解决实际问题
教学过程:
一、导入新课
师:认识他们吗?请你说出它们的名字。如果按这样的顺序继续排下去,紧挨着懒羊羊后面的会是谁?你是怎么想的?
师:你用找规律的方法知道了紧挨着懒羊羊后面的应是灰太狼,那第39个会是谁呢?
师:其实像这样的问题我们可以用有余数的除法解决,今天这堂课我们就学习“用有余数的除法解决问题”(揭示课题)。
二、理解基本的数量关系
1、出示数学信息:
提问:根据图中这两条数学信息你能提出什么数学问题?
(1)根据学生回答,将问题补充完整。全班连起来读一遍,请你说出已知条件和问题。
三一班有45人跳绳,每6人分一组,可以分成几组,还多几人?
(2)学生独立解答。(用练习本完成)
(3)请一位学生上台板演。提问:竖式中“45”、“6”、“5”、“42”各表示什么?
(4)师:现在我们把数学信息“6人一组”改成“平均分成6组”,
你又能提出什么数学问题?连起来读一遍。
生:三一班有45人跳绳,平均分成6组,每组有几人,还多几人?
(5)对比:
三一班有45人跳绳,每6人分一组,可以分成几组,还多几人?
45÷6=7(组)3(人)
三一班有45人跳绳,平均分成6组,每组有几人,还多几人?
45÷6=7(人)3(人)
仔细看一下这两道题,有什么相同和不同的地方吗?
生:算式是一样的。单位名称不一样,第1题每6人分一组,可以分成5组,还多2人,单位名称是“组”和“人”;第2题平均分成6组,每组5人,还多2人,单位名称就是“人”和“人”。
师小结:看来单位名称是跟我们解决的问题有关,第1题的问题是可以分成几组,还多几人?单位名称是“组”和“人”;第2题的问题是每组有几人,还多几人?单位名称就是“人”和“人”。
2、提问:刚才我们解决了三一班45人跳绳的问题,现在如果全校小朋友都来跳绳,还是每6人一组,分到最后可能会剩下几个小朋友?如果每5人一组,分到最后可能会剩下几个小朋友?8人一组呢?15人呢?
三、巩固练习
数学书55页做一做
(1)、小兰有20元,都买矿泉水,最多可以买几瓶,还剩几元?全班学生在练习本上完成,集体订正。
(2)、四人小组合作学习。我们四人各有15元,可以买些什么呢?出示学习要求,指名读要求并在练习本上完成。集体订正。
(3)、对比四个算式,你有什么发现?
四、解决生活中的简单问题(拓展练习)
《解决问题》教案 篇12
设计说明
1.联系生活实际,创设问题情境。
《数学课程标准》中提出:“数学教学要紧密联系学生的生活实际,从学生的经验和已有的知识出发,创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境。”本教案精心设计了去秋游买车票的问题情境,不仅引起了学生对旧知识的'回忆,同时也很自然地引出了估算。接着,又创设了帮妈妈解决问题的情境,使学生感受到学习估算是实际生活的需要,激起了学生学习的热情,调动了学生学习的积极性。整节课都是在紧密联系学生熟悉的生活情境的前提下进行教学的,学生置身在熟悉的问题情境之中,他们要解决问题的欲望油然而生,一个鲜活的课堂自然生成了,从而提高了学生学习估算的兴趣,使学生在乘法估算中感受数学的应用价值。
2.注意培养学生多角度观察问题、解决问题的能力。
本教学设计立足于让学生自主收集、理解数学信息,有意识地引导学生从不同的角度分析信息,寻找解决问题的方法,激发学生的探索欲望。使学生逐步形成从多角度分析问题的习惯,逐步提高解决问题的能力。
课前准备
教师准备,PPT课件
学生准备,带有表格的卡片、计算器
教学过程
⊙复习旧知,引入新课
1.秋季是旅游的好季节,学校准备组织大家去秋游,每套车票和门票49元,一共需要104套票。请同学们估算一下,大约需要多少钱?
(学生估算,并汇报、交流自己的方法)
2.揭题:刚才这道题是我们在四年级时学习过的内容
《解决问题》教案 篇13
教学目标:
1、在现实生活的情境中,培养学生提出问题、解决问题的能力。
2、培养学生探索知识的意识和能力,进一步掌握小括号的作用和用法。
3、培养学生收集整理信息的能力。
教学重点:查漏补缺,反馈出现的问题,提高学生解决问题的准确性和多样性。
教学难点:
1、理解相同数位上的数才能相加的道理,即笔算中的“对位”问题。
2、掌握笔算的计算法则,能熟练计算。
教学准备:
实物投影、练习插图情境图。
教学过程:
一、谈话导入,激发兴趣
前几节课我们已经学习了两步计算的题目,并且知道了小括号的用法今天老师先带小朋友到草地上去看看好吗?不过看了以后还要解决几个问题。
[设计意图]::从学生喜欢的事物引入,激发学生学习的兴趣。
二、合作探索,巩固新知
1、投影出示第9页做一做主题图,学生独立解答后合作交流讨论。教师注意引导学生从不同的角度去观察与思考。如观察小鸟、花朵、蜜蜂等,由此从多种角度发现问题、提出问题、解答问题。同时用多种方法解决同一个问题。
2、出示第11页第3题。学生观察后问:他们带20元钱买票够吗?你是怎么想的.?学生交流讨论。通过解决问题,既巩固了用乘法和加法两步计算解决问题,又能够培养学生的估算意识,增强学生的数感。
3、完成第4题学生独立完成表格,并说说怎么算总分。通过计算各队总分,学生能根据实际情况,灵活选择相关信息解决问题,培养学生思维的灵活性。
4、完成第5题思考题求:一共有多少个方木块?学生可以用多种方法进行解答。算式可以是:3X3X3-2=25(个) 3X3X2+7=25(个) 3X3+3X3+7=25(个)……
[设计意图]:让学生在交流、实践中掌握知识、应用知识。思考题有利于开发学生的思维。
三、课堂总结
通过今天这节课我们又有什么收获?你能把我们学会的知识解决我们生边的问题吗?
四、课堂作业
《解决问题》教案 篇14
教学过程:
一、积累铺垫
1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)
2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。
3.出示第一关:中山路小学原有一个花圃是长方形,长4米,宽3米。校园扩建时,长增加了2米。(1)学生画图(2)对比交流
4.从图中你能求出什么?
二、初步感知
1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)
3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图, (2)对比交流:
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)
三、再次体验
1.出示第三关:中山路小学原来有一个宽30米的前操场。因为要造“牡丹公寓”,宽减少了10米,这样前操场面积就减少了400平方米。现在前操场的面积是多少平方米?
2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?
3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的`长。)
4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。
四、深入体验
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
(3)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米,宽增加了15米。这个操场面积增加了多少平方米?
学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
2.出示第五关:中山路小学原来有一个长方形操场。如果这个操场的长增加20米,或者宽增加15米,面积都比原来增加600平方米。你知道原来操场的面积是多少平方米吗?
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)
(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)
五、全课总结
今天学习了“解决问题的策略”,你有什么收获?
《解决问题》教案 篇15
教学目标:
1、学会综合应用乘、除法运算解决稍复杂的实际应用问题。提高分析问题、解决问题的能力。
2、初步了解用列综合算式的方法解决应用题以及理解乘除法混合运算的顺序,会按从左到右的顺序进行运算。
教学重点:理解乘除法应用题之间的关系
教学难点:正确分析应用题之间的数量关系
教法:观察法、举例法、实践法
学法:探究法、合作交流、练习
教学过程:
一、谈话导入,板书课题(5分)
1、口算。(大屏幕出示口算题)
5×716÷421÷79×8
28÷430÷5 72÷89×9
64÷83×948÷64×7
2、列式计算: (1)5个4相加是多少?(2)64是8的多少倍?
(3)48里面有几个8? (4)6乘9积是多少?
3、谈话引入:星期天,妈妈带着文文来到了乐乐玩具店,让我们一起来看看吧!板书课题。
二、出示目标(1分)
这节课我们的学习目标是:学会综合应用乘、除法运算解决稍
复杂的实际应用问题。
三、自学指导(10分)
1、问题情景。大屏幕出示例3情景图。要求学生认真观察。
2、合作研讨题意。
(1)让学生分组研讨,在组内互相说一说“要求“56元可以买几个地球仪”这个问题需要知道哪些信息?
(2)各组选派代表在全班交流,说一说图意和题意。
学生小组合作交流,教师了解看是否还有同学不理解题意,对不理解题意的地方进行补充讲解。
3、自主尝试解答。
(1)让学生各自独立思考,探讨解决问题的思路,并尝试进行解
答。对于有困难的.学生,教师可启发学生先算什么?再算什么?
(2)让学生交流汇报各自的解答算式,并说一说自己是怎样想的。
结合学生说的思考过程,教师板书出:
56÷8=7(个)
教师小结:一个地球仪是8元,要求“56元可以买几个地球仪” ,也就是在求56元里面有几个8元,因为56里面有7个8,所以能买7个地球仪。
四、质疑探究(5分)
你还能提出其他数学问题并解答吗?
小组交流,指名发言。
五、当堂训练(19分)
(a)强化练习
1、出示做一做
如果24元买了6辆小汽车,一辆小汽车多少钱?
谁会列式解决?
为什么用除法计算?
2、出示练习九第二题
学生独立完成,集体订正。(指名板演)
(b)堂清作业
完成课本练习九第1、3、4题。
板书设计:
解决问题
56元可以买几个地球仪?
56÷8=7(个)
口答:56元可以买7个地球仪。
《解决问题》教案 篇16
设计说明
用一套七巧板拼三角形,还要拼得尽可能多,对于一年级的学生来说是一个不小的挑战,怎样使学生找到拼出更多三角形的思路和方法是这节课的重点内容。
1.重视激发学生的学习积极性与求知欲。
在教学时,为了使学生体会到七巧板的神奇和有趣,先让学生欣赏一组用一套七巧板拼组成的图案,五彩缤纷,妙趣横生的.图案极易吸引学生的眼球,唤起他们对七巧板的好奇心,产生亲自动手拼一拼的强烈愿望,为接下来的学习做好铺垫。
2.重视在操作探究中总结方法。
在教学时,为了避免学生的操作太过盲目,浪费宝贵的课堂时间,教者在学生操作之后及时组织汇报交流,加以总结归纳,引导学生找到拼组更多三角形的方法。当学生在头脑中形成思路以后,组织学生再次进行拼组,巩固并验证所获得的经验,提高学生解决问题的能力。
课前准备
教师准备PPT课件一套七巧板
学生准备一套七巧板
教学过程
⊙赏图激趣,认识七巧板
1.课件出示用一套七巧板拼组成的各种图案,请同学们欣赏。
师:你们知道这些漂亮的图案是用什么拼出来的吗?
生:一套七巧板。
师:请大家仔细观察,看看这套七巧板中都有什么图形,哪种图形最多。
(学生观察七巧板)
预设
生1:七巧板中有三角形、正方形和平行四边形,其中三角形最多。
生2:七巧板中有5个三角形、一个正方形和一个平行四边形,其中三角形最多。
2.用七巧板能拼出许多有趣的图案,你们想动手试试吗?这节课我们就来练习用一套七巧板拼组图案。(板书课题)
设计意图:兴趣是最好的老师,在学习新课之前先让学生欣赏用一套七巧板拼组成的各种妙趣横生的图案,使学生对七巧板产生强烈的好奇心,然后在此基础上出示七巧板、认识七巧板,为下面的学习奠定了良好的基础。
⊙操作实践,探究新知
1.课件出示例3。
师:从题目中你了解到了哪些信息?题目要求我们做什么呢?
预设
生1:题目要求我们用一套七巧板拼三角形。
生2:每人用一套七巧板拼三角形,看谁拼得多。
2.自由拼组,组内交流。
(1)独立思考,尝试用一套七巧板拼三角形。
(2)在小组内说说用了几个图形,拼出了什么样的三角形。
3.各小组选代表到教室前面展示自己的拼法。
(1)用两个图形拼。
(2)用三个图形拼。
师:这两种拼法有什么不同呢?
预设
生1:用两个图形拼组时,只能选三角形。
生2:用三个图形拼组时,可以都选择三角形,也可以选择其他图形。
4.教师小结:我们在用一套七巧板拼三角形的时候,既可以全部使用三角形,也可以加入其他图形。
5.利用刚刚总结出的经验,再拼一次三角形。
(1)小组合作,先用两个图形拼,再用三个图形拼。
(2)全班交流,根据使用图形的个数分类汇报。
6.回顾过程,总结方法。
师:这节课我们解决了什么问题?
预设
生:我们解决了“用一套七巧板拼三角形”的问题。
师:我们在解决这个问题时是怎么做的?
预设
生1:我们先读题,明确题目的要求。
生2:我们动手操作,在操作中不断总结经验,找到解决问题的最好办法。
设计意图:在这个环节中,让学生经历独立拼组
《解决问题》教案 篇17
今天我说课的内容是:三年级下册100页的例2《解决问题》
一、说教材。
关于解决问题,《规范》中第一学段的教学目标是:“能在教师引导下,从日常生活中发现并提出简单的数学问题。了解同一问题可以有不同的解决方法。有与同伴合作解决问题的体验。初步学会表达解决问题的大致过程和结果。”
三下100页的例2《解决问题》这节课的教学起点是在同学学会了用加减法解决两步计算的实际问题和用乘法两步计算解决问题,并且会用不同方法解决同一问题。
根据同学的生活经验、已有知识背景和本课的知识特点,我确定这节课的教学目标是:
1、让同学经历发现问题、提出问题、解决问题的过程,学会用除法两步计算解决问题。
2、 注意培养同学多角度观察问题,解决问题的能力,体现解决问题战略多样化。
3、使同学感受到数学在生活中的巨大作用,激发起同学学习数学的兴趣。
教学重点:
1、使同学学会从实际生活中发现问题、提出问题,并运用所学知识解决问题。
2、引导同学探索用除法两步计算解决问题的方法。
教学难点:
用两种解答方法解决问题。
二、说教学理念
1、提倡解决问题战略的多样化。
由于同学生活背景和考虑角度的不同,所使用的方法必定是多样的。教师应尊重同学的想法,鼓励同学独立考虑,用自身的方法解题,再进行合作交流以提倡解决问题战略的多样化。这样能留给同学考虑空间、探索的空间,有利于发散同学的创新思维。本节课教材出现了解决问题的内容,例2展示了不同同学想出的不同解决方法,使同学了解同一问题可以有不同解决方法,充沛体现了解决问题战略的多样化。教学时我以:你还有什么不同的看法,不同的解法吗?来体现这一理念。
2、让同学主动探索解决问题的方法
新课标强调:同学学习的主体性和自主性,独立性,不再只充任知识的接受者。在数学教学过程中,同学在老师的引导下,进行自主的学习,操作,探索,考虑问题,探究问题,发现问题,解决问题,提出问题,与同学和老师合作交流,讨论,一起发现新知识,以达到培养创新能力和实践能力的目标。教材出现的例2,是在学习了用连乘两步计算解决问题的基础上的,所以我放手让同学自身提出问题并研讨解决。
3、新课标之数学教学过程是教师与同学之间交往互动,感情交流的过程。
教实质上是老师协助同学建构知识体系和能力体系,学实质上是同学自主独立的建构自身的知识系统和发展自身的潜能,教学过程中教师的教与同学的学的统一实质就是交往互动。新课标强调,数学教学,同学不能只做听众,必需动起来,要动起手来操作数学,动起笔来推演数学,动起脑来考虑数学发现数学质疑权威,动起口来讲数学和与同学老师讨论数学;数学教学要通过师生之间,同学之间的合作交往,促进同学个性的充沛发展,使同学学会交往,逐步建立积极和谐的人际关系。在教学中采用小组讨论,集体交流的方法,使每位同学成为主体发言的对象而且是很好的倾听者。
三、说教学过程
第一环节:新课导入。紧密结合同学的生活实际,不时激发同学的求知欲。
在新课导入时,利用课件演示运动会开幕式的情景。从例1的团体操扮演到例2的团体操扮演,不但突出了例1、例2的连续性,而且把数学知识和实际生活紧密联系起来,体现了数学来源于生活。
第二环节:自主学习、探索新知,提倡解题战略的多样性。努力体现开放性,使同学积极主动地参与知识形成的全过程。例2教学主要分以下几步进行:
1、出示例2情景图,(配音:这场团体操有60人扮演。)然后先让同学结合情景图说说:我从中得到一些什么数学信息,想解决什么问题?在这样具有开放性的情境中,同学往往会有宽广的视野和活跃的思维。可能会有:
(1)每个小圈多少人?
(2)一共有几个小圈?
(3)一个大圈有多少人?这些问题。我会根据同学回答一一板书。
然后强调今天主要来研究:每个小圈有多少人?这个问题。
2、在研讨解决方法时,放手让同学尝试解决。提示:要求出每个小圈有多少人?必需先要知道什么?然后4人小组进行讨论。最后指名汇报,评价。以达到培养同学主动探求、自主学习、合作交流,自身找到解决问题的方法的能力。
3、交流解决问题的方法时,鼓励能提出不同的想法的同学。用除法两步计算解决问题也可以用乘法和除法两步计算来解决。
方法1:
同学可能会用分步解答:先求〈1〉平均每个大圈有多少人?60÷2=30(人)
再算〈2〉平均每个小圈有多少人?30÷5=6(人)
也可能直接写综合算式:60÷2÷5
=30÷5
=6(人)答:每个小圈有6人。
假如是综合算式的请他说说每一步所表示的意思。
方法2:
在这之后提问这道题还有别的解答方法吗?可能会有同学想到先算:一共有多少个小圈?那就即使鼓励能提出不同的想法的同学。
假如同学没有想到,我可进行提示:要求每个小圈有多少人?怎么想?引导同学讨论。然后分析:先求两大圈共有多少个小圈?引导同学明确已知平均分成2大圈,每圈有5个小圈,要求每个小圈有多少人,可以先算一算分成多少个小圈,再求每个小圈有多少人?
先分步列式,再列综合算式.
(1)一共分了多少个小圈?5×2=10(个)
(2)平均每个小圈有多少人?60÷10=6(人)
综合算式:60÷(5×2)
=60÷10
=6(人)
(4)比较:结合图说一说这题的两种解题思路有什么不同?
引导同学说出:因为第一种解法先把60人分成两个大圈,每个大圈再分5个小圈,求出每个小圈有多少人?而第二种解法是每个大圈有5个小圈,两个大圈一共有10小圈,求出每个小圈有多少人?内容不同,计算方法也不相同.列出的算式不相同。
教师指出,我们看到这两种解法的结果是一样的。我们做题时,你喜欢哪种方法就采用哪种方法?
在这个环节中,教学中的每一个环节都尽量让同学认真动脑,主动探究和积极表述,力争让同学在独立考虑、相互交流、分组讨论和全般汇报等多形式的开放活动中,成为学习的主人。同时注意信息的选择和解题战略的多样性,启发同学用不同的方法解决问题,鼓励同学创新,培养了创新意识。
第三环节:巧设练习,培养能力。
在练习题设计上,紧扣重点、难点,兼顾了习题的层次性、针对性、灵活性、综合性和实践性。
首先是巩固新知的基本练习,书上的做一做。
然后是新旧知识的比较题。
(1)商场运来2箱衬衣,每箱有4件,每件80元。一共卖了多少元?
(2)商场运来2箱衬衣,每箱有4件,一共卖了640元。每件衬衣多少元?
独立做、个别说想法、比较两题有什么相同与不同之处?
3、提高练:先补充条件,再列式计算。
食堂运来2车大米,每车有4袋, 。平均每袋大米重多少千克? 独立做、汇报。
全体同学在不同层次的练习中,获得胜利感,激发同学课外学好数学的欲望。同时为激发同学主动参与训练的兴趣,培养起思想的求异发明性,使同学在练中学,得到充沛表示,真正成为学习的主人。
第四环节:总结全课
今天我们学习了连除应用题的不同解答方法,与上两节学习的连乘应用题是有一定联系的。同学们今后解答应用题时,要特别注意分清题目中的数量关系,运用合适的方法正确解答。
生活中处处有数学,在实际应用中学数学,不只是理念,更应是我们老师在教学实践中的不懈追求。通过解决问题,能使同学切实体验到数学的应用价值,从而增强同学学习数学的动力和信心,是我追求的目标。
《解决问题》教案 篇18
教学目标:
1、会解决用除法计算的问题。
2、体会解决生活中的数学问题的乐趣。
教学重点:
正确解答用除法计算的问题。
教学难点:
通过解决具体问题,让学生获得一些用除法计算解决问题的活动经验。
教学准备:
多媒体课件 例4情境图
教学过程:
一、学前准备
1、练习。
43×11=答案 32×12=答案 22×14=答案
2、出示:小明5分钟写了180个字,他每分钟写多少个字?(学生回答后,教师板书)
二、探究新知
1、教学例4。
出示情景图。
教师谈话引入新课。
根据给你的信息和观察情景图来解决这个问题。
组织学生讨论然后请代表汇报讨论结果。
在这里教师要给学生充分的空间,发表自己的想法,教师在学生说出想法后在引导、订正。
让学生在练习本上独立完成例4,然后向大家汇报,教师板书。
方法一:60÷2=30(人) 方法二:3×2=6(组)
30÷3=10(人) 60÷6=10(人)
或60÷2÷3=10(人)
答:每组有10人。
教师提问:第一种方法的60÷2=30解决的是什么问题?第二种方法的3×2=6解决的是什么问题?
教师要知道例4的第一种方法是教学重点,但在这里要表扬想出第二种方法的同学。
2、指导完成“做一做”
引导学生看教材第53页的“做一做”,教师先给学生一定的时间看题,教师可以提示学生看清楚题目要解决的问题,通过问题再回到题中收集相关的信息数据。
提问:题中所要解决的问题是什么?你收集到了哪些相关数据?
让学生独立在本上完成此题,展示学生解题的过程。
请学生说一说自己的解题思路。
3、巩固练习。
引导学生看第54页的第2题,引导学生按照“看问题—手机信息数据—列式解答”这样一种思维顺序去独立思考,完成此题。
让学生汇报自己的.解答过程,并展示,发现问题及时解决。
三、课堂作业新设计
1、用竖式计算下面各题。
660÷3= 75÷5= 198÷9= 104÷8=
2、学校图书馆共有700本书,有7个书架,每个书架有5层,你知道平均每乘层放几本书吗?
3、学校组织学生去植树,共去了540人,要分成5个植树点,每个植树点分成9组。请计算一下平均每组有多少人。
四、思维训练
1、某商店运来一批装微波炉用的塑料盒,准备每个卖9元,这批微波炉盒可以卖900元。每箱里有多少个微波炉盒?
2、动脑筋想一想,从图中你能收集什么数据信息?可以解决什么问题?
板书设计:
连除应用题的解决思路和连乘应用题解决思路一样,应从问题入手,确定先算什么,再算什么。
教学反思:
在实际情境中理解了连除应用题的解题思路,在认真阅读理解题意的基础上,分析数量关系,寻找解决问题的方法,培养了学生分析问题和解决问题的能力。
《解决问题》教案 篇19
教学内容:
苏教版国标本教材第九册63-64页。
教学目标:
1、使学生经历用列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。
2、 使学生在对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。
3、使学生进一步积累解决问题的经验,增强解决问题的信心。
教学重点:
能对信息进行分析,用一一列举的策略解决实际问题。
教学难点:
能有条理的一一列举,发展思维的条理性和严密性。
教学过程:
一、谈话导入 回忆策略
1、谈话:老师先来和大家玩个游戏,怎么样?看,这是什么?(扑克牌)
老师抽出大王和小王,你们知道一副扑克牌有几种不同的花色吗?(四种)
老师从中任意抽出一张,猜一猜有多少种不同的结果?(四种)是哪四种呢?(草花,黑桃,红心,方块)
2、揭题:刚才同学们将这些花色一个一个列举了出来(板书:一一列举),一一列举也是我们解决数学问题时经常要用到的.一种策略。今天我们一起来研究这种解决问题的策略(板书课题)。
二、教学例题 探究列举的方法
(一)情景创设 呈现问题
1、师:我校操场东面有一块空地,学校想将把这块空地利用起来,用18根1米长的栅栏围成一个长方形的花圃,有多少种不同的围法?
(1)从条件中你获得了哪些数学信息?(周长是18米)你是怎么知道的?
(2)真了不起,你连这隐藏的数学信息也找出来了,周长是18米,那么说明长和宽的和是多少?(课件出示,长+宽=9米)
(3)长方形的长+宽=9米,那么这个长方形花圃可以怎样围?你能帮老师来设计一下这个长方形花圃吗?
请拿出准备的小棒,同桌合作摆一摆,并想想有没有不同的围法吗?
2、学生尝试操作。
(1)学生操作,教师指导。
(2)交流反馈:哪个小组先来说说你们的围法?检验是否符合要求。
其它小组有不同的摆法吗?
《解决问题》教案 篇20
教材分析:
这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。
学情分析:
学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。
教学目标:
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百
分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学难点:对一些百分率的理解。
教具准备小黑板、口算卡片
参考的有关数据:
稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%
教学过程
第一课时
活动(一)创设情境,提出问题:补充(点评)
1、口算比赛:(时间:1分钟)
5/6―1/23/102/91―1/44/51/54/54/3
5/8+3/47/124/77/8+1/41/5+1/33/45
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占
总题数的几分之几?)
2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?
3、提出问题:能否将做对的题数占总题数的几分之几的.分数应用题改成一道百分数应用题呢?补充(点评)
(将做对的题数占总题数的几分之几改成做对的题
教学设计
校对并让学生说说自己的口算情况,
补充(点评)、
数占总题数的百分之几)
活动(二)相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。
2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。
(二)共同探讨
1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数发芽的个数
产品的合格率=────────100%发芽率=───────100%
产品总数种子的总数
3、尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?
(2)完成第113页的做一做
活动(三)运用知识,解决问题:
1、口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3、课堂作业:
1、我国鸟类种数繁多,约有1166种。全世界鸟类约有
8590种。?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)
活动(四)、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
一、补充练习:
1、判断题
①五年级98个同学,全部达到体育锻炼标准,达标率为98%.
②今天一车间102个工人全部上班,今天的出勤率是102%
③甲工人加工103个零件,有100个合格,合格率是100%.
2、应用题
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.
二、作业:结合练习二十九第6题进行课外调查。
《解决问题》教案 篇21
设计说明
例5通过对现实数据的分析进行合理调整,寻找最佳方案才是本节课的重难点。因此,在教学中注重学生审题能力的培养及对现实数据的分析,让学生在独立思考后组内交流思考过程,在比较中寻找最佳解题策略。
1.注重审题,培养敏锐的观察力。
学生在解决问题的时候,往往容易犯低级错误,没有认真审题就稀里糊涂做题。比如例5情境图就隐含着两条数学信息,如果不认真整体观察就很难发现,所以在教学中,要抓住这一契机,充分利用资源,培养学生的审题能力及观察能力。
2.注重培养学生开放的思维和数学思考力。
《数学课程标准》强调:数学学习中,学生要全员参与。这里的参与并不是简单的行动上的参与,而是思维的'参与。在本节课中,学生审清题意之后,给学生提供充分的自主思考的时间,等学生有了自己的想法之后再在小组内交流,不仅避免了合作学习流于形式,而且每个学生都有自己的想法,不再随波逐流。在交流中让思维得到碰撞,在碰撞中提升数学思考力。
课前准备
教师准备多媒体课件课堂活动卡
学生准备学情检测卡
教学过程
⊙激趣引入,提出问题
师:同学们,中央3套有一档娱乐节目叫《开门大吉》,大家知道吗?课前,我们也来玩一把《开门大吉》考考大家的耳力,看看谁反应最快。
(播放歌曲伴奏)
预设
生:让我们荡起双桨。
师:同学们猜得真准,《让我们荡起双桨》是老师儿时流行的歌曲,几十年来经久不衰。你知道这首歌描写的是什么情景吗?
预设
生:北海划船。
师:大家想象一下,和风旭日,杨柳如茵,轻摇橹桨,泛舟河中,这是多么惬意的事情呀!别光美,你知道吗?这划船里也有不少学问呢!今天我们这节课就来研究《租船问题》。
(板书:租船问题)
设计意图:良好的开端是成功的一半。从现实生活的事例引出研究内容,不但可以激发学生的探究兴趣,而且可以提升学生用数学的眼光观察生活、审视事物和用已有知识解决实际问题的意识。
⊙阅读与理解
1.租船问题看起来很简单,实际上在公园划船都有一些具体要求,划过船的学生一定是知道的。让我们一起去公园看看。(打开教材10页)瞧!这是班主任老师和她的学生在春游,你从这幅图中,你能发现有关划船的哪些数学信息?
生1:一共有32人,租小船24元,租大船30元。
生2:这幅图中我还发现了隐含的数学信息:每条小船可以乘坐4人,每条大船可以乘坐6人。
生3:要解决的问题是怎样租船最省钱。
⊙分析与解答
1.32人怎样租船最省钱呢?下面就请同学们帮助老师解决这个问题好吗?课件出示学习要求:
(1)独立思考,寻找解决问题的方案。
(2)自己有了方案之后再在小组内交流,组长做好不同方案的记录。
(3)整理方案之后准备全班交流。
2.派代表汇报:
小组1:我们小组是这样想的:如果全租小船需要花192元。算式是32÷4=8(条),24×8=192(元)。
小组2:我们小组是这样想的:如果全租大船需要花180元。算式是32÷6=5(条)……2(人),5+1=6(条),30×6=180(元)。全租大船比全租小船省钱,这个方案比较合理。
小组3:我们小组是这样想的:合租大船和小船,可以租5条大船和1条小船,需要花30×5+24×1=174(元);也可以租4条大船和2条小船,需要花30×4+24×2=168(元)。
小组4:通过对比我们发现:租4条大船和2条小船是最省钱的方案。