短文网整理的《分数与除法》教学反思(精选22篇),快来看看吧,希望对您有所帮助。
《分数与除法》教学反思 篇1
分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。教师能从整体上把握教材,激励学生积极参与数学活动:问题让学生自己解决,方法让学生自己探索,规律让学生自己发现,知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,学生有了表现自我的机会和成功的体验,发挥了主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并获得分数与除法的关系,发展了学生的思维能力,达到教学目标,突破了重点和难点。
我在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作,演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力差的学生,在演示说明的时候,叫的学生少,如果能多叫几个学生演示说明,再加上教师的点拨,我想这部分学生在理解上这难点时,就会比较容易。
学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学把3块饼平均给4个人,每人应分多少饼?有很多同学都知道怎样分,但说得不是很明白。我让一个人说了后再请其他同学用数学语言完整的.说一遍,这样长时间可以训练学生的用数学语言来表达德能力。而叠在一起分的方法没有出现,我只好亲力亲为了,边演示边说明,但有部分同学不能理解。课后想来,如果我在一块一块的分时,追问一句:这种方法单位一是什么?肯定会有学生想到可以把一块饼看做单位1也可以把三块饼看做单位1啊!也许后面的方法就可以由学生说出来,用他们的语言来表达,他们会更有共鸣,更能理解。在以后的备课中,要把课堂预设充分考虑周全。备课不仅要备教材更要备学生,这样才能真正发挥学生的主体作用。
《分数与除法》教学反思 篇2
《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商, 在这节课的教学中,我觉得有以下几方面值得我去思考:
一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的.效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。
《分数与除法》教学反思(精选29篇)
在办理事务和工作生活中,我们的工作之一就是课堂教学,反思是思考过去的事情,从中总结经验教训。如何把反思做到重点突出呢?下面是小编帮大家整理的《分数与除法》教学反思(精选28篇),仅供参考,大家一起来看看吧。
《分数与除法》教学反思 篇3
《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商, 在这节课的教学中,我觉得有以下几方面值得我去思考:
一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的'同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。
《分数与除法》教学反思 篇4
教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题3÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个"为什么"简直就是废话中的废话。整个班级躁动不安,是清明假期来临的缘故吧。看着即将发怒的老师,孩子们安静下来一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看来大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。"授人以鱼,不如授人以渔。"我接着说,"大家都知道3除以4得四分之三,那3除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?"果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。
一、通过操作,感悟算理。
我叫学生拿出课前准备好的三个圆,让学生在小组内用自己喜欢的方式来验证对3除以4这一结果的猜想。孩子们或静下心来仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法
(一):把三个圆一个一个分,每次得四分之一,分3次,就得3个四分之一,就是四分之三张饼。方法
(二):把三个圆叠起来,平均分成4份,得到3张饼的四分之一,也是3个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证3÷4用分数四分之三来表示结果。还有学生想出了方法
(三):3除以4得0.75,0.75化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。
二、再次说理,悟出关系。
在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把3块饼平均分给5个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。
三、对比练习,深化知识。
出示:
把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。
把三块饼平均分给7个小朋友,每人分得几分之几块。
让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的.意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1 的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。
在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"来的重要的多!
作者简介
刘璐,中国共产党党员,大学本科学历,艳梅名师工作室研修员。20xx年参加工作至今,一直担任小学数学教学工作。多次参加教学比武,分获市特等奖,县特等奖,县一等奖。数次被评为乡优秀教师,获县嘉奖。20xx年一师一优课获部级优课。坚持用"爱"和"知识"去呵护每一位学生,期待每个课堂都能充满"童真".
《分数与除法》教学反思 篇5
这部分内容是在前面教学分数除以整数、整数除以分数的基础上教学的,通过这一内容的学习可以为以后的学习打下坚实的基础。我在设计本课时主要突出让学生充分评价和反思。 如在本节教学中,,我先请学生独立计算,然后再四人小组合作交流自己的计算方法。 汇报结果时,有的小组说因为整数除以分数,分数除以整数的计算方法都是等于乘以这个数的`倒数。他们认为分数除以分数的计算方法也等于乘以这个数倒数。 通过交流讨论,最后得出分数除以分数的计算方法是一个数除以分数等于这个数乘以这个分数的倒数。然后,再和前面学的整数除以分数,分数除以整数联系起来,得出统一适用的分数除法的法则是甲数除以乙数(0除外),等于乘以乙数的倒数。 很自然地复习了旧知识,再结合具体的算式强调转化的过程,特别是除号要变为乘号,除数变成了它的倒数,两个要同时变。由此推导出分数除以分数也是这样的,并且归纳其中的联系,发现其中不管是怎么样的分数除法都是一样的,这样就可以只用甲数和乙数来区别。 根据学生的分析,我及时把统一的计算法则板书在黑板上,并把变化的和不变的用不同的记号标出来。
本节的教学中,学生始终以积极的态度投入到每一个环节的学习中,在主动进行探究,并总结出计算法则。而对新知识的学习,不是老师去讲解。而是让学生自主探求解决问题的方法,这为学生提供了充分的学习空间。学生的思维是发散的,学生的方法是多样的,体现了学生的主动性。
《分数与除法》教学反思 篇6
分数除法是学生在学会一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,这是学习分数除法的重点也是一个难点,但由于教材的学习比较枯燥无味。因此我试图在教学初始把直接展示静态例题改变成小故事展现出来,形成一个有趣的课堂学习气氛。让学生经历从整数变化到分数,得到的运算法则由特殊到一般的快乐又严谨的数学学习过程。
在教学备课时我先复习一个数除以整数的计算法则,然后通过小故事的形式展示例题,提出问题后,引导学生通过猜想、尝试、验证等多种方法证明了一个数除以分数和乘这个分数的倒数的结果都相等。但备课后我突然产生这个疑问“一个数除以分数为什么要乘这个分数的倒数呢?”引起了我的反思。教案的设计中没有算理的教学,只是通过猜想、尝试、验证、归纳出除以一个数等于乘这个数的倒数,相对忽视了算理的教学,这样学生只知其然而不知其所以然。参考一下其他教材,发现其他教材是通过画线段图让学生来明白算理,更注重算理的教学但又忽视了猜想、尝试、验证、归纳这种数学思想的渗透。如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?
经过仔细反思之后,我在修改备课后,调整了我的教学过程。教学中我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的`结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结,此时我再结合线段图对学生进行简单的算理教学。这是我发现大部分同学们能够听懂,然后恍然大悟,露出了灿烂的笑容,效果不错。
在这节课的教学中,我既进行了归纳总结的数学思想方法的渗透,又进行了算理的教学。将新旧知识两者有机的结合在一起,效果较好。如何更好的让学生掌握知识是我在今后的教学中应该积极思考的一个问题。
《分数与除法》教学反思 篇7
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1 ÷ 3 =3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的.商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)
②1米的8(3)等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1) ( )
②1米的4(3)与3米的4(1)一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
《分数与除法》教学反思 篇8
本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把4个饼平均分给四人,每人可以分得几块?再把三个饼平均分给四人,每人分得几块?让学生分别列式。然后引导学生比较两个算式的结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的'必要性,另一方面可以感受数学来源于生活,又应用于生活。
分数与除法关系的理解,是以具体可感的实物、图片为媒介,充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。
《分数与除法》教学反思 篇9
在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。
我认为优点体现在:
一、能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义;
二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。
不足之处是:
在教学环节的设计上,学生动手操作的内容过多,使整堂课显得罗嗦,练习的时间相对缩短了,本节课的重点内容是让学生理解:一个饼的四分之三也就是三个饼的四分之一,这个环节结束后自然而然地就引出了“分数与除法的关系”,因前面耽误的时间过长,致使本节课的内容没有讲完,学生没有理解透彻,教师就急于进入下一个环节的教学。从刘老师的这节课上,我也看到了自己在教学中的不足,作为数学教师,怎样上好一节课,怎样让学生切实理解所学内容?
我认为有以下两点值得去深思:
一、有没有把课堂还给学生?
课改风风火火进行了这么多年,而且一直提倡把课堂还给学生,让学生做课堂的主人,教师只做引导者,可是实际的课堂教学中,教师讲的.多,学生说的少,完全还是过去老的教学方法,造成这种情况的原因是:1、教师恐怕学生学不会,低估了学生的能力就;2、耽误教学进度;3、教师还没有形成意识……
二、如何“还”?
很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。
说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。
《分数与除法》教学反思 篇10
分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:
1.以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
2.分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3÷4=()(块)的探究上。学生在理解的时候,还真的很难得到3÷4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。每人就得了1/4……说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3÷4=()(块)上,我借助的.是学生的动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3÷4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。
从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授人以 “渔”。于是教学中,在学生得到了3÷4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。
《分数与除法》教学反思 篇11
今天执教了一节《分数除法(一)》的数学课的教学。本课是第三单元的起始课,内容涉及到以前整数除法意义的复习,加上本节教学知识点——分数除以整数的意义和方法,设计难度除内容多外且知识抽象,学生不易理解和接受,备起课来难度较大。不过越是有难度的课自己还偏偏有一种想要挑战的心理,毕竟自己迟早是要讲的,而且这样的讲课其实最终目的是为了促进自己教学水平的提高,如果只是为了一节精彩课的展示而有意避重就轻也许恰恰就失去了上课听课评课的本意了。
自知自己对于数学学科的造诣不是很精深,但个人感觉数学课应该要把握住几点:教学语言凝练、具有启发和点拨的作用;流程设计要详略得当、突出重点、分散难点;习题设计体现由浅入深的梯度性;教学覆盖面广,充分发挥学生的积极性和主动性,体现学生的主体地位等等……也许是个性使然,或者是文科味道较浓的教学风格,因此执教较为枯燥乏味的数学课也很喜欢赋予它一种文质兼美的特点,喜欢让知识性较强的数学课也能带上情感的韵味和兴趣的刺激。尽管事先对于教材进行了一番分析和思考,对于课堂情景和学生进行了预设,尤其是对自己的教学语言也做了格外的注意和设计。但实施起来之后,自己之前最担心的问题还是出现了,由于内容过多,加上课上生成的东西自己也没有做到较为妥当的处理,不可避免的遗憾随之而来,即课堂效果没有预期的理想,学生的学显得不够扎实和深透,自己在教学课件等一些形式的利用上与教学内容的把握上没有达到一个有机的统一。度的失衡使得这节课不免流于形式而略显不实,假如在个别地方善于取舍或是科学的估计四十分钟的教学时间的'容量,那么遗憾也许会降到最低程度。
通过今天的讲课,感觉收获很多,要学习的、要改变的、要给予学生的还有很多很多。教学,真的是一门永远探究不完的艺术。即便今天的教学没有任何遗憾,即便学生的表现十分精彩,但我仍然知道,自己距离那种“突破”还有着很长的一段路……。
《分数与除法》教学反思(15篇)
身为一位优秀的老师,课堂教学是我们的工作之一,对学到的教学技巧,我们可以记录在教学反思中,怎样写教学反思才更能起到其作用呢?下面是小编收集整理的《分数与除法》教学反思,欢迎阅读与收藏。
《分数与除法》教学反思 篇12
虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义,
针对新教材的特点,对于分数除法的`意义,我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,由于有了整数的基础和前面对于意义的理解,学生掌握得也较顺利。在分数除以整数的教学上,我把学习的主动权交给学生,让他们动手操作、集思广益,根据操作计算方法。于是学生们有的模仿分数乘整数的方法,分母不变,把分子除以整数;有的根据题意及直观操作,得出除以2也就是平均分成两份,每份就是原来的二分之一,因而除以2就是乘上2的倒数。对于学生的想法,我都充分予以肯定,并通过练习让学生比较,选出他们认为适用范围更广的方式。由于学生理解透彻了,所以后面分数除以分数和整数除以分数的教学上,学生轻而易己地就掌握了计算方法。
《分数与除法》教学反思 篇13
观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数/除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:
(1)分母能不能为0?
(2)用字母如何表示它们的关系?
(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。
有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数/除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的.意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少……通过争辩,明确分数和除法的各自意义。
提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。
《分数与除法》教学反思 篇14
观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数/除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:
(1)分母能不能为0?
(2)用字母如何表示它们的关系?
(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。
有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数/除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的'一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少……通过争辩,明确分数和除法的各自意义。
提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。
《分数与除法》教学反思 篇15
理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的`主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。
新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。
探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。
《分数与除法》教学反思 篇16
《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商, 在这节课的教学中,我觉得有以下几方面值得我去思考:
一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的.效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。
《分数与除法》教学反思 篇17
在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。
我认为优点体现在:
一、能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义;
二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。
不足之处是:
在教学环节的设计上,学生动手操作的内容过多,使整堂课显得罗嗦,练习的时间相对缩短了,本节课的重点内容是让学生理解:一个饼的四分之三也就是三个饼的四分之一,这个环节结束后自然而然地就引出了“分数与除法的关系”,因前面耽误的时间过长,致使本节课的内容没有讲完,学生没有理解透彻,教师就急于进入下一个环节的.教学。从刘老师的这节课上,我也看到了自己在教学中的不足,作为数学教师,怎样上好一节课,怎样让学生切实理解所学内容?
我认为有以下两点值得去深思:
一、有没有把课堂还给学生?
课改风风火火进行了这么多年,而且一直提倡把课堂还给学生,让学生做课堂的主人,教师只做引导者,可是实际的课堂教学中,教师讲的多,学生说的少,完全还是过去老的教学方法,造成这种情况的原因是:1、教师恐怕学生学不会,低估了学生的能力就;2、耽误教学进度;3、教师还没有形成意识……
二、如何“还”?
很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。
说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。
《分数与除法》教学反思 篇18
这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。
这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的.算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。
在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。
生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。
生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。
让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。
在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。
《分数与除法》教学反思 篇19
本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把四个饼平均分给四个小朋友,每个小朋友可以分得几块?再把三个饼平均分给四个小朋友,每个小朋友分得几块?让学生分别列式。然后引导学生比较两个算式的结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的必要性,另一方面也可以让学生初步的感知到分数与除法之间确实是有关系的。这样学生学习的目的明确些,兴趣也高一些。在例题的教学中,学生对分数与除法之间的关系还是比较容易理解的',掌握的也不错。我重点是强调了单位换算,通过引导学生比较,发现单位间的进率就是分母的结论。学生运用这样的结论进行相关练习时正确率有很大的提高。
《分数与除法》教学反思 篇20
“已知一个数的几分之几是多少,求这个数”是抓住乘除法之间的内在联系,让学生通过观察,对比,借助线段图,分析题中的等量关系式,发现这类型的应用题的特点和解答的规律。
教学中注重对知识的概括,对比。复习题与新知,新知与新知的对比,从乘法应用题改成一道除法应用题,很自然地把学生引入到新课中,让学生在对比中发现本课应用题的特点,掌握解题方法,注重新旧知识的.联系,留给学生充分的独立思考时间,让学生主动探索学会数学知识。激起学生探索数学知识的欲望,给学生学习探索的空间。使每个学生在课堂上都能得到发展。
同时注重拓展学生思维能力,学会分析解决分数除法应用题的方法。在解答应用题的时候,鼓励学生画线段图多角度分析问题,明确解答这类应用题的两种方法的特点,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系和解法的理解,提高能力。
从练习的效果来看,绝大多数学生能比较熟练地掌握已知一个数的几分之几,求另一个数的方法,数量关系正确,但也有一部分学生只会依葫芦画瓢,不会深究其为什么,数量关系也不太清晰,这样的学生在后续学习中问题就会显露得更多,正确率随着学习的深入会更加糟糕。加强学生审题能力的培养,数量关系的训练不能有一丝懈怠。
在本节课的教学中我主要渗透了数学自学学习习惯的养成,许多知识是由学生自学得出的结论。
《分数与除法》教学反思 篇21
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:
1。以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
2。分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的.商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:
1。提供丰富的素材,经历“数学化”过程。
分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。
2。问题寓于方法,内容承载思想。
数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。
就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。
《分数与除法》教学反思 篇22
分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。
这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:
1.通过实际操作感悟新知识
在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。
2、使学生清楚为什么要用分数来表示除法算式的结果
在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数 相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
3、借机引申,为后续学习做好铺垫
第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② "把2米长的绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 "③"把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的算法分别是1÷4=1/4(张) 2÷7=2/7 (米)4÷5=4/5(千克)
此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。
4、让学生自主建构新知识
当学生发现除法中的`被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,这里的b不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。
本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。
