分数教学设计

短文网

2025-10-30教案

短文网整理的分数教学设计(精选35篇),快来看看吧,希望对您有所帮助。

分数教学设计 篇1

一、教学目标

(一)知识与技能

掌握同分母分数的简单加、减计算方法。

(二)过程与方法

通过直观操作,理解简单分数加、减法的算理,发展学生的思维能力。

(三)情感态度与价值观

渗透数形结合的思想,进一步发展学生的数感。

二、教学重难点

教学重点:利用几何直观,使学生会计算简单的同分母分数加、减法。

教学难点:理解简单的同分母分数加、减法的算理。

三、教学过程

(一)复习旧知,引入新课

1.让学生任意说说想到的分数,师随机板书这些分数。

2.根据板书,让学生说一说这些分数里分别包含几个几分之一。

【设计意图】由学生之前已经学过有关分数的知识引入新课,不仅进行了有效的复习,而且由问题引发学生猜测推想,渗透新课所要运用的知识,为探究新知打下基础。

(二)动手操作,探索交流

1.提出问题

(1)课件出示分西瓜的情境图。

将一个西瓜平均分成8块,哥哥吃了2块,弟弟吃了1块。(2)从上面的图中,你知道了什么?(引导学生用数学语言描述:哥哥吃了西瓜的,弟弟吃了)

(3)根据这两个信息,你能提出什么数学问题?

(预设)问题1:哥哥和弟弟一共吃了这个西瓜的几分之几?

问题2:哥哥比弟弟多吃了几分之几?

问题3:西瓜还剩下几分之几?

……

2.探究同分母分数的加法

(1)教师有意识地选择第1个问题,要求学生列出算式。

(2)同桌讨论:+等于多少?

(3)操作验证答案。

如果出现这种答案,教师不忙于下结论,而再询问:有不同的答案吗?

如果出现这种答案,要追问:你是怎样想的?

集体验证:

(预设)方法1:把○平均折成8份,先涂了2份,又涂了1份,合起来涂了3份,也就是;

方法2:是2个,2个加1个是3个,也就是

……

在学生交流的同时,教师用课件进行示范。

(4)引导辨析:+的结果为什么不是?

【设计意图】在教学同分母分数的加法时出现了两种思路,第一种思路停留在直观感知层面,第二种思路是根据分数的意义从抽象的加法关系进行分析的。显然,让学生的思维仅仅停留在直观感知的`层面是不合理的,这时,要发挥好教师的引导作用,并给学生足够的时间去思考、比较,不要急于在此时的教学中就把学生的思路统一起来,可以在后面的练习中进一步引导学生对两种方法进行比较、优化。

2.探究同分母分数减法

(1)观察课件:哥哥比弟弟多吃了几分之几?

(2)猜一猜:-等于多少?

(3)小组讨论:-等于多少?

(4)汇报算法,思路可能有:

方法1;把一个西瓜平均分成8份,其中的2份比1份多1份,也就是;

方法2:2个减掉1个还剩1个,也就是;

……

教师结合学生的回答用课件演示计算的过程。

(5)讨论:爸爸吃了,同学们想想,他们一家人共吃了这个西瓜的几分之几?可以用几种不同的结果表示?(1,)

【设计意图】通过“他们一家人共吃了这个西瓜的几分之几?”这一问题的讨论,既巩固练习了前面的分数加法,又为后面学生自学1减几分之几这一环节中对于“1”的理解做好了铺垫。

3.探究1减几分之几

(1)自学第97页例3,把你不明白的问题记录下来。

(2)汇报交流时让学生说出怎样想的,是把“1”看作多少来减的?

(3)“1”还可以看成分母是几的分数?请写出几个。

(4)巩固练习(指名让学生板演)

1-1-1-

计算并思考,这几道题中的1分别应该看作多少来计算?

【设计意图】通过练习让学生明确:1在不同的算式中表示的分数不同,意义亦不同。

(三)课堂练习,巩固新知

(1)完成第97页“做一做”第1、2、3题。

(2)完成练习二十一第1、2题。

【设计意图】检查教学效果,了解学生掌握知识的情况,从而对自己的教学活动进行相应的调整,以达到预期的教学目标,为组织后续教学打下基础。

(四)全课总结,升华新认识

(1)通过这节课的学习,你有哪些收获?

(2)在计算同分母分数加减法时,你是怎样计算的?

分数教学设计 篇2

本课是在学习了分数除以整数和整数除以分数的基础上进行的,学生已经初步感受到一个数除以另一个数时要变除为乘,去乘除数的倒数。本课则是进一步丰富分数除法的内涵,扩展到分数除以分数,并由此统一分数除法的法则。教材意图让学生利用知识的'迁移得出分数除以分数的计算方法,并用一些直观的手段来验证此思路是正确的。练习中,还安排了一些旨在探讨分数除法中的规律(当除数大于1、小于1或等于1时,商相应地小于、大于或等于被除数)的内容。

教学目标:

1、理解分数除以分数计算法则的推导过程,掌握分数除以分数的计算方法。

2、在此基础上归纳出分数除法统一的运算法则。

3、教学过程中鼓励学生自觉运用化归的数学思想方法解决新问题。

教学过程:

一、复习引入,承前启后。

1、 口算。

6 9(算完指名说一说分数除以整数和整数除以分数的计算方法)

(板书:分数除以整数整数除以分数)

2、 师:这两种除法的计算方法好象有一种共同点,大家看出来了吗?(学生交流)

3、 师:对,都是化除为乘,用被除数乘除数的倒数。可如果是分数除以分数呢?

(板书:分数除以分数 )我们今天就来研究这一问题。

【设计意图:迅速唤醒学生的旧知,为知识的迁移创造一种条件。】

二、创设情境,推导算法。

1、出示例4:量杯里有升果汁,茶杯的容量是升。这个量杯里的果汁能倒满几个茶杯?(投影或挂图出示)

(1)指名列式:

(2)师:请同学们估计一下,能倒满几个茶杯?(学生发表意见)

可能出现的意见:

A、3杯。(==3)(板书)

B、凭感觉好象是3杯。

师:要是有量杯和茶杯就好了,倒一倒就可以知道结果。可现在没有,怎么办呢?能想出一个有说服力的方法吗?

【设计意图:让学生说出自己的第一感觉,是对学生主动思考的一种鼓励,但又不能只停留在猜测这一层次,要激励学生进一步找寻解决问题的方法,并以此来验证自己的猜测是否科学、合理。】

(3)学生讨论交流。

可能出现的方法:

A、化成整数计算。

升=900毫升 升=300毫升 900毫升300毫升=3,所以,=3

B、利用分数单位。

分数教学设计 篇3

教学重点:

1、掌握两步分数应用题的解题思路和方法。

2、画线段图分析应用题的能力。

教学难点:

渗透对应思想。

教学过程:

一、复习、质疑、引新

1.指出下面分率句中谁是单位1(课件一)

①乙是甲的;

②小红的身高是小明的

③参加合唱队的同学占全班同学的;

④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

2.口头分析并列式解答

①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

二、探索、悟理

1.出示组编的例题

例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的.,小新储蓄的是小华的,小新储蓄了多少元?

学生审题后,教师可提出如下问题让学生思考讨论。

①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

②小新储蓄的是小华的,又是什么意思?谁是单位1?

思考后,可以让学生试着把图画出来。

(演示课件)

然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

由此基础上试列综合算式:

2.做一做

小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

1)可先让学生一起分析数量关系,然后独立画图并列式解答。

请一名中等学生板演。

(张)

(张)

答:小明有40张。

③你能列综合算式吗?

三、归纳、明理

1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

①认真读题弄清条件和问题

②确定单位1找准数量关系

根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

③列式解答

板书为:抓住分率句,找准单位1,

画图来分析,列式不用急。

2.质疑问难

四、训练、深化

1.联想练习根据下面的每句话,你能想到什么?

①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

②修了全长的

③现在的售价比原来降低了

2.先口头分析数量关系,再列式解答。

①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

3.提高题。

六、板书设计

分数乘法应用题

小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

分数教学设计 篇4

C、画图说明。

【设计意图:学生验证自己的猜测,既可以用化归这一数学思想方法,将新问题转化成已经掌握的旧知识来进行,也可以通过直观的图画来得出结论。我们确信学生有这种能力。教师在倾听学生讨论时可以及时地根据他们的讨论情况相机提出一些指导性意见,对学生提出的有创意的见解要给与充分的褒奖。以此来强化学生从事创新活动的动机。经历这样的学习过程,学生的学习信心无疑会得到增强,并乐于在今后的学习中运用观察比较提出猜测探索验证解决问题这一学习策略。】

(4)总结计算方法。

师:同学们真了不起,想出这么多好的解决方法,结果真的是3杯。看来,分数除以分数也可以用以前分数除以整数或整数除以分数的方法来计算。

师:哪位同学能试着说一说分数除以分数的计算方法? (生总结出分数除以分数的计算方法。)

(5)深化方法,加强理解。

师:现在我们已经学会了分数除以整数、整数除以分数和分数除以分数的计算方法,请大家看一看,这三种计算方法是否有一定联系呢? 生发表意见。

师:那我们能否把这三种计算方法归纳在一起呢?谁来试试看?

师生共同总结出分数除法的计算方法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(板书) (总结时注意提醒学生考虑,除数不包括0)

生齐读算法一遍。

【设计意图:心理学研究证明,当将一个知识寓于完整的系统之中时,更易于学习者去理解记忆、去把握运用。因此,及时地将分数除以整数、整数除以分数和分数除以分数的计算方法归纳成一个有机的整体,更有助于学生的理解和掌握。对于学生而言,这是一种思维上的提升,越是简洁的东西,越是具有普遍适应性。】

完成第58页练一练1、2两题。

四、总结提升,探索规律。

1、 出示练习十一第11题。

先计算,再分别把商与被除数比一比,你能发现什么?

引导学生根据除数的'情况分类,并总结出规律:

当除数大于1时,商小于被除数;

当除数等于1时,商等于被除数;

当除数小于1时,商大于被除数。

【设计意图:此内容的安排,已经不满足于简单的方法运用这一层次,而是引导学生建立一种宏观视野,在熟练运用计算方法时,还应注意到结果的变化是有缘由的,也就是一种更高的系统化。】

2、 完成练习十一第12题。在○里填上><=。

完成后再引导学生辨析除法与乘法的不同。

五、课堂作业。

完成练习十一第9题(部分)和第13题。

六、总结全课。

(略)

分数教学设计 篇5

教学目标(含重点、难点)

1.通过复习使学生进一步理解“求一个数的百分之几是多少”和已知一个数的几分之几是多少,求这个数的应用题的数量关系,能正确熟练地进行解答。

2.能正确熟练地解答有关税款、税后利息等实际应用问题。

重点:理解“求一个数的.百分之几是多少”和“已知一个数的几分之几是多少,求这个数”的应用题。

难点:利用百分数的意义灵活的解决生活中的实际问题。

教学准备:多媒体课件。

教学过程:

内容与环节预设个人二度备课课后反思

一、基本练习(只列式不计算)

(1)10万元的5%是多少?(2)一个数的80%是100,求这个数。

(3)500减少20%后是多少?(4)1000元增加2%后是多少?

(5)100比某数多10%,求某数?

内容与环节预设个人二度备课课后反思

二、知识梳理

1.某校男生人数比女生少10%。

①谁是单位“1”。

②男生人数是女生人数的百分之几?

③已知女生有500人,求男生有多少人?

④已知男生有450人,求女生有多少人?

2.把③、④两题进行比较,然后小结。

3.105页第1题,课本105页第4题,。

二、税款的计算方法,利息的计算公式。

1.复习税款的计算方法。

2.复习利息的计算公式:利息=本金×利率×时间(定期整存整取通常还要叫20%的利息税,因此所得利息只有80%)

3.什么利息不纳税?利息与税后利息有什么不一样?

三、巩固与深化练习

1.课本104页的第4题。

2.课本105页的第6题。

四、小结:这节课你有什么收获?

教后整体反思

分数教学设计 篇6

教学目标:

1、在教师的鼓励引导下,学生积极地调动已有的知识经验,主动探求整数除以分数的计算方法。

2、通过师生的分析与交流,学生能较快地理解整数除以分数的算理,尝试自己归纳计算法则,初步掌握整数除以分数的计算法则,能正确地进行有关的分数除法计算,并解决生活中一些简单问题。

3、结合具体情境学生进一步体会估算在生活中的广泛应用,增强数学应用意识,感受分数除法与生活的密切联系。

教学准备:

多媒体课件、小黑板。

教学过程:

从生活中引入计算也可以如此有趣!

1、 初步感悟: 知道今天是什么日子吗?(生齐声:中秋节!)对,中秋节!在这样特殊的日子里,能和六1班的同学一起学习一定是段令人难忘的经历。据我所知,昨天和今天来自南京市各个区的多位数学老师到咱们学校借班上课,我只是其中的一个。请大家猜一猜,这两天共有多少老师来上课?

(学生议论纷纷;师:多了,少了,差不多了)

这样吧,老师提供一条信息:我来自秦淮区第一中心小学,众多老师中只有我一人是咱们区的老师,占这次上课教师人数的。这下能知道共有多少位老师到你们学校上课吗? (学生们迅速回答出有14位老师。)

2、 创设情境:前面提到中秋节,这可是我们中国人很重要的一个传统节日,你知道中秋节有哪些风俗?(生:吃月饼;晚上合家吃团圆饭;赏月;吃石榴)其实现在生活条件这么好,大家并不在意晚上那顿丰盛的晚餐,每逢佳节倍思亲,是浓浓的亲情牵挂着人们的心,对吗?那首歌唱得多好呀:常回家看看,回家看看这不,陈宇的爸爸也匆匆往家赶请看屏幕。

出示例题:陈宇的爸爸在郊区工作,中秋节要回家与亲人团聚,他从单位骑摩托车到家要1小时,骑了18千米时发现用了小时,爸爸每小时行多少千米?

反思与探索

学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!

良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!学生的探究就从这里开始了

※ 在经历中体验这样的探究很有意思!

1、 捕捉信息:看了题目,你从中得到了哪些信息?有什么发现?

2、 引导估算:(在师生合作完成线段图后)出示完整的线段图

提问:这个线段图你们能看懂吗?能看图,估计一下1小时行多少千米?

怎么能看出来?说出你的想法。

1小时行?千米

小时行?千米

小时行18千米

(思考片刻后有生回答:从图中能看出,全长是18千米的三倍多一点,估计爸爸1小时大约行五、六十千米。)

3、 探求算法: 这只是估计,究竟每小时行多少千米?你打算怎么计算?用什么方法?选择你喜欢的方法具体算一算,算过后可以和小组中其他同学交流一下。(学生尝试用不同的方法解答,教师巡视。)

4、 交流分析:

1、学生代表汇报结果,有以下几种算法:

a、18310 = 60(千米) 先求1份即小时行的,再求10份;

b、180.3 = 60(千米) 把小时化成小数0.3小时;

c、18(103)= 60(千米)先求总长是已经行的路程的几倍;

d、18=18=60(千米)

利用数量关系速度=路程时间,直接乘除数的倒数。

2、让学生充分阐释前几种算法的算理。

3、教师重点引导方法d的证明与理解。

指出:同学们阐述了用整数、小数、分数乘法解答的理由,非常不错。

而这是一道分数除法算式, 18 =18=60(千米)

你是又根据什么来列式的? (板书:速度=路程时间)

与昨天学习的知识相比,有什么不同?整数除以分数(板书课题)

追问:你怎么想到用这种方法计算的?这样做的理由是什么?为什么可以转化成乘法来做?

A利用线段图说明算理:

学生先看图说说自己的理解。(从图上看, 1小时是小时的三倍多一些,1小时行路程的也是18千米的三倍多一些,具体说是倍。)接着出示:线段图(屏显:三个18千米闪动。)

1小时行?千米

小时行?千米

18千米 18千米 18千米

B用其他方法验证算理:

谁能用其他方法验证?用方法a、18310 和方法c、18(103)说明。

师随即板书思路18310=1810=18=60(千米)

18(103) = 18=60(千米)

5、 对比说明:同学们想出不同的方法来解决同一个问题,尽管大家思考的角度不同,但有一点是相同的都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏,实际上这也是在数学学习中解决问题的'一个重要思路。

那么在这些计算方法中,你觉得哪一种算法比较好?,谁能证明自己的方法更简便,说出其它算法的不简便?(学生回答时教师必须注意设置矛盾)

6、 归纳算法:想一想,整数除以分数在计算时转化成什么样的计算?你们能归纳一下吗?

反思与探索

在学习数的运算的过程中,我们的课堂除了要为学生营造一种

生动活泼的教学气氛外,更重要的是应充分尊重学生的思想、情感、意志和行为方式,使学生形成探究创新的心理愿望和性格特征。让他们可以在自由的时空里主动地探索,大胆地发现,自信地表达,快乐地运用!

掌握整数除以分数的算法是这节课的重点,但计算方法的得出决不应是教师塞给学生的,学生对算理的认识也不应是机械的,一切必须建立在放手让学生经历自主探索的过程上。会计算并不难,能理解为什么要这么算才是难点。教师充分尊重每个学生的选择,重视每个学生的表达,爸爸1小时行?千米学生面对这个具体的问题选择了不同的算法,他们有各自的理解和解释。教师用心倾听,及时板书,积极鼓励,适时引导:你们用不同的方法得到了同一个答案,都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏!究竟每种解法代表什么思路,哪种方法更合适?18 =18=60(千米)又有其他解法不具备的哪些优点? 学生在探索实际问题的过程中,经历估计、求解、比较、分析、交流、验证、归纳几个环节,从而心服口服地接受了分数除法计算方法的正确性与合理性。

在应用中提升我们喜欢做这样的练习!

(在完成两组基本练习题之后,教师出示了下面的一组题,学生表现出浓厚的兴趣,积极思考,踊跃回答。)

你能用分数除法的知识解决下面的问题吗(先估一估,再算一算。)

(1)妈妈想为中秋节的晚餐添一道菜螃蟹,她在农贸市场选中的一种螃蟹,用90元可以买千克,妈妈带了120元,够不够买1千克?

(学生们估算后又通过计算得出120元不够买1千克。但很快就有学生说:老师,妈妈可以只买120元的螃蟹呀;还有学生说:妈妈可以还价说不定就够买1千克呢!)

(2)为迎接20xx年十运会,张伯伯所在的工艺品厂赶制一批纪念品,张伯伯用小时做了20件,想想他1小时能做完30件吗?

(3)国庆长假期间陈晨要去看望爷爷奶奶,一家三口开汽车从家

出发,小时行驶了50千米,已知陈晨家到爷爷家有100千

米的距离,他们1小时能到达吗?

(有学生这么估算:1小时的就是1小时的一大半时间行了50千米,剩下的时间肯定行不完另一个50千米的。接着有人反驳:如果剩下的时候里他们加速,也许1小时就可以到达爷爷家。又有人补充:那可要注意安全呀!)

反思与探索

学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。

分数教学设计 篇7

教学内容:

《分数的意义》第一课时。

学情分析:

学生在三年级学习《分数的初步认识》时,已经借助操作、直观,初步认识了分数,已经知道了分数的各部分的名称,会读、会写简单的分数,还会比较分数大小及进行简单的同分母分数加、减法。

教学设想:

本节课中单位“1”和分数单位这两个概念教学非常重要,应从直观到抽象,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,使学生真正题解这些概念的意义。

教学目标:

1.在学生原有知识基础上,使学生知道分数的产生,理解分数的意义,知道分数各个部分和分数单位的含义。

2.利用操作、讨论及交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

3.培养学生的抽象、概括能力。

教学重点:

明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:

单位“1”的理解。

教具和学具:

长方形白纸、一米长的`绳子、多媒体课件。

教学过程:

一、创设情景,温故引新。

师:我们已经初步认识了分数。哪一位同学来说说几个分数?你知道分数各部分的名称吗?

师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

1.在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

2.计算中也遇到这样的问题。

3.课件展示分物不能得到整数的情况。

.总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。因此分数是人类为了适用实际需要而产生的。

三、教学分数的意义。

1.师:下面老师要先考考大家,你能举例说明1/2的含义吗?(多媒体出示题目,学生口答)

出示一个饼平均分成两份。

师:每一块可以用什么分数表示?它表示什么意思?

师强调:一定要平均分(板书:平均分)。

展示把一个长方形和1米长的绳子平均分。

学生说一说每份与总数的关系。

2.重点对一些物体平均分,每一份与总数的关系,试着用分数来表示。认识单位“1”。

师:利用这三种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体。

师:像这样把一张长方形纸平均分,我们可以称之为把一个物体平均分。

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。

把8支笔平均分给4个同学,我们又可以称之为把一些物体平均分。

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

师:像这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,

教师强调:

①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个梨、一枝铅笔、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。

②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

用学具创造出一个分数,同桌间说说你这个分数的意义。

理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份” 、“这样的一份或几份”分别是分数中的什么?

小组交流。后教师小结。

师:接下来老师想出几道题来考考大家,看看哪位同学学的又快又好。

①把文具盒里的所有铅笔平均分给4位同学,每个同学得到这盒铅笔的几分之几?

生:1/4

师:为什么可以用1/4来表示?

师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?

师:现在这个文具盒里有8支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

师:如果我再增加2支铅笔,把10支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?

师:为什么同样是1/2,铅笔的支数不一样?

生:分小组讨论

师:是啊,因为一个整体表示的具体数量不同,所以同样是1/2,铅笔支数也就不一样了。

四、教学分数单位。

师:整数有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

多媒体出示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。

师:举例说明,并说出几个分数让学生回答,后让学生自己也说一说。

五、小结。

今天这节课我们学习了?你有哪些收获?

练习:数学书上做一做。

分数教学设计15篇

在教学工作者开展教学活动前,就有可能用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。优秀的教学设计都具备一些什么特点呢?以下是小编整理的分数教学设计,仅供参考,大家一起来看看吧。

分数教学设计 篇8

教学内容:

分数与整数相乘(第38~39页上的例1、例2)

教学目标:

1、使学生通过自主探索,理解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解分数乘整数的计算方法。

2、使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

教学重点:

分数乘整数的意义和计算方法。

教学难点:

在探索中自己发现计算方法。

教学策略:

从分数的意义中导入,从分数加法中理解分数乘整数意义与计算方法。

教学预案:

一、导入

1、出示例1中的长方形直条,标出长是“1米”。

2、提问:做一朵绸花用3/10米绸带,你能从直条图上表示出已知条件吗?你是怎样想的?(体会到3/10米就是1米的3/10)

二、探索

1、现在小芳要做3朵这样的绸花,一共要用多少米绸带?

请学生上台操作:在直条图上涂色表示要用的部分。并说说你是怎么想的?

2、如果用算式来表示3朵绸花所用的米数,该怎样列式?

生报,师板书。(可能有连加法算式,也可能有乘法算式)

3、你会计算结果吗?你是怎样想的?

4、组织交流。

引导学生从加法算式中体会到3/10与3相乘的意义与计算方法。

5、揭示课题:分数与整数相乘

6、如果做5朵这样的绸花呢?该怎样列式?结果是多少?请大家在自备本上独立完成。

7、组织交流:你是怎样列式的?还可以怎样列式?结果是多少?为什么不列加法算式了?

学生说明理由。

在学生计算时,教师可以作指导,分别介绍两种不同的计算方法:

(1)先分子与整数相乘,再约分;

(2)先约分,再相乘。

三、归纳

1、通过刚才两道分数与整数相乘的计算练习,你发现分数与整数相乘可以怎样计算?先独立思考一下,再把计算方法和同桌交流一下。

2、组织交流。

四、巩固

1、练一练第一题:让学生先涂色,然后把算式列在旁边。

2、练习八第一题:看图在书上分别写出加法算式和乘法算式。说明想法。

追问:能不能写 1/7╳6?为什么?体会到要根据图意来列式。

3、练一练第二题:学生先独立完成,指名板演,在组织评价,提醒学生要注意书写格式。

4、练习八第3题:读题理解题意,独立解决在书上,再组织交流:你是怎样列式的?为什么怎样列式?引导学生体会到“求几个几分之几是多少”用乘法计算。再追问:结果是多少?你是怎样计算的?引导学生进一步巩固分数乘整数的计算方法。

5、练习八第4、5题:(教学方法同第3题)

6、机动补充:

(1) 直接说出得数

2/7╳4= 9/5╳5= 1/7╳7 =

20╳7/20 = 7/60╳30= 1/2╳5=

(2)小光写一个大字用3/4分钟。照这样的速度,写16个大字要用多少分钟?

(3)一辆汽车每分行驶7/6千米,平均每小时可行驶多少千米?

五、课堂作业:练习八第2题。

课前思考:

分数乘整数是分数乘法的第一教时,是学生理解分数乘法意义的起点。是在学生已学过整数乘法的`意义和分数加法计算的基础上进行教学的。例1以做绸花为素材,引导学生初步理解求几分之几是多少可以用乘法计算,掌握分数与整数相乘的计算方法。

这节课以计算为主线,在研究算法的过程中中时感悟运算的意义。

课前思考:

首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,教学中要充分利用学生已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。高教导设计的教学预案中可以看出已经体现了这一点,在教学例1的第2小问时让学生独立尝试计算。我想在教学时也可以大胆尝试,但在学生尝试计算后要马上组织学生交流,可以先同桌之间交流,再请个别学生全班交流。交流时主要联系分数乘法的意义来解释计算过程,并通过这一题的计算明确:计算结果不是最简分数的,要约分成最简分数。

教学中要把握:通过例1的学习,比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式3×3/10和3/10×3都可以。通过让学生研究分数乘整数的算法,把“分子相加、分母不变”加工成“分子与整数相乘,分母不变”,从而获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□×□/10,要让学生经历“分子相加”转化成“分子与整数相乘”的过程,建构了新的计算方法。

说明:练习八中的第5题暂时还不能练习,因为我们将第二单元的内容要放在第四单元后进行教学,所以本题要改为其他练习。

分数教学设计 篇9

教学目的与要求

1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。教学过程

一、创设情境

以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课

二、组织探究

1、教学例4出现教材中的图形

然后问:画斜线部分是1/2的几分之几?又是这个长方形的几分之几?由此明确:1/2的1/4是1/8,1/2的3/4是3/8启发学生进一步思考:求1/2的1/4是多少,可以怎样列式?求1/2的3/4呢?

师问:你能列算式并看图填写出书中的结果吗?打开书p45完成

提示:根据填的结果各自想想怎样计算分数与分数相乘?

学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母

2、教学例5

(1)让学生说说23 ×15和23 ×45分别表示23的几分之几?你能用前面得出的结论计算这两道题吗?学生试做

订正完后问:你能用什么方法来验证你的计算结果呢?

(2)验证比较

让学生在自己准备的长方形纸上先涂色表示23再画斜线表示23的15和23的45学生动手操作,教师巡视对学困生进行指导看看操作的结果与你计算的结果是否一致?学生观察比较

3、归纳总结

比较刚才计算的每个积的分子、分母与它的`因数的分子分母,讨论有什么发现?得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

三、练习

1、完成p46的试一试

提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算通过交流进一步明确计算分数与分数相乘的计算方法

四、分数与分数相乘的计算方法的推广同学们,下面着几道题你回计算吗?出示:2/11 ×3= 4×5/6 =请同学们先完成p46的填空,提醒学生把整数看作分母是1的分数来计算讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?学生分组讨论

明确:

(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘

(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便

(3)也可以整数与分数直接进行约分后再计算。这样更简便教师进行示范如p46

2、练习

完成p46的练一练

引导学生用直接约分的方法进行计算

五、综合练习

1、做练习九的第1题

先在图中画一画再列式计算

2、做练习九的第3题说出错的原因

3、做练习九的第4题看谁算的最快

六、全课小结

通过这节课的学习,你有什么收获?还有什么疑惑?

七、作业

练习九的第2、5题教后记:本课的目的是使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则,进一步巩固分数乘法的计算法则。基本达到教学要求。

分数教学设计 篇10

教学目标:

1、初步认识分数,理解分数的意义,能正确的读出分数,会写分数,掌握分数的各部分名称。

2、理解“把一个整体平均分成若干份,表示其中一份的数”我们可以用分数表示。

3、培养学生的观察能力、想象能力、操作能力。

教学重点:

理解平均分的意义,理解分数的意义。

教学难点:

正确区分分的份数越多,得到的每一份就越少。

教学过程:

一、联系生活,创设情境,由平均分引出1/2。

1、同学们,今天我们上课前先来个比赛怎么样?那就请你们注意认真听,比一比看谁反应快!

(1)有4个苹果,平均分给2个人,每人得到几个?

(2)有2个苹果,平均分给2个人,每人得到几个?

(3)现在只有一个苹果了,还是平均分给2个人,每人能得到几个呢?

2、把一个苹果平均分给2个人,每人得到半个,那半个该怎么表示呢?同学们,能用你喜欢的方法来表示一个苹果的一半吗?(画图、写汉字都可以)

生:黑板板演,并简单介绍

师:同学们用自己喜欢的方式表示了苹果的一半,你们的办法都很好。你觉得哪种方法更好?当把一个苹果平均分成两份,表示这样的一份时,可以像这位同学一样用这个数1/2来表示。”

你们知道这个数叫什么名字吗?

它就是我们今天要认识的新朋友,——分数。(板书:认识分数)

二、体验感悟二分之一的具体含义

1、师:(出示实物图形)你们看,现在我手中有个苹果,想想你可以怎样得到它的二分之一呢?(切)

可现在老师手中拿的是苹果的图片,那你怎么才能得到他的二分之一(对折)

师:为什么对折?

师:是的,对折后,两部分完全重合,说明是平均分。(不说对称)

(贴半个苹果图)

师:我们把一个苹果平均分成二份,其中的一份就是这个苹果的二分之一。

说一说。把一个苹果平均分成二份,其中的一份就是这个苹果的二分之一(找3、4个学生说说)

师:那另一半苹果呢?

它也是这个苹果的二分之一,为什么?

小结:(我们把这个苹果平均分成二份,这是其中的一份,是这个苹果的二分之一,这是其中的另一份,它也是这个苹果的二分之一,这两份合起来就是这个苹果。)小声说说。

2、再找人说说二分之一的涵义

3、师:我们刚才把一个苹果平均分成2份,每份是它的二分之一。这里有一张长方形的纸,你能得到它的二分之一吗?要求:拿出一张长方形的`纸,折出它的二分之一。

师:(将作品贴到黑板上)生说:怎么折的?怎么得到了长方形的二分之一?

指板书说:你们看这些长方形的大小不同,折法也不同,这里还有苹果,为什么其中的一部分都可以用二分之一来表示呢?

师:小结:看来不论是一个苹果还是一个长方形,只要把它平均分成两份,其中的一份就是它的二分之一。

4、验证比萨饼:为什么不能用二分之一来表示

5、理解形状相同但大小不同的图形都可以用二分之一来表示(出示圆课件)

6、理解形状不相同大小相同的图形可以用二分之一来表示(出示正方形课件)

7、判断,进一步体会“平均分”

三、在探索体验中理解认识其它分数并写出分数

1、我们一起研究了二分之一,现在我们就来一起认识三分之一。

出示课件:把一块蛋糕平均分成3份,每份是它的()分之一,写作:边说边写先写分数线,在写分的分数分母,最后写取的份数分子。

2、现在静静地想想:里面的“3”和“1”各表示什么意思?分数中间的横线,你知道它表示什么吗?(同桌讨论)3表示的平均分成3份,它叫分母,1表示的是这3份中的一份,它叫分子,中间的横线表示的是平均分,它叫做分数线。(相当于除法中的除号)

3、书空:用手在桌子上写写三分之一

4、你能不能用正方形的纸折一折,用阴影表示出它的四分之一?看看谁的方法多?

师:(收集不同的作品黑板展示)有反馈,谁是这样折的?统计

师:都能用四分之一表示吗?(个别要验证,较难、没有折出来的老师出示一个)

师:你们真棒,一张正方形的纸,有这么多不同的折法都得到了它的四分之一。

5、其实,除了图形中有分数,在我们身边也到处都有。例如:咱们班有36人,你是咱班人数的几分之几?(1/36)

如果有个大蛋糕,刘宇佳这一组来平均分这块蛋糕,每人得到这块蛋糕的?(板书:1/6)

如果女生来平均分这块蛋糕,每人得到这块蛋糕的?(板书:1/15)

如果全班来平均分这块,每人得到这块蛋糕的?(板书:1/36)

想:这些分数,你有什么发现?(分的份数越多,得到的每一份越少)

6、大家还想认识那些分数?你能自己举个分数的例子吗?

师:这样说下去,说得完吗?

生:对了,分数的个数是无限的。

四、感受数学文化

1、分数发展史的介绍

同学们创造出了这么多的分数,真了不起。其实我们国家是最早使用分数的国家,比西方早了1000多年呢!

刚刚我们一起研究了分数,那现在你对分数有了哪些了解呢?

五、巩固练习

1、同学们真了不起,对分数有了这么多了解,那你们来看看这些图,你能用分数表示图中的涂色部分吗。(几分之一,几分之几)

2、看图估一估,阴影部分大约占长方形的几分之几?(课件验证)

比较:二分之一、三分之一、六分之一,你发现了什么?

3、玲玲和丁丁在争论不休,看看为什么?

把一根火腿肠分成2份,其中的一份一定是这根火腿肠的二分之一?

4、出示课件:形状不一样、大小看不出来的三角形,还是平均分吗?

思考题::我们班第一组有6个同学,把他们平均分成2份,每份是几分之几?每份是几人?

六、总结收获

这节课即将结束,能谈谈你有哪些收获或体会吗?

板书设计:

分数的初步认识

分数教学设计 篇11

一、教学目的

1、学生通过动手实验、观察现象以及思考问题得出一种表示溶液组成的方法——溶质的质量分数。

2、初步掌握根据溶质和溶液的质量计算出溶液中溶质的质量分数。

3、进一步熟悉基本实验技能,培养观察分析能力。

4、培养合作精神。

二、教学重点

溶质质量分数及其计算

三、学生实验准备

1、教师为学生配发:两个一次性胶杯,两只小木棍(烧烤用的),一个10 ml的量筒,一只滴管,5支试管(已贴好1、2、3等数字),玻璃棒,三包已称好的cuso4粉末,两个200 ml的烧杯,火柴,酒精灯,试管夹。

2、学生自备:适量白糖,一支纯净水,一个纸槽,计算器

四、教学过程

[引入] 展示两杯白糖水。

问:“这是两杯白糖水,有什么方法可以判断那杯白糖水溶解的白糖多?”

学生:喝一口,哪杯甜,它溶解的白糖就多。

[学生实验] 每组用自带的白糖、纯净水配制一杯白糖水,倒成两杯,一杯留着,另一杯与其他小组交换,分别尝一尝,感觉哪杯甜。并且让学生表达他的感觉。

[教师提问] 你觉得自己的糖水甜,还是别人的甜?为什么会这样?

几位同学发表了自己的看法,通过同学的充分讨论,大家对糖水的浓度与溶剂溶质的关系有了一定的认识。

[展示] 2只不同颜色的硫酸铜溶液。

问:这是两杯硫酸铜溶液,它们是不能喝的,因为喝下去对人体有害。那么,有什么方法判断哪只硫酸铜溶液浓呢?

学生猜测:颜色深的那只比较浓。

问:颜色深的就一定浓吗?下面我们来做个实验看看。

[学生实验] 分别在3支试管中加入约0.5 g、1 g、1.5 g的固体硫酸铜,再分别倒入10ml水,振荡溶解后,比较三种硫酸铜溶液的颜色。

(先让学生叙述一次实验的内容,并叙述实验的注意事项,以让学生明确实验操作。)

学生根据实验内容填写表格(见附1)的前3行(除质量分数)

[教师提问] 大家认为 哪支试管中的硫酸铜溶液最浓?

[学生] 溶了1.5克硫酸铜的溶液最浓,颜色最深,因为溶剂相等而溶质最多。

[教师] 刚才的实验可以证明,相同的溶剂中,溶解的溶质越多溶液的浓度越大。分别从学生配的溶液中取出两只颜色最浅的硫酸铜溶液, 往一支试管中加入十滴水,另一只作对比,让大家观察颜色是否有变化。(学生觉得无变化)

[学生实验]

把其中一支已配好的cuso4溶液的一半倒入另一支空试管,观察两支试管的颜色是否相同。然后用滴管在其中一支中滴入一滴水,观察2支颜色是否有不同,再滴几滴,再观察颜色是否有所区别。

[学生] 仅凭颜色来判断浓度是不能分辨较小的区别的。

[学生实验] 3位学生上讲台。分别在三支试管中加入1g、2g、3g的硫酸铜粉末,然后注入20ml水,振荡溶解,让全班同学观察颜色,再让他们在其他同学中找出颜色相近的溶液,分别展示给同学们。

[教师] 刚才的实验可以证明在溶剂相同的'情况下哪些因素可以影响溶液的浓度?

[学生] 溶质的质量。

[教师] 取其中一支硫酸铜溶液一分为二导入另外一支空试管中,往其中一支加入适量的水,搅拌,颜色明显变浅。

[教师] 除了溶质的质量会影响浓度,还有什么因素也会影响浓度?

[学生] 溶剂的质量

[教师实验] 拿出两支颜色最浅的硫酸铜溶液(一支是0.5 g的cuso4溶于10 ml水,另一支是1g的cuso4溶于20 ml水)。

[教师] 两支试管中溶液的浓度是否一样呢?

[学生1] 一样(一部分学生);

[学生2] 不一样(另一部分学生)。

[教师提问] 学生1,你为什么认为它们的浓度一样呢?

[学生1] 因为它们的颜色一样。

[教师提问] 学生2,你为什么认为它们的浓度不一样呢?

[学生2] 因为肉眼很难看清楚它们的颜色有没有区别。

[教师] 那我们应该用什么方法来准确的判断溶液的浓度呢?举一个例子:同学们在跑步时,如果同时起跑,跑在最前面的同学一定是跑得最快的,但是,如果是分两批跑,第一批的第一名就一定比第二批跑第二名的同学快吗?

[学生] 不一定。

[教师] 为什么?应该用什么来判断他们的快慢呢?

[学生] 时间。

[教师] 对,用时短的同学速度快,时间就是衡量速度的一个数据,我们利用数据来衡量事物是比较科学的。现在我们也要找个数据来衡量溶液的浓度。请同学们任意发挥动脑筋找出你认为合适的数据去比较刚才两支试管中溶液的浓度。学生思考并讨论三分钟,并写出结果。

[学生3] 我是用溶质的质量除以溶液的质量算出两支溶液的比值都是1:20,证明它们的浓度是一样的。

[教师板书]

1:溶质的质量/溶液的质量

[教师] 你和你周围的同学还有其他的方法吗?

[学生3] 或者用溶剂的质量除以溶液的质量,两只溶液比值都是19:20,还没想到其他方法。

[教师板书]

2:溶剂的质量/溶液的质量

[教师] 哪位同学有不同的方法?请起来讲一下,错了也不要紧。

[学生4] 我是用溶质除以溶剂。

[教师板书] 3:溶质的质量/溶剂的质量

[学生5] 我用溶剂除以溶质,或溶液的质量除以溶质的质量,或溶剂的质量除以溶液的质量,算到两溶液的这些比值都一样。

[教师板书]

4:溶剂的质量/溶质的质量

5:溶液的质量/溶质的质量

6:溶剂的质量/溶液的质量

[教师] 刚才几位同学讲的方法都对吗?(停顿一下)他们讲的全对!这些都是好方法,但是如果不统一使用同一方法,就会出现一种溶液的浓度使用6种方法计算就会有6个结果,这样会产生混乱,所以全世界统一采用了同学们推出的第一个方法来计算溶液的浓度。我们把这个结果叫质量分数。

[投影]课题3 溶质的质量分数

一、概念:溶液中溶质的质量分数是溶质质量与溶液质量之比

二、计算公式:

三、[学生] 自己体会、理解公式,在课本42页划出重点,通过计算填写下面表格前3项:硫酸铜溶液(溶质是 ,溶剂是 )(填名称)

分数教学设计 篇12

1、分数乘法

第一课时分数乘整数

教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:电脑课件

教学过程:一、旧知铺垫

1、计算下列各题

2/11+2/11+2/11

过程要求

(1)写出计算过程。

(2)说一说分数加法的计算方法。

2、想一想,能不能把2/11+2/11+2/11改写成乘法算式呢?

二、探索新知

1、教学例1

(1)出示例题

根据题意,电脑课件呈现示意图。

(2)根据题意列出解答算式:

2/11+2/11+2/11=2+2+2/11=6/11

2/11×3=6/11

(3)探索分数乘整数的计算方法。

师:2/11×3=,说一说你是怎么想的?

①学生在小组交流各自的想法

②小组讨论后反馈思维的过程和结果

教师板书:

③总结分数乘整数的计算方法。

A、学生口述分数乘整数的计算方法;

B、教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,分母不变。

2、教学例2

计算:3/8×6

(1)学生独立计算。

(2)交流计算方法和步骤。

(3)比较计算过程,看一看哪一种更为简单

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、完成课本“做一做”。

(1)学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的?怎样想的?

一般要求学生列综合算式计算。如:

6/7×10×7==60(kg)

2、课本练习二第1、2题

四、课后作业设计

一、计算

7/8×73/4×81/9×31/2×4

5/6×55/18×327×2/33/816×

三、列式计算

1、3个5/8是多少?2、2/3的6倍是多少?

3、5/14扩大7倍以后是多少?4、5/6与24的积是多少?

课后反思:

第二课时分数乘分数

教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

教学目标:

1、理解一个数乘分数就是求一个数的几分之几是多少。

2、掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键:

1、重难点:分数乘分数的计算方法。

2、关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学准备:实物投影或者电脑课件。

教学过程:

一、创设情境引入新课

教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×4)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“4小时可以粉刷这面墙的'几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

板书课题:分数乘分数

二、操作探究计算算理

1师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

分数教学设计 篇13

教学目标:

1、初步认识分数,理解分数的意义,能正确的读出分数,会写分数,掌握分数的各部分名称。

2、理解“把一个整体平均分成若干份,表示其中一份的数”我们可以用分数表示。

3、培养学生的观察能力、想象能力、操作能力。

教学重点:

理解平均分的意义,理解分数的意义。

教学难点:

正确区分分的份数越多,得到的每一份就越少。

教学过程:

一、联系生活,创设情境,由平均分引出1/2。

1、同学们,今天我们上课前先来个比赛怎么样?那就请你们注意认真听,比一比看谁反应快!

(1)有4个苹果,平均分给2个人,每人得到几个?

(2)有2个苹果,平均分给2个人,每人得到几个?

(3)现在只有一个苹果了,还是平均分给2个人,每人能得到几个呢?

2、把一个苹果平均分给2个人,每人得到半个,那半个该怎么表示呢?同学们,能用你喜欢的方法来表示一个苹果的一半吗?(画图、写汉字都可以)

生:黑板板演,并简单介绍

师:同学们用自己喜欢的方式表示了苹果的一半,你们的办法都很好。你觉得哪种方法更好?当把一个苹果平均分成两份,表示这样的一份时,可以像这位同学一样用这个数1/2来表示。”

你们知道这个数叫什么名字吗?

它就是我们今天要认识的新朋友,——分数。(板书:认识分数)

二、体验感悟二分之一的具体含义

1、师:(出示实物图形)你们看,现在我手中有个苹果,想想你可以怎样得到它的二分之一呢?(切)

可现在老师手中拿的是苹果的图片,那你怎么才能得到他的二分之一(对折)

师:为什么对折?

师:是的,对折后,两部分完全重合,说明是平均分。(不说对称)

(贴半个苹果图)

师:我们把一个苹果平均分成二份,其中的一份就是这个苹果的二分之一。

说一说。把一个苹果平均分成二份,其中的一份就是这个苹果的二分之一(找3、4个学生说说)

师:那另一半苹果呢?

它也是这个苹果的二分之一,为什么?

小结:(我们把这个苹果平均分成二份,这是其中的一份,是这个苹果的二分之一,这是其中的.另一份,它也是这个苹果的二分之一,这两份合起来就是这个苹果。)小声说说。

2、再找人说说二分之一的涵义

3、师:我们刚才把一个苹果平均分成2份,每份是它的二分之一。这里有一张长方形的纸,你能得到它的二分之一吗?要求:拿出一张长方形的纸,折出它的二分之一。

师:(将作品贴到黑板上)生说:怎么折的?怎么得到了长方形的二分之一?

指板书说:你们看这些长方形的大小不同,折法也不同,这里还有苹果,为什么其中的一部分都可以用二分之一来表示呢?

师:小结:看来不论是一个苹果还是一个长方形,只要把它平均分成两份,其中的一份就是它的二分之一。

4、验证比萨饼:为什么不能用二分之一来表示

5、理解形状相同但大小不同的图形都可以用二分之一来表示(出示圆课件)

6、理解形状不相同大小相同的图形可以用二分之一来表示(出示正方形课件)

7、判断,进一步体会“平均分”

三、在探索体验中理解认识其它分数并写出分数

1、我们一起研究了二分之一,现在我们就来一起认识三分之一。

出示课件:把一块蛋糕平均分成3份,每份是它的()分之一,写作:边说边写先写分数线,在写分的分数分母,最后写取的份数分子。

2、现在静静地想想:里面的“3”和“1”各表示什么意思?分数中间的横线,你知道它表示什么吗?(同桌讨论)3表示的平均分成3份,它叫分母,1表示的是这3份中的一份,它叫分子,中间的横线表示的是平均分,它叫做分数线。(相当于除法中的除号)

3、书空:用手在桌子上写写三分之一

4、你能不能用正方形的纸折一折,用阴影表示出它的四分之一?看看谁的方法多?

师:(收集不同的作品黑板展示)有反馈,谁是这样折的?统计

师:都能用四分之一表示吗?(个别要验证,较难、没有折出来的老师出示一个)

师:你们真棒,一张正方形的纸,有这么多不同的折法都得到了它的四分之一。

5、其实,除了图形中有分数,在我们身边也到处都有。例如:咱们班有36人,你是咱班人数的几分之几?(1/36)

如果有个大蛋糕,刘宇佳这一组来平均分这块蛋糕,每人得到这块蛋糕的?(板书:1/6)

如果女生来平均分这块蛋糕,每人得到这块蛋糕的?(板书:1/15)

如果全班来平均分这块,每人得到这块蛋糕的?(板书:1/36)

想:这些分数,你有什么发现?(分的份数越多,得到的每一份越少)

6、大家还想认识那些分数?你能自己举个分数的例子吗?

师:这样说下去,说得完吗?

生:对了,分数的个数是无限的。

四、感受数学文化

1、分数发展史的介绍

同学们创造出了这么多的分数,真了不起。其实我们国家是最早使用分数的国家,比西方早了1000多年呢!

刚刚我们一起研究了分数,那现在你对分数有了哪些了解呢?

五、巩固练习

1、同学们真了不起,对分数有了这么多了解,那你们来看看这些图,你能用分数表示图中的涂色部分吗。(几分之一,几分之几)

2、看图估一估,阴影部分大约占长方形的几分之几?(课件验证)

比较:二分之一、三分之一、六分之一,你发现了什么?

3、玲玲和丁丁在争论不休,看看为什么?

把一根火腿肠分成2份,其中的一份一定是这根火腿肠的二分之一?

4、出示课件:形状不一样、大小看不出来的三角形,还是平均分吗?

思考题::我们班第一组有6个同学,把他们平均分成2份,每份是几分之几?每份是几人?

六、总结收获

这节课即将结束,能谈谈你有哪些收获或体会吗?

板书设计:

分数的初步认识

分数教学设计 篇14

一、成语引入:

1、回顾分数,了解学生的起点。

师:老师今天为大家带来了一个好吃的?猜猜看,是什么?哦,请看电视,是(蛋糕)

师:你能用一个数表示其中的一份吗?(生答师板书)

师:关于这个分数,你都知道些什么?

生1:我知道“4”是分母,“1”是分子,1和4中间那条线叫做分数线。

二、展开——分数意义的研究

1、研究,理解单位1。

(1)探究,用多种材料表示出。

师:刚才同学们说,可以表示把一个蛋糕平均分成4份,取其中的一份。还可以表示什么?老师为大家提供了几种材料,你们能动手分一分,并且用来表示吗?我们准备的材料有哪些呢?

课件边展示老师边说:奥,是一张长方形的纸,一米长的绳子一条,画有四个熊猫的图片一张,小圆片12个。请同学们选择你喜欢的材料表示出,然后互相说一说你是怎么表示的。

师:同学们,你们听清要求了吗?那我们赶紧行动吧!

小组活动。

(2)反馈

师:谁愿意来说说你是怎样来表示的?

生1:我把一张长方形纸对折,再对折,展开后把其中的一份涂成了红色,就是这个长方形的。

生2:我把一条绳子两次对折,其中的一份就是这条绳子的。

生3:我把4只熊猫平均分成了4份,其中的一份(1只)就是这些熊猫的。

生4:我把12个小圆片平均分成4堆,其中的一堆(3个圆片)就是这些小圆片的。

(3)归纳

师:同学们,刚才你们用了这么多的方式表示出了,我们一起来看电视,回顾一下:在表示的过程中,都有什么相同的地方和不同的地方。

生:我们都是把一个物体平均分成4份的。

师:是的,我们都是把这些物体平均分成4分表示其中一份的数是。(板书:平均分成4分,表示这样1份的数)

师:刚才在表示有的过程中,有不同的地方吗?小组的同学可以商量一下。

小组商量。

师:谁来说一说?

生说:有的是把一个物体平均分成4份,比如长方形的纸,1米长的绳子,有的是把一些物体平均分成4份,比如4只熊猫、12个小圆片。

师:是不是这样?

师:有的是把一个长方形分成4份,那么一个长方形我们可以把它叫做一个物体。(板书:一个物体)

刚才我们把这根绳子平均烦人昵称4份,这根绳子的长度是多少?(生:1米)

像这样1米长的线段,我们把它叫做一个计量单位。(板书:一个计量单位)

像4个熊猫、12个小圆片,它们都是由许多物体组成的一个整体。(板书:一个整体)

师:大家看,一个物体、一个计量单位、一个整体,都有什么字?(生说)

师:“1”是吧,我们就把它通常叫做单位“1”。(板书:单位“1”及大括号)

师:单位“1”有哪些呢?

生:一个物体、一个计量单位、一个整体

师:那么一个物体出了可以是一张长方形的纸外,还可以是什么?(生说)

师:那一个计量单位还可以是什么呢?

师:那一个整体还可以是什么呢?

师:一个物体、一个计量单位、一个整体都叫做单位“1”,那刚才同学们在表示的时候,实际上是把谁平均分成4份?大家一起说。(单位“1”)

(4)研究几分之几

师:对我们是把单位“1”平均分成4份,表示这样的1份就是。(板书:把)

那剩下的部分,如果用分数表示,应该是多少?( )

师:表示什么?

师:老师如果把单位“1”平均分成12份,表示这样7份的数,应该是多少(找生:)

师:像这样的分数,你能说一个吗?表示什么?

师:那像这样的分数能写多少个?

师:这么多的分数,你能根大家说说什么叫分数吗?(生说师补充板书:若干份、几)

再找生说,并板课题:分数。反问:什么叫分数?再找几个学生回答。

师:这就是分数的意义。(补充课题)

师:关于分数的意义,你清楚了吗?下面老师请你在演草纸上写一个分数,并和你的小组同学说说这个分数表示的意义。(生写交流)

师:谁愿意把你写的分数说一说?(找生说)

2。理解分数单位

师:(指黑板上的分数)同学们,你们看,这里这么多的分数,它们的分母有的是4、6、12,那分母都表示什么?(生:把单位“1”平均分的份数)

师:你们再看看这些分子?又表示什么呢?(生:取这样的几份)

师:如果把单位“1”平均分成若干份,表示这样的1份的数,就叫做分数单位。(板:分数单位)

反问:什么叫做分数单位?(生说)

师:(指黑板任意一个分数)它的.分数单位是多少?它有几个…?

师:看看,刚才你写的分数,它的分数单位是多少?它有几个这样的分数单位?和你的同位说一说?。

(三)练习

师:看来大家对今天知识掌握的不错,下面我就来考考大家?

1、课件出示:(教材63页第1题)。用分数表示下面各图中的涂色部分。

师:会吗?(找生口答,并问为什么?说到第四幅图时有2种答案。可以问,还有补充吗?)

2、教材63页第2题。(略)

师:刚才这些图大家会用分数表示,接下来这些物体你能用分数表示吗?课件出示(喊声在黑板上做,并请这个学生订正,同学们把答案写在演草本上。)

3、7题

师:老师这里还有一些图片,你们看看它们又表示什么意思呢?

课件出示:

头部的高度约占身高的(图)

长江干流约的水体受到不同程度的污染。(图)

死海表层的水中含盐量达到。

师:这里的、 、表示什么意思,请你说一说。

生1:如果把人的身高看作单位1,平均分成8份,一个人头部高度就是这样的1份。

生2:把长江干流水体所有的水看作单位1,平均分成5份,有3份受到了不同程度的污染。

生3:这里的表示把死海表层海水看作单位1,平均分成10份,盐就有这样的3份。

4。请你任选一个分数,并在图上用涂色表示出来。(苹果图)

师:接下来,老师请每个同学都动手,(课件出示)请你任选一个分数,并在图上用涂色表示出来。请同学们拿出你们的练习卡,开始做。

师:为什么都是十二个苹果,分得的每一份的数量却不一样呢?

生说师结:刚才我们都把12个苹果平均分,分的份数不同,每一份的数量也不同。

(五)拓展

师:同学们今天这节课表现的非常不错,这节课有多少同学发言?站起来,。你能说说发言的同学占全班的几分之几吗?现在发言的人占全班的几分之几?,

师:看来分数就在我们身边,你能联系实际举一个有关分数的例子吗?

师:同学们,这节课我们一起研究了什么?(生说:分数的意义),那你知道分数是怎样产生的吗?课前我让同学们调查了分数的产生及历史,谁愿意上来为大家介绍。

师:谢有学同学还做成了幻灯片呢!真用心,我们一起看看!

师:这节课就上到这儿,同学们再见!

板书设计:

分数的意义

一个物体分数单位

把单位“1"一个计量平均分成若干份,表样的一份或几份的数,叫做分数。

一个整体

《分数的意义》教学案例这篇文章共7996字。

分数教学设计 篇15

篇一

教学内容:

义务教育课程标准实验教科书人教版四年级下册第95—97页的例1和例2。

教学目标:

1、让学生自主探索小数加减法的计算方法,解决相关的实际问题。

2、合作交流,总结小数加减法笔算的一般方法,理解小数点对齐的道理。

3、感受新知识源于生活,又服务于生活的思想。

教学重点:

小数加减法的笔算方法。

教学难点:

理解小数点对齐的道理。

教学过程:

一、谈话引入、导入新课。

师:孩子们,你们陪爸爸妈妈一起逛过商场吗?(逛过)你们在逛商场的时候遇到过什么问题没有?

师:老师在逛商场时可遇到一大堆的问题呢,你们愿意和老师一起解决吗?

二、探索新课。

1、老师第一次逛商场买了两件商品,一件:534元,另一件:498元,请同学们帮老师算算一共要多少钱?这两件商品相差多少元?请大家用竖式计算。

学生在练习本上计算。让先做完的两个孩子去黑板上板演。 集体订正。

师:这是我们以前学过的整数加减法,请孩子们回忆一下刚才的计算过程,整数加减法竖式计算时要注意什么?

让学生说出整数加减法的计算方法是:相同数位对齐。(板书)

2、老师第二次逛商场又买了两件商品,一件:53.4元,另一件:49.8元,(一边板书一边问:这次的价格和第一次比发生了什么变化?)还是请同学们帮老师算算一共要多少钱?这两件商品相差多少元?

学生在练习本上计算。让先做完的同学去黑板上板演。

集体订正。

师:这是我们以前学过的简单的小数加减法。那么小数加减法竖式计算时要注意什么呢?

师:那么整数加减法和小数加减法在计算时有哪些相同的地方呢?

生:都是相同数位对齐。

师:整数加减法和小数加减法在计算时也有不相同的地方,哪些地方不同呢?今天我们就来继续研究小数加减法。(板书课题:小数加减法)

3、老师第三次逛商场又买了两件商品,一件:53.4元,另一件:

4.98元,孩子们能根据老师给的两条信息自己提问并解决它呢?请孩子们自己提出问题并解决。

学生操作,教师巡视。让一个孩子上去板演。如果正确了,师就问:有不同的方法吗?

(如果没有,教师故意把两个数的末位对齐写成竖式)问:这样的竖式行不行?

生:不行。他没有相同数位对齐。

师:和前面的题比较,它们有相同的地方吗?

生:它们都是末位对齐了。

师:为什么前面的计算可以末位(最低位)对齐,这道题就不可以呢?

让学生明白:前面的末位数位相同,这里的末位数位不相同。

师:为什么相同数位没有对齐就不能计算呢?

生:因为它们的计算单位不一样,所以,要相同数位对齐了才可以计算。

师:那么在小数计算中,什么情况下可以末位对齐?什么情况下不可以呢?

生:在小数计算中,末位数位相同就可以末位对齐,末位数位不相同就不能对齐。

4、师:好,那我们就带着这个问题来试一试。只列竖式,不计算。(小黑板)

9.8+6.28= 21.56+6.7= 50+3.75= 111.60—99=

5.64-1.7= 7.2-6.45= 100-9.78=

集体评价。

评价时,请孩子說說:你给大家提个醒,在写竖式时,哪一步最容易出错?

师:请同学们观察,在这些对齐的竖式里,小数点有什么规律? 生:小数点都是对齐了的。

师:说明一个什么问题呢?

生:说明小数点对齐了,相同数位就对齐了。

师:说得好。(在相同数位对齐的板书下面写上小数点对齐) 师:你能说说为什么小数点对齐了,相同数位就对齐了呢? 生回答略。

师:现在我们再来看看,小数加减法和整数加减法比较有哪些相同点和不同点呢?

相同点:都是相同数位对齐。

不同点:整数的末位对齐了,而小数的末位不一定对齐。追问:为什么呢?

让学生明白:整数的末位就是

师:对齐了竖式,你们会计算吗?先说说,你准备怎么计算? 生:按照整数的加减法的方法进行计算。

师:请同学们用最快的速度把刚才的几道题给计算出来。 学生练习,集体订正。

(二)教学例二:

出示例二:

小数加减法要注意什么?

师:孩子们都会做小数加减法了,能说说小数加减法要注意什么吗?

篇二

【学情分析】:

三年级的学生已学过整数加减法,绝大多数的同学能正确熟练地计算整数加减法。 他们已经初步认识了一位小数的含义,对元角分也比较熟悉。且三级学生一般都有自己购物付钱的经历,这些生活经验和认知经历都为本节课的学习奠定了基础。

【教材分析】:

简单的`小数加减法是在学生学过万以内数的加、减法和初步认识一位小数含义的基础上教学的。教材创设了学生十分熟悉的购物情境,学生能根据自己的生活经验提出问题并解决问题。在学生运用口算方法解决问题的基础上,引导学生尝试运用竖式进行计算,并结合口算方法和过去学过的整数加减法竖式计算帮助学生理解小数加减法竖式计算推理。“试一试” 和“想想做做”主要巩固一位小数的加、减法,并解决一些实际问题。

【教学目标】:

1.理解小数加减法的意义,并掌握计算方法。

2.学生能够比较熟练地笔算小数加、减法。

3.培养学生的抽象概括能力,迁移类推能力。

【重点、难点】:

1. 掌握用竖式对小数进行加、减法的计算的基本方法。

2. 能够应用小数的加减法解决实际中的问题。

【教学准备】:

课件、投影仪

【教学过程】:

一、创设情境,引入新课:

(课件演示文具店,售货员出现在学生面前)

引入:欢迎各位小顾客光临本店,本店为大家提供各式各样的文具,老板说了开业期间所有文具一律低价销售,所以每个人只能挑选两样文具,你想选购本店哪两种文具?四人小组讨论:共有多少种不同的搭配,把自己购买文具的方案在组内交流一下。

[设计意图]创设学生熟悉的购物情境,激发学生的探究欲望;结合学生学过的搭配规律,探究共有多少种不同的搭配,为学生进一步探索购买文具要花的钱留下了广阔的思维空间。

二、探究新知,合作交流

(一)、用竖式计算小数加法

1、每人尝试计算自己购买文具要花多少钱?如果计算有困难的可以请组内小伙伴一起解决。

2、小组内交流各自解决问题的方法。

估计有以下两种方法:(1)将文具的价格看成以角为单位,将小数加法转化成整数加法;(2)将文具价格中的元和元相加、角和角相加。

3、全班交流。

随机请一学生交流自己购买文具的情况,花了多少钱?自己是如何解决这个问题的?统计班内有多少学生和他购买了同样的文具?自己又是如何解决这个问题的?提倡解题策略的多样化。

[设计意图]学生有购物经验和已有知识经验(整数加减法)做依托,尝试运用口算方法解决自己所提的问题是完全可能的,在学生独立解决问题的基础上,组织学生相互交流,体验解决问题策略的多样化和探索成功的喜悦。

4、引导学生尝试用竖式计算。

(1)以刚才那位同学交流了自己购买文具的情况为例,请学生尝试用竖式计算。

估计会出现下面两个竖式: 如 80.8+ 6 + 0.6

141.4

(2)分组讨论:加法的竖式计算要注意什么?在计算小数加法时,为什么要把加数中的小数点对齐?为什么得数中也要点上小数点?这个小数点应该点在什么位置?(注意发挥具体情境“元、角”在理解算理中所起的作用)计算小数加法和计算整数加法有什么相同的地方?

(3)用竖式算一算自己刚才购买文具的价钱算得对不对?

[设计意图]在学生运用口算方法成功解决问题的基础上,学生主动迁移过去加法竖式计算的经验,尝试运用竖式计算小数加法已不是一件困难的事情,在学生成功运用竖式计算解决问题的基础上,教师依托情境和学生已有的竖式计算经验,帮助学生理解怎样对齐数位,以及十分位相加满十,向个位进一的道理,很好地掌握小数加法的竖式计算,让学生再次品尝探索成功的喜悦。

(二)、用竖式计算小数减法

(1) 尝试用竖式计算

刚才我们每人都购买了两种文具,哪种文具贵些?贵多少钱?你能用竖式算一算吗?做完后与组内同学交流一下自己的计算方法。

(2)集体交流

重点讨论:得数前面的0和小数点能不能不写?计算小数减法和计算整数减法有什么相同的地方和不同的地方?

[设计意图]迁移小数加法竖式计算的经验,学生独立解决小数减法的竖式计算是完全可能的,在学生解决问题的基础上,围绕重点展开讨论,加深学生对计算中用0占位的理解。

(三)小结。

让学生说一说怎样计算小数加减法,在小数加减法中,要使相同数位的数对齐,只要什么对齐就行了?

(四)综合运用知识,解决问题。

除了刚才选择的文具外,你还喜欢哪两种文具?先求出它们价格的和,再求出他们价格的差,并在小组里交流。(交流时,教师的板书要有启发性,一方面使学生进一步加深用竖式计算小数加减法的印象,另一方面使一些学生进一步体会任选两种文具是有规律的,力争找出所有的组合,体会数学的魅力。

三、巩固应用

1.完成P96页“做一做”

学生可以提出两步.三步计算的问题

2.完成练习二十二第1题(做在课本上,允许个别学生用竖式计算)

3.用数学:练习二十二第2题,学生独立解决。

第(2)小题可以估算或者口算,也可以计算出结果在做比较,得出10元不够的结论。

4.练习二十二第3题,要求学生自己寻找数据再计算。

5.练习二十二第4题,提出问题在计算。

四、梳理知识,总结升华

(1)这节课学习了什么?你能告诉大家要注意些什么吗?

(2)星期天,开展争当“小管家”活动,帮助爸爸妈妈到市场买菜或到超市买东西,并记录、计算家庭支出情况,下周向老师和同学汇报。

[设计意图]活动由课内向课外拓展,激发学生运用所学知识解决实际问题的兴趣,发展学生的学生应用意识。

【板书设计】:

简单的小数加减法

0.8+0.6=1.4 1.2-0.6=0.6

元 角

1 . 20 . 8

-0 . 6 + 0 . 6

0 . 61 . 4

元 角

分数教学设计 篇16

【教学内容】

人教版《义务教育课程标准实验教科书数学》五年级下册第69页

【教学目标】

1、认识真分数和假分数,理解真分数和假分数的意义,掌握真分数和假分数的特征,能辨别真分数和假分数。

2、在观察、比较、分析、概括、猜想、验证等学习活动过程中,有条理、有根据地思考、探究问题,渗透数形结合的数学思想,并培养学生的抽象概括能力。

3、感受主动参与、合作交流的乐趣,培养学生自主探索的学习习惯,乐于探究的学习态度。

【教学重点】真分数和假分数的意义和特征。

【教学难点】假分数意义的理解和把分数用直线上的点来表示。

【教学准备】多媒体课件

【教学流程】

一、合作交流中学

1、创设问题情境:

(1)出示□/4,这个分数有可能是四分之几?

(学生任意说出分母是4的分数。如: 、 、 、 、 , ……)

(2)学生用圆上的阴影部分来表示这些分数:

(学生可能会表示出 、 、 、 )

2、自主探究:

怎样用图来表示呢?(让学生通过自主探究发现一个圆不够,从而产生矛盾冲突,要解决这个矛盾,还需要这样的一份。通过观察,理解 是把一个圆看作单位“1”, 平均分成4份,表示这样的5份。如果学生错误理解为 是把两个圆看作单位“1”,老师再准备一套同样的图加以对比。从而更加清楚 的意义。突破本节课的难点。)

3、利用对 的理解,用分数表示图中的阴影部分。

( ) ( ) ( ) ( )

【评析:整个环节,对课堂教学进行了充分的预设,从学生已有的经验和知识背景出发,精心设疑,提供给学生自主探索的机会,引导学生通过观察、比较、辨析等一系列的学习方法,巧妙地打破了学生原有的思维定势,有效突破了难点。】

二、观察比较中得

师:老师请你观察这些分数,你能不能按照一定的标准给这些分数分分类。先在小组里交流一下想法。

1、自主分类:四人小组讨论分类方法。

2、生汇报分类情况,可能出现:

(1)按分母相同和不同来分;

(2)按分子与分母关系分:分子比分母小;分子比分母大;分子等于分母。

(3)按分子能否是分母的倍数分。

(师根据学生回答把第二种分类方法板书在黑板上)

师:今天这节课我们就重点研究按照分子与分母的大小关系进行的分类。其实这些分数在数学上都有各自的名字,想知道吗?

3、学生自学课本第69页。

4、交流真分数和假分数的意义:

师:从书上你都了解到什么?

(1)在数学上把分子比分母小的分数叫做真分数,真分数小于1。

(2) 分子比分母大的或分子等于分母的分数叫做假分数,假分数大于或等于1。

这就是我们这节课所认识的真分数和假分数。(板书:真分数和假分数)

5、交流真分数和假分数的特征并说明理由。(结合图想一想)

[评析:让学生按照自己的标准将复习中的分数进行分类,突出了本节课的重点。采取让学生自学的方法,得出什么是真分数,什么是假分数。然后引导观察实物图,比较真分数、假分数的值与1的大小关系,从而掌握真假分数的特征。这一环节的设计充分发挥学生的学习主动性,培养学生的学习意识,提高学生的观察、分析和概括能力。]

三、巩固练习中提升

1、基础练习:

(1)、举一些分数,生抢答是真分数还是假分数。判断一个分数是真分数还是假分数关键要看什么?

(2)、判断(师口述)

①真分数都比1小。( )

②假分数就是分子比分母大的分数。( )

③妈妈买了一个月饼,小明一口气吃了 54 个。( )

【评析:这两题是基础练习,主要让学生进一步巩固对真分数和假分数的认识】

3、提高练习:把下列分数用直线上的点表示:

学生直接在直线上描点困难很大,为了更加有效加深认识和提升,我把这道题有梯度的呈现。

(1) 判断哪些是真分数,哪些是假分数?

(2) 出示动态的数轴,(让学生加深对单位“1”的理解。)

(3) 猜测真分数和假分数在直线的位置。

(4) 在直线上描点(进一步抽象对真分数假分数意义的理解)

(5) 通过观察,验证前面的猜测(使学生直观地看到真分数集中在0---1之间的这一段上,而假分数则分布在从1开始向右的部分,进而体会到与先前的认识一致:真分数小于1,假分数大于或等于1.进一步加深对真分数和假分数特征的认识,同时渗透猜测、验证的数学方法,也培养了学生严谨的学习态度。)

【评析:这个题目囊括了本节课相关的所有知识点,将它们有机地联系在了一起,同时进行有效地提升和难点的突破。】

4、不定性开放题:(出示表格,学生观察,教师指导方法)

1/2 2/2 3/2 4/2 5/2 5/2 6/2 7/2 8/2 9/2 10/2……

1/3 2/3 3/3 4/3 5/3 5/3 6/3 7/3 8/3 9/3 10/3……

1/4 2/4 3/4 4/4 5/4 5/4 6/4 7/4 8/4 9/4 10/4……

1/5 2/5 3/5 4/5 5/5 5/5 6/5 7/5 8/5 9/5 10/5……

(1) 学生可能会发现表格中的真分数和假分数。

(2) 可能找出每一行中特殊的假分数。

(3) 进一步观察真分数,看有什么发现?(真分数的个数比它的分母小1)

(4) 按行观察:每一行分数的分母都相同。用一个分数表示所有分母是6的分数: (a是非0自然数)思考:当 ( )时, 是真分数,当a( )时, 是假分数。

(5) 按列观察:用一个分数表示第六列所有的分数吗?

( 是非0自然数 )思考:当 ( )时, 是真分数,当 ( )时, 是假分数。

(6)用一个分数表示所有的分数:

( 、b是非0自然数 ) 思考: 是真分数还是假分数?

【评析:该练习加强了学习方法的指导,培养了学生观察、分析、概括等能力。在含有字母的分数中,让学生接触不确定因素,为的就是将学生思维不断提升,从形象的呈现分数判断到学生形成抽象的符号化思想。】

【评析:整个练习的设计由易到难,使不同层次的学生能够得到不同的锻炼,既巩固了新知,又深化了新知。】

四、总结回顾中延伸

1、畅谈本节课的收获。2、对本节课自我评价。

课堂闪亮星

评价内容

认识并理解真分数和假分数的意义 掌握真分数和假分数的特征 认真倾听

别人发言 与同伴合作

积极思考问题

自我评价

【评析:该环节是梳理新知,对照目标,反馈评价,提高教学效益,培养学生归纳小结的良好习惯。】

【板书设计】

真分数和假分数

真分数: 分子比分母小的: … (小于1)

分子等于分母的: …(等于1)

分子大于分母的: …(大于1)

【评析:将本节课的知识点以科学、合理、简捷的结构呈现出来。突出了本节课的重点,便于学生回顾和梳理所学知识,起到了画龙点睛的作用。】

【设计思路】

学生在三年级已有了初步认识分数的经验基础,但那时主要是从部分与整体的关系角度来学习的,认识的分数都是真分数,而现在,引入了假分数,这就需要学生打破原有的认知结构。但又因真分数在学生心中根深蒂固,而假分数表示什么?在单位“1”不够取的`时候怎样理解?在生活中假分数又有怎样的现实意义,学生并不明白。因此,建构对假分数意义的理解是个关键,同时也是难点。教学中引导学生“经历”“感受”和“体验”概念的建立,结论的探索过程显得尤为重要。

而本节课的设计就是从学生已有的经验和知识背景出发,提供给学生自主探索的机会,让他们在经历知识形成的过程中,真正理解和掌握了数学的知识、思想和方法,同时获得广泛的数学活动经验,促进了学生的发展。

在整个的教学过程的设计中,教师充分体现了以学生为本的教学理念,在学生获取新知识的过程中,大胆放手,引导学生自主探索,突出知识的形成过程,使学生对新知识沿着理解、掌握、熟练地过程不断前进,从而获得最佳的教学效果。尤其在“ 怎样用图来表示?”这个环节中,使学生在对比、辨析、不断地矛盾冲突和解决的过程中,加深对假分数意义的理解,从而突破了本节课的难点。还有在给分数分类这个环节中,通过让学生自主分类、说标准,充分发挥学生的自主性。在激烈的小组讨论争辩中,调动了学生学习的积极性,活跃了学生的思维,使学生尝到了自己获取知识的乐趣,充分体会到了学习的乐趣,提高了学生自主探索、合作交流的能力。

本节课自始自终都使学生在充分的信息的相互交织中、不同思路的相互促进中、自育与他育的相互补充中,充分感受与体验知识的发生和发展过程,促进学生的全面发展。

分数教学设计 篇17

教学目标:

1、了解分数的产生,理解分数的意义和单位1的含义,掌握分数单位。

2、通过活动,引导学生经历探究分数意义的过程,在经历分数的意义和单位1的探求过程中,培养学生抽象、概括、分析和推理的能力。

3、通过对分数的意义和单位1的探求,培养学生的钻研精神和合作意识,体验数学与生活的密切联系。

教学重点:建立单位1的概念,理解分数的意义,自己发现分数单位。

教学难点:理解单位1的概念。

教学过程:

一、激情导入

1、导入课题

师:把两个苹果平均分给两个小朋友,每人分几个?把一个苹果平均分给两个小朋友,每人分几个?(能用整数表示吗?)

小结:在进行测量、分物或计算时往往不能正好得到整数的结果,这时就产生了一种新的数,叫分数。板书课题:分数的产生及意义。

2、明确目标:

(1)明确分数的产生及意义。

(2)理解分数的意义和单位1的含义。

3、预期效果

出示1/2,关于分数,你们已经知道了哪些知识(分数由几部分组成,各部分的名称。)

二、民主导学

任务一:

1、任务呈现

利用手中的学具表示分数1/4

(1)请同学们利用手中的学具折一折,分一分,涂一涂,表示出1/4.

(2)小组的`同学互相说一说,1/4表示什么意思。

2、自主学习

学生动手操作,教师巡视。

3、展示交流

(1)把一张圆形纸平均分成4份,每份是这个圆的1/4.

把一张正方形纸平均分成4份,每份是这个正方形的1/4.

把一条线段平均分成4份,每份是这条线段的1/4.

把4个三角平均分成4份,每份是4个三角的1/4.

把8个圆平均分成4份,每份是8个圆的1/4.

(2)像一张圆形纸、一张正方形纸等都是一个物体(板书:一个物体);4个三角、8个圆等是一些物体(板书:一些物体)。一个物体和一些物体都可以看成一个整体。

(3)一个整体可以用自然数1来表示,通常把它叫做单位1,(板书:单位1 )。

分数教学设计 篇18

教学目标:

1、通过丰富的操作活动认识几分之几。会用直观的方法比较同分母的两个分数的大小。。

2、培养学生动手操作和观察能力。

3、激发学生学习的兴趣,进一步产生对数学的好奇心和兴趣。

教学重点:认识几分之几。

教学难点:认识分子的含义和几分之几与几分之几的'比较。

教学准备:光盘

教学过程设计:

一、创设情景,引入新课:

(一)认识几分之几

1、 出示:分西瓜场景图(用圆片代替西瓜)

(1)问:他们一家打算干什么?

(2)教师口述:小红吃了一块,妈妈吃了三块。

问:小红和妈妈各吃了这个西瓜的几分之几呢?同桌说一说

追问:什么是3/8呢?

(3)问:剩下的爸爸吃,那么爸爸吃了多少呢?

追问:什么是4/8?同桌讨论一下

(4)师:3/8 4/8也是分数(教师板书:分数)

(5)师:今天学的分数跟我们以前学的分数有什么不同?

2、出示:一张正长方形纸,

要求:折成同样大小的4份,给其中的几份涂上颜色。

展示交流:你涂的是这张纸的几分之几?为什么?

3、出示:一张长方形纸

提问:你能折出这张长方形纸的几分之几?请你折一折,并涂上颜色

学生折一折,涂一涂

展示交流

4、 那么,如果把一张纸平均分成10份,涂了2份,是(2/10);涂了3份呢?4份,5份呢?

教师小结:涂了10份中的几份就是(十分之几)?

5、出示:试一试

提问:每个图里的涂色部分各表示几分之几?你是怎样想的?

观察判断,同桌交流想法

独立填写,全班交流

6、完成想想做做第1、2题。

(二)分数的大小比较

二、比较大小

1、出示3/5和2/5

提问:3/5和2/5谁大谁小?有什么方法可以比较?

小组讨论比较方法,全班交流

(1)折一折,涂一涂

(2)推理:平均分成5份,取3份

平均分成5份,取2份

2、练习:出示书本P103 第4题

(1)涂一涂,比一比

(2)指明学生介绍自己的作业。

3、 如果没有图,你会比较分数的大小吗?

出示:1/32/3 4/73/7 4/95/9 5/83/8

(1)小组里交流

(2)出示

1/2 〇 1/4

1/2和1/4分子一样大,它们相等吗?

(3)总结方法:分母相同,就看分子。

4、比较大小:

5/63/6 2/75/7 3/52/5 3/124/12 9/1001/100 1/61/5

(1)和同桌比一比(2)交流

5、出示:3/9 <( )<8/9 1/7<( )

三、巩固练习:

1、 出示:(红领巾试验田)这块地的3/9种了西红柿,1/9种了茄子,4/9种了青菜。

(1)你知道了什么?和你的同桌说一说

(2)交流。

师:还剩下多少?你打算干什么?

2、 完成想想做做第3题。

3、完成想想做做第5题。

四、总结全课:

今天我们除了学习了几分之几外,还学了什么?(分数的比较大小)

板书设计:

认识几分之几

1/4 2/4 3/4 4/4

2/5 3/5

分数教学设计 篇19

教学目标

1、知识与能力了解并掌握论据的类型、选择、使用和论据的要求等知识,培养相应的能力。

2、过程与方法通过对典型文章论据的选择和使用的揣摩分析,达到对文章的初步了解掌握;通过对失败例文的修改训练来深入把握;通过迁移训练和课后作业来巩固这种能力。

3、情感态度与价值观培养正确的学习态度和方法,形成优秀的思维品质。

教学重、难点:

学会围绕论点和论题正确使用恰当的论据。

教学准备:

多媒体

课时安排:

一课时

一、导入

论据充分论证才有力文章才丰满,这个道理同学们都知道,大家往往抱怨手中论据太少。其实,虽然同学们由于平时阅读面不够宽,积累的材料确实有限,但这并不是关键,关键是大家平时没有归类储存材料,特别是不会巧妙使用材料。在写议论文中只要我们善于利用阅读和生活积累,论据并不难找;只要我们能巧妙使用手中的材料,论证一定会有力,文章一定会丰满。下面我们结合高考优秀作文谈谈高考作文的论据使用。

二、教学过程

1、广取巧借,为我所用

论据的选用不能局限于所谓的论据书籍,也不能只瞄准名人大事。我们应该从课内课外,书籍生活各个方面广取材料,应该既用名人大事又用凡人小事来作文章的论据。选用的唯一标准是能恰当地为议论服务。

(1)展示学生的作品,进行点评。

“我们社会生活中有许多的发明,这些发明没有哪一项不是凭借自己努力学习、细心观察、刻苦钻研得来的。爱迪生这个人我想大家都很熟悉吧。他出生在贫穷的农民家里,但他仍能在艰苦的环境中创造了1000多项发明,享有发明大王的称号。如果他不凭借自己的真才实学,他能拥有这些成就吗?毫无疑问,不可能。”

(2)展示高考满分作文,进行对比。

如20xx年湖南卷的高考满分作文《谈意气》,作者是这样来为自己的论点论证的:陶潜宁愿采菊东篱下,也不愿为五斗米折腰;屈原宁愿沉入汨罗,也不愿与世俗为伍;介子推宁愿烧死山中,也不愿用腿肉换取官职。

(3)展示修改后的学生作品。

再看看这个:“古往今来,彪炳史册的杰出人物,都曾做出个非同寻常的努力,因而在事业上创造了辉煌的业绩。试想,如果没有李时珍跋山涉水、尝遍百草,没有他数十年如一日的搜集整理、笔耕不息,哪里会有药学巨著《本草纲目》的问世?如果没有爱迪生夜以继日、潜心研究,没有他含辛茹苦、反复试验,哪会有白炽灯的及早发明!如果没有陈景润呕心沥血、备受艰辛,没有他十几年如一日的运算推理、钻研不止,哪会有数学难题“哥德巴赫猜想”的突破?”

(4)小结

这个关于爱迪生的论据会让你觉得俗吗?显然,这个论据不但不让人觉得俗,反而让大家感觉很有气势,很有说服力。所以呢,在这里,老师想告诉你们,不怕例子俗,而是怕你不会广取巧借,为我所用。

(5)再展示高考满分作文。

此外,我们还可以充分利用学过的知识来为自己的文章添色。

如20xx年广东卷满分作文《语言是沟通的钥匙》,作者是这样运用课内学过的诗句来论证自己的.观点的:恰如其分的语言表达,利于友情的沟通。高适的“莫愁前路无知己,天下谁人不识君”与王勃的“海内存知己,天涯若比邻”,都用优美的语言送走了友人的,达到了友情的沟通。李白《蜀道难》一文中劝说友人归来的语言精辟,达到了友情的沟通。从李白的“上有六龙回日之高标,下有冲波逆折之回川”可知“蜀道之难,难于上青天”,友人便从语言中感受到友人的关怀,沟通也便到了心坎。沟通并不像白居易说的“此时无声胜有声”,它需要语言为它传达彼此的关切。

2、一据多用,妙在叙述

人们认识事物的立场不同,角度不同得出的结论往往不一样,所谓见仁见智。同一人同一事我们从不同的角度叙述,或突出点不同就能证明不同的观点。对一些广为人知的人和事我们通过巧妙叙述来为自己的论点服务,会最大程度地增强文章的说服力。

(1)展示高考满分作文。

屈原、苏武、文天祥历来被作为爱国之士名留青史,司马迁常常被看作在挫折中奋起的典型,而《抉择》的作者却用他们的事迹来证明“中华民族的文化中‘诚信’占有很大的比重”这一论点:流放溆浦的屈原,放牧北海的苏武,捐躯沙场的文天祥用他们的行动证实了对祖国的诚信。受宫刑的司马迁,遭贬谪的姚崇,北向自刎的侯赢用他们的举动验证了自己对朋友的诚信。

(2)引用《报任安书》的文段做练习。

“盖文王拘而演《周易》;仲尼厄而作《春秋》;屈原放逐,乃赋《离骚》;左丘失明,厥有《国语》;孙子膑脚,《兵法》修列;不韦迁蜀,世传《吕览》;韩非囚秦,《说难》、《孤愤》。《诗》三百篇,大氐贤圣发愤之所为作也。”

上面的例子,可以用做哪一类话题的论据?

(3)小结

认识事物的立场不同,得出的结论往往就不同。只要我们多观察多联想,其实,议论文也不是我们所想的那样高不可攀。

3、因文而异,灵活运用

行文时,论据使用的具体方法应由文体、文章风格及对材料掌握的程度等因素决定,做到灵活运用,变化有致.写作议论性散文宜使用概括材料,这样既增大了文章的容量又符合散文语言凝炼的特点。

(1)展示高考满分作文

如同是用巴尔扎克的事例,在以“从逆境中奋起”为观点的散文中可以这样用:屈原放逐乃赋《离骚》,司马宫刑终成《史记》,巴氏还债世有《人间喜剧》。

而在《压力——成功的催化剂》一文中作者却是这样使用的:“为生活所困的人注定会有压力,伟大的现实主义作家巴尔扎克年青时一贫如洗,生活上入不敷出,债台高筑,整天提心吊胆,生怕债主来摧债,迫于压力巴尔扎克把自己关在房里,一心一意写文章,终于写出鸿篇巨作《人间喜剧》,深刻反映了十九世纪中期法国的社会生活。强者就是这样,在压力下悄然崛起;强者就是这样,凌驾于压力之上巧妙地化解压力。”作者从议论的需要出发对巴氏因生活困窘而写作成功的事迹作了较详的叙述,并且事例前有观点,事例后有分析。

(2)小结

以后写论据时,应根据实际来选择文章的论述方式。

4、正反并用,充分有力

议论时如能将正面事例与反面事例同时使用,形成鲜明对比,那么论证将更加有力。

(1)展示高考满分作文,进行点评。

如刚才我们在前面说到的《谈意气》一文,作者连举了陶渊明屈原介子推为例,充分说明意气在他们神圣的充分表现。其实为了使论证更有力,作者还举了反面例子来加强论证。如:

正面论述——陶潜宁愿采菊东篱下,也不愿为五斗米折腰;屈原宁愿沉入汨罗,也不愿与世俗为伍;介子推宁愿烧死山中,也不愿用腿肉换取官职。

反面论述——秦朝赵高,指鹿为马,家官晋爵;唐代李林甫,口蜜腹剑,深得宠信;明代魏忠贤,阿谀奉承,欺上瞒下,“生祠”满天下。然而他们的结局呢?赵高留下了一个“指鹿为马”的荒唐语;李林甫落得个“口蜜腹剑”的千载骂名;魏忠贤生前的“荣耀”何尝留下一个?这一切,正如臧克家所说的:把名字刻入石头的,名字比尸体烂得更早。

(2)小结

从以上的满分作文中,我们都知道正反论述的好处。所以在以后的作文中,可多用此法。

三、结语

同学们,通过这一节课,我们知道了论据使用的方法是多种多样的,具体如何运用应由文体,风格等多种因素决定,但有一点是可以肯定的,那就是要有广取材料的意识,巧用材料的能力。希望在往后的日子里同学们能够多点去积累素材,拓宽自己的知识面,为高考打下坚实的基础。

四、布置作业

歌德的《叙事谣曲》中有这样一个故事:耶稣带着他的门徒彼得远行,途中发现一块破烂的马蹄铁,耶稣就让彼得捡起来,不料彼得懒得弯身,装作没听见。耶稣没说什么,自己弯身捡起马蹄铁,又用它在铁匠那里换了三文钱,并用这些钱买了18颗樱桃。出了城,师徒继续赶路,二人经过茫茫的荒野。耶稣猜到彼得一定会很渴,就让藏在袖子里的樱桃掉出一颗,彼得一看,赶忙捡起来吃。耶稣边走边丢,彼得也就狼狈地弯了18次腰。于是耶稣笑着对彼得说:“要是你刚才弯一次腰,就不会后来没完没了地弯了那么多次腰了小事不干,将在更小的事上操劳”。

材料中“彼得懒得弯腰”,主动放弃了捡马蹄铁的这一“弯一次腰”的“机遇”,从而导致他“后来没完没了地弯了那么多次腰”的结果,由此看来,机遇是不可失的。请以“机遇”为话题,写一些关于“机遇”的论据,方法可参照上面所给的例子,灵活运用。

分数教学设计(精选20篇)

在教学工作者开展教学活动前,时常需要准备好教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计要怎么写呢?以下是小编收集整理的分数教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

分数教学设计 篇20

一、谈话

小朋友们,你们好!我叫徐远敏(板书),你们可以叫我徐老师。初次与你们见面,我本该先自我介绍一下,可我这个人没什么特点,也没什么优点,更没有多少的缺点,让你们马上记住我,难呀。你能记住我了吗?为什么?

谢谢你们,能记住我。

走进这幢房子,我就感觉自己像似一个灰姑娘(灰姑娘的故事听过吗?我现在就是灰姑娘),魔术棒给了我一次和你们三(5)小朋友交流和学习数学的机会,我真是太幸运了,所以我今天也一定要记住我们三(5)班的每一个同学,你叫什么?谁能介绍一下我们三(5)班的一些情况。我们班共有几个人?女生有几人?

我们通过交流相互都有些了解了,相信接下来数学学习会让我们成为知己。现在,我们可以开始上课了吗?师生问好!

二、创设问题情境,产生需要。(约5分钟)

1、如果我把这四苹果分给他们两个,我可以怎么分?

生:每人两个。

师:为什么这样分?

生:这样公平。

师:这种分法,数学上叫什么分?

生齐说:平均分。(板书:平均分)

师:谁能用一个式子表示这种平均分。

生:4 2=2(教师板书)

2、我再想把这2个苹果平均分给这两个小朋友,每个人几个?用哪个式子表示。

生:2÷2=1(师板书)

4、我再把这个苹果平均分给后面两个小朋友,(师用小刀切出苹果)每人又得到几个?用哪个式子表示

生:1÷2=0.5(师板书)

5、半个,可以用0。5表示,还可以用怎么表示呢?(学生40妙钟没有学生发言,但在思考,教师也没有引导,)

6、师:你们想知道数学上还可以用什么表示吗?生:想

7、师:数学上还可以用这个数来表示(板书1/2)

师:谁知道它怎么读?

生:一分之儿;

生:二分之一;

师:它叫二分之一,我们应该从下往上读(师在分数旁边画上一个箭头)

生齐读

师:这个数叫做分数,今天我们就一起来认识分数(板书:认识分数)

生;没有平均分。

师:你能再说一遍吗?(生重新再说一遍)

生:我把窗户……

生:我把文具盒……

6、师:图形、黑板、铅笔,其实就是把什么平均分成两份?

生:物体、东西

师:其实就是把一个东西平均分成两份,其中的一份就的它的1/2。

7、如果我把这个一排同学人数看作是一个东西,把它平均分成两份,其中的一份是多少:

生:1/2。

师:那这个1/2里有多少个人?

生:4个。

师:如果我把全班同学平均分成两份,其中的一份是多少?这个1/2里又有多少人。

生:1/2

生:18人。

三、认识其他分数(约8分钟)

1、师:其实,在生活中我们不只只把一个东西平均分成两份,有时候可能要分成3份、4份……更多的份数。

师:现在,我要把这个圆形平均分给四份(教师对折,再对折),我取其中的一份,用一个什么分数来表示?

生齐答:1/4

师:如果取其中的两份,又用哪个分数来表示

生:2/4

师:你知道我要出哪个分数?

生:3/4

师,那我要取几份?

生:3份

师生齐叫出4/4

3、请同学们仔细观察这几个分数?他们有什么特点?

生:他们都是平均分

生:他们都是把圆形中的一部分

师:请同学们听清楚老师的问题:是观察这几个分数有什么特点?

生:他们的分母都是4

师:为什么都是4?

生:因为他们都是把圆平均分成了四份

生:分子一个比一个多。

师:为什么?

生,分子代表他们取的份数,所以才会这样

师:那也就说分子表示的是……

生:涂色部分的份数。

生:所取的份数。

2、如果我把这个圆形平均分成8份,取其中的一份是它的几分之几?

生:1/8(板书)

师:5份又是几分之几?

生:5/8(板书)

师:如果把它平均分成100份,其中的一份又是多少?

1/100(板书)

师板书29/100,它表示什么呢?

生:表示把这个圆形平均分成100份,取其中的.29份。

3、师:现在,你能说出一个分数吗?

生:2/5,3/9、23/50……

师:我们能把所有的分数都说出来吗?

生:不能,有无数个。

目的:1、认识其他的分数;2、让学生知道分子、分母各表示什么?

感悟:学生在观察比较1/4、2/4、3/4、4/4的特点中,知道了分子和分母所表示的意义,这一环节的教学很成功,在后面的练习中得到了验证。让学生任意说出一个分数,全班36个人,3/4的人得到了发言,学生参与面广。

四、巩固练习(约8分钟)

1、师:小朋友,通过刚才的学习,我们已经认识了分数,那我要考考大家,哪些小朋友是真正了解分数? 用下面的分数表示涂色部分对吗?

3/4 2/3 3/5 1/2

2、用分数表示下面各图中的涂色部分。

3、看到这个图,你会想到哪些分数?

五、建立新旧知识之间的联系(约5分钟)

1、今天,我们通过分一分,认识了分数这个新朋友。那我们回顾头来看看,分数与我们的老朋友除法,有没有联系?

4 ÷ 2 =2

2 ÷ 2 =1

1 ÷ 2 =1/2

1 ÷ 4 =1/4

1 ÷ 8 =1/8

学生观察后:

生:有联系。

生:分子就的被除数,分母就是除数。(教师用箭头表示)

师:其他同学,也发现了吗?

师:如果,我写一除法式子,你知道等于多少吗?1 ÷ 8

生齐答:1/8

师:板书2 ÷ 3等于多少

生:2/3

师:真得等于2/3吗?这个知识大家可以课后去研究一下,以后我们也会学到。

2、通过练习,我们发现很多知识之间是相互联系的。如果我们能善于发现数学新旧知识之间的联系,那我们就一定能学好数学。

六、课堂总结(3分钟)

师:和好朋友在一起的时间总是过得很快,钟声马上要响起,魔力马上就要消失了,在最后的这一分钟的时间里,我想做一个调查:通过这节课的学习,你有收获吗?静静地想一想。

师:有收获的请起立?用一个分数怎么表示?

生:36/36

师:我采访几个小朋友,你有什么收获?

生:我

认识了一种新的数——分数。

生:用分数表示必须要平均分。

……

师:谢谢,你们的收获,你们的快乐,就是我这次灰姑娘之行的最大收获。你们的表现,我也非常的满意(板书1/1)。下课,朋友们,再见!

分数教学设计 篇21

教学目的:

1、拓宽学生学习的渠道,让学生通过到图书馆查资料,初步了解分数产生的条件、背景和发展史。

2、让学生在玩学具的过程中理解单位"1",感受什么是分数,归纳出分数的意义,培养学生实际操作和抽象概括能力。

3、让学生在轻松和谐的氛围中学习数学,体验学习数学的成功和愉悦,培养学生对数学的情感。

教学重点:

单位和分数的意义的教学。

教学难点:

突破一个整体的教学。

教具、学具:

苹果、一分米、方块、小棒、小旗、小刀、水彩笔。

教学过程:

一、介绍分数的产生

师:课前,老师让大家回去查阅资料,谁能结合你的资料来说说分数是怎样产生的事?(学生举手)

师:(指手里拿着一本书的女生)你来说说。

(女生拿着自己查的资料走到讲台前,把自己的资料放在实物投影下)

生说:我是从《中国少年儿童百科全书》上查到的。分数起源于分。在原始社会,人们集体劳动要平均分配果实和猎物,逐渐有了分数的概念。以后在土地计算、土木建筑、水利工程等测量过程中,当所用的长度单位不能量尽所量线段时,便产生了分数。

师:您查的挺好的。通过她查的资料我们可以知道分数起源于分。

师:(看到有学生举手,指其中一男生)你来说说。

男生:(拿着资料来到讲台上的实物投影前,指着资料书)我是从《新编小学生数学词典》上查到的。人类在生产劳动的长期实践活动中产生了分数,起初是使用具体的分数,如二分之一用"一半"来表示,四分之一是用"一半的一半"来表示,经过了相当长的一段时间后,才出现了诸如二分之一、三分之二等分数。

师:嗯,好,请回。通过他查的资料,我们可以知道最初的'分数表现形式和现在的表现形式一样吗?(学生齐说不一样)1/2是用"一半"来表示1/4是用"一半的一半"来表示,那么,照此推算1/8就是(学生齐说一半的一半的一半。)

师:看来同学们是真理解了,那谁还有别的资料吗?

(学生举手)

师:(指一女生)好,你来。

女生:(拿着资料走到实物投影前展示)我是从资料书上查到的,我把它摘抄到我的笔记本上。分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。

师:很好,看来,同学们的资料查的不错。今天我们就不一一交流了,建议课后大家再把查到的资料互相交流一下。通过这几个同学查的资料,我们可以知道分数实际上是由人们的生产生活的需要而产生的。

二、探索分数的意义

1、小组探究,共同参与。

师:我们三年级时对分数已经有了初步的认识,你能说出几个具体的分数吗?

(学生举手)

甲生:3/4,1/2,1/20,88/100

师:嗯,说的还挺多。

乙生:1/10,1/100,1/50,1/60

师:你也知道很多分数。

丙生:2/4、2/8、5/10、20/100

师:同学们已经知道了很多的分数,那要是给大家几种材料,你们能动手分一分,并且用分数来表示吗?

(学生说能)好,拿出老师给大家准备的材料,小组讨论一下。

(学生活动,小组讨论五分钟左右。教师巡视,参与小组活动,了解情况。)

2、汇报交流,力求创新。

师:大家得到分数了吗?哪个小组来说你们是怎样得到的?

(学生举手)

师:(指甲组)你们来说说。

(一个学生代表甲组,拿着一个苹果走到实物投影前)

甲组:我先把这个苹果平均分成了两份,取其中的一份就是二分之一。

(教师板书:平均分分数1/2)

甲组:我又把这个苹果平均分成了四份,取其中的一份就是四分之一。

(教师板书:1/4)

甲组:我又把这个苹果平均分成了八份,取其中的一份就是八分之一。

(教师板书:1/8)

甲组:这样,依次类推,可以分成许多份,得到许多分数。

师:行不行啊,老师感觉他里面有句话说的非常好,谁来说说。

生说:依次类推。

师:那你明白依次类推是什么,意思吗?

生说:懂,就是一个一个往下类推。

师:也就是说还可以再接着分,看来这个小组已经想的很透彻了,谁还有别的材料需要展示的吗?

(学生举手)

师:(指乙组)你们来说说。

(一学生代表乙组,拿着一分米的纸上来展示)

乙组:我们小组是把一分米平均分成了10份,其中的1份就是十分之→。如果把;2平均分成2份,其中的一份就是二分之一。如果把它平均分成5份F飞其中的一份就是五分之一c

(教师板书:1分米1/10)

师:他刚才说了很多分数。咱就按照这个同学刚才说的,把1分米平均分成10份,除了十分之一,我们还能得到别的分数吗

一生:把这1分米平均分成10份,取其中的→份,就是十分之一取其中的两份,就是十分之二,取其中的三份就是十分之三,这样,依次推下来,就可以得到十分之几。

师:也就是表示其中几份就是它的十分之几,你们同意吗?

(学生齐说:同意)

师:谁还有别的材料需要展示吗?

(学生举手)

师:(指丙组)你们来说说。

(两个学生代表丙组,拿着八个方块到前面来展示)

丙组:我们把八个方块平均分成两份,取其中的一份,就是二分之

(教师板书:八个1/2 )

丙组:把八个方块平均分成四份,取其中的一份就是四分之一,两份就是四分之二,三份就是四分之三。

(教师板书:1/4、2/4、3/4)

(教师看到下面同学有很多急着举手的)

师:你们有问题吗?

一女生:他把它平均分成4份,一份是两个方块,他为什么说是四分之一呢?展示的丙组男生回答:把这八个方块平均分成4份,其中的一份就是四分之一。

女生质疑:这其中的一份是两个方块,为什么说是1/4,我还不明白。

丙组男生:因为这两个方块组成一份。

师:你满意吗?

女生:不满意。师:不算很满意,那你们能再来解释解释吗?

丙组女生很急切的解释:因为它要分成4份的话,这两个方块,并不是论块,而是论份,这两个方块组成了一份,是四份中的一份,所以是四分之一。

师:你说的很有特点,看来这是一个难点。刚才同学们提的问题很有价值,我们要想得到一个分数,必须要把八个方块看成一个整体,这两个方块或者四个方块只是这个整体的一部分,我们就可以用分数来表示。

师:那谁还有别的材料需要展示。

(学生举手)

师:(指丁组)你们来说说

(一生代表了组,拿着10根小棒走到前面展示)

丁组:我这里有10根小棒,我把它平均分成10份,其中的这一份,就是十分之一,然后,再把它平均分成5份,其中的一份就是五分之一。再把它平均份成两分,其中的一份就是二分之一。

(教师板书:10根小棒1/10、1/5、1/2)

师:我想问你一个问题,我把10根小棒看成一个整体,平均分成两份,其中的一份是二分之一,那这一份是几根小棒?

生:是5根小棒。师:很好,请回,(指举手的同学)你想展示?

生:我这有6面红旗,我首先平均拿走一面红旗就是六分之一。拿掉两面红旗就是六分之二,依次类推,把六个红旗都拿完了,就是六分之六。

师:平均拿走一面红旗是什么意思?

生补充:我想换一种说法,就是把这六面红旗平均分成六份,拿走其中的一份就是六分之一。

师:你说的真好。我们要想得到几分之几时,必须要先把它平均分成几份。

(教师板书:6面小旗1/6)

3、抽象概括,构建新知。

师:我们刚才得到了很多的分数,(指黑板)以前我们研究过了分一个物体,(板书:一个物体)分一个计量单位。(板书:一个计量单位)今天我们主要研究了分多个物体组成的一个整体,(板书:一个整体)这些我们通常都可以把它们叫做单位"1"。(板书:单位"1")

师:除了这些你还能再举几个单位"1"的例子吗?

生:一个西瓜。

生:一个蛋糕。

生:一个苹果。

师:刚才同学都举的是一个物体的,还能举一些别的吗?

生:10个人。

生:10本书。

生:8个铅笔盒。

生:5瓶啤酒。

生:3块橡皮。

师:看来同学们已经理解了单位"1"。那你能结合刚才的这些例子用自己的话说说什么叫分数吗?小组先讨论讨论。

(小组讨论一分钟左右)

师:谁来说说。

甲生:把一个物体平均分成几份,取其中的几份,就是几分之几。

乙生:把一个物体平均分成若干份,取其中的几份,就是几分之几。

师:刚才都是说分一个物体,还有没有别的啦?

丙生:把几个同样的物体平均分成若干份,取其中的几份,就是几分之几。

师:通过你们说的,教师知道你们已经明白了,那么到底数学家是怎样归纳的呢,请同学们看屏幕。

屏幕展示:把单位平均分成若干份,表示这样的一份或几份的数叫做分数。

找生读,学生质疑。

师:这就是我们这节课研究的分数的意义。

(板书课题:分数的意义)

师:那你能通过3/10,说说分数由哪几部分组成的吗?

生:分数线、分子、分母组成。

师:分母、分子各表示什么意思?

生:分母表示把一个物体平均分成几份,分子表示取了其中的几份。

师:这一物体也就是单位。

三、巩固练习

1.用分数表示下面各图中的阴影部分。

2、填空;

(1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。

(2)把今天来上课的同学平均分成()组,一个组的人数是全()班人数的(),二个组的人数是全班人数的()。

3、糖块游戏。

拿走9块糖的1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?

四、总结(略)

分数教学设计 篇22

教学目标

1、通过自主探究,学生经历异分母分数加、减法计算方法的探究过程,认识将新知转换成旧知是获得知识的重要途径。

2、学生能掌握异分母分数加、减法的计算方法,会正确地计算异分母分数加、减法。会对计算结果进行验算,并养成验算的良好习惯。

3、通过对生活垃圾情况的调查、分析,唤起学生的环保意识。

教学重点:探究并掌握异分母分数加、减法的计算方法。

教学难点:

异分母分数加、减法的计算方法的探究,以及正确计算异分母分数加、减法。

一、创设情境,明确内容

1、把下面每组中的两个分数通分

13和2534和720512和38

说一说你是怎样进行通分的?通分的目的是什么?

2、先说出同分母分数加减法的计算方法,再口算。

15+25=27+47=18+38=

47-17=215-215=712-512=

为什么上面这样的分数相加减,你能直接说出得数呢?

3、出示23+19=揭示课题

板书:异分母分数加减法

二、导学探究,建立模型

1、课件出示各种生活垃圾图片

2、课件出示生活垃圾分类和危害的资料

(一)导学探究,解决问题

出示生活垃圾扇形统计图

废金属等14

纸张危险垃圾

310320

食品残渣310

1、导学提示,明确方向

(1)根据统计图提供的信息,提出用加减法进行计算的数学问题

(2)异分母分数相加减,怎样计算?

(3)试着总结异分母分数加减法的计算方法。

2.自主学习,解决问题

下面就请同学们小组合作进行操作,并共同完成导学问题。

(二)展示交流,建立模型

1.展示汇报,重点解释

(1)各位小组代表汇报

废金属和纸张是垃圾回收的主要对象,他们在生活垃圾中共占几分之几?

危险垃圾多还是食品残渣多?它们的差占生活垃圾总量的'几分之几?

(2)课件演示,解题过程

2.归纳总结,建立模型

异分母分数加减法的计算方法:

异分母分数相加、减,先(通分),然后按照(同分母分数)加、减法的方法进行计算。

计算的结果,能约分的要约成最简分数,分子是分母的倍数的要化成整数。

三、练习检测,巩固应用

1、下面的计算对吗?把不对的改正过来。

(1)13+12=25

(2)815-13=815-515=315

2、你能计算以下各题吗?(后面两题验算)

23+19=35+37=512-18=

3、解决问题

春天到了,农民伯伯给果树浇水。第一天上午浇了所有果树的14,下午浇了38,第二天上午浇了310,一共浇了所有果树的几分之几?还有几分之几没浇?

四、整理回顾,反思提升

下面请大家回顾一下我们这节课的内容,想一想,通过这节课的学习,你有哪些收获?

分数教学设计 篇23

教学内容:

新人教版义务教育课程标准实验教科书数学五年级下册,第69页“真分数和假分数”。

教学目标:

知识与技能:通过有效的数学活动,使学生理解真分数、假分数的意义,能正确地区分真假分数。

过程与方法:通过有效的数学活动,使学生经历探究的过程,让学生在自主探究与合作交流中学习,培养学生观察、比较、抽象、概括的能力。

情感态度价值观:让学生感受主动参与、合作交流的乐趣,培养学生自主探索的学习习惯,乐于探究的学习态度。

教学重点:

深入理解分数的意义,正确把握真分数和假分数的差别。

教学难点:

正确地表示假分数的意义。

教学准备:

多媒体课件、图片、小黑板。

教学过程:

一、创设情境、成语游戏

1.听成语,说分数:一分为二、百里挑一、十拿九稳、十全十美、百发百中。

老师说成语,学生说出相应的分数,师生共同评价。

2.复习“分数的意义”和“分数单位”。

设计意图:(我先设计一个猜数小游戏激发学生的学习兴趣,然后又复习上节课的知识,为本节课的教学作铺垫。)

二、探究新知

1.创设情境,导入新课

同学们,在上节课我们学习了分数的意义及分数与除法的关系,今天这节课我们将继续学习有关分数的知识“真分数和假分数”。看到这个课题,同学们可能有些疑惑,生活中的商品有真有假,怎么分数也有真有假呢?让我们一起来揭开这个谜,好吗?

2.看图写分数(课件出示)

学生独立写出分数,师巡视指导,指明说出分数的意义。

3.学生自学课本第69页。

4.引导学生将六个分数进行分类。

①学生分组进行分类。

②小组交流分类情况。

③组长汇报并说出分类理由。

第一种:三分之一、六分之五、四分之三分成一类,三分之三、四分之八、五分之十一分成另一类;

第二种:三分之一、四分之三、六分之五、三分之三分成一类,四分之八、五分之十一分成另一类;

第三种:三分之一、四分之三、六分之五分成一类,三分之三分成一类、四分之八、五分之十一分成另一类;

④教师用集合圈板书学生的分类。

⑤课件出示数学家的分类,教师点评,肯定学生的第一种分法。

5.精讲点拨真分数和假分数的特征。

①引导学生发现:像这样分子比分母小的分数,在数学上它们有一个名称叫真分数。

②引导学生发现,像这样分子比分母大,分子与分母相等的分数叫假分数。

③屏幕出示概念,学生齐读。

④找生列举出几个真分数和假分数。

6.辨析真分数和假分数的特点。

①小组讨论:观察真分数和假分数它们有什么特征?真分数和假分数与1相比,是大于1还是小于1呢?为什么?

②学生结合实物图分组交流。

③汇报、引导小结。

真分数﹤1≤假分数

设计意图:(让学生按照自己的标准将复习中的分数进行分类,突出了本节课的重点。采取让学生自学的方法,得出什么是真分数,什么是假分数。然后引导观察实物图,比较真分数、假分数的值与1的大小关系,从而掌握真假分数的特征。这一环节的设计充分发挥学生的学习主动性,培养学生的学习意识,提高学生的观察、分析和概括能力。)

三、巩固练习

1.基本练习

下面的分数哪些是真分数,哪些是假分数?

2.分层练习,巩固概念

判断:

(1)假分数都比1大。()

(2)2/55/53/4这三个分数都是真分数。()

(3)分母比分子大的分数是真分数。()

(4)假分数的分子不小于分母。()

3.拓展练习

分母是2、3、4、5的真分数分别有几个?真分数的个数与它的分母有什么关系?分母是6的真分数有几个?分母是10的呢?

让学生列举出所有分数,引导发现真分数的个数总比分母少1。

设计意图:(整个练习的设计由易到难,使不同层次的学生能够得到不同的锻炼,既巩固了新知,又深化了新知,使数学教学变得更有活力、更有价值,从而达到学以致用的目的'。)

四、梳理知识、总结升华:

1.说说你这节课的收获?

2.用一个分数来评价一下你自己在这节课中的表现?

3.老师也用一个分数来评价一下同学们这节课的表现。

老师今天告诉同学们一个成功的秘密,想知道吗?(1/100的天才+99/100的努力=100/100的成功)祝同学们在今后的学习生活中有更大的收获,有更优异的表现!

设计意图:(该环节是梳理新知,对照目标,反馈评价,提高教学效益,培养学生归纳小结的良好习惯。)

五、布置作业

小组合作,以本节课所学知识为主,为下节课设计一组复习题。

设计意图:(让学生小组合作设计复习题,既培养了学生的合作意识和创新意识,又加深了对新知识的理解掌握。)

六、板书设计

真分数和假分数

分子比分母小的分数叫做真分数。(小于1)

分子比分母大或者分子和分母相等的分数叫做假分数。(大于或等于1)

分母:2345678910

真分数个数:123456789

真分数的个数总比分母少1。

设计意图:(将本节课的知识点以科学、合理、简捷的结构呈现出来,突出了本节课的重点,便于学生回顾和梳理所学知识,起到了画龙点睛的作用。)

分数教学设计 篇24

教学目标:

1、使学生理解分数加减法的意义与整数加减法意义相同,掌握同分母分数加减法的计算法则,能正确迅速地计算有关习题。

2、利用所学的知识能够解决实际生活中的问题,培养学生知识的应用能力。

3、通过学生的自主探索和合作交流,培养学生的合作意识,增强学好数学的愿望和信心。

教学重点:

理解分数加、减法的意义,正确计算比较简单的同分母分数加、减法。

教学难点:

正确进行同分母分数加、法计算。

教学过程:

一、复习导入:

(1)7/8的'分数单位是xx。

(2)5/9里面有xx个1/9(3)4/7是4个xx。

(4)3个1/5是xx。

(5)1里面有xx个1/5,即是xx。

二、新课导入

师:同学们,在三年级时,我们学习了简单的分数加减法,你能分别各写一个同分母分数加法和减法的算式吗?下面请大家在草稿上各写一个,并大胆的猜测一下结果是多少。学生写算式。师板书课题《同分母分数加减法》。

三、尝试练习

师:谁愿意给大家介绍一下你都写了什么样的算式?

生汇报自己所写的算式。

师:同学们写的算式到底对不对呢?通过这节课的学习,我相信你们能找到答案的。

四、学习交流、探究新知

1、教学例1:(出示课件)

妈妈给明明过生日,分生日蛋糕。爸爸将这个蛋糕平均分成了8块,爸爸吃了其中3块,妈妈吃了其中1块。问:你能用学过的分数知识说一说吗?(如:爸爸吃了多少蛋糕的几分之几?)

问:你能根据刚才想到的分数知识,提出一个数学问题,并说说怎么列式解决吗?

选择:1/8+3/8表示什么含义?(妈妈和爸爸一共吃了蛋糕的多少。)等于多少呢?

那同学们的猜想到底对不对呢?学生独立思考、探究。

学生汇报(1)从图上看结果。

(2)说理:1/8是1个1/8,3/8是3个1/8,1个1/8加上3个1/8是4个1/8,也就是4/8。强调:4/8可以写成多少?(1/2)

师:联想整数加法的含义,你能说出分数加法的含义吗?(分数加法的意义与整数加法的意义相同,都是求把两个数合并成一个数的运算。)

口算练习:1/5+2/5=5/9+2/9=2/7+4/7=1/3+1/3=问:观察这些算式,对于同分母分数加法,你有什么发现?(同分母分数相加,分母不变,把分子相加)

2、学习同分母分数减法。(1)根据情景图出示问题,比多少

学生独立思考后反馈,注意书写格式的规范。(2)联想整数减法的含义,你能说出分数减法的含义吗?(分数减法的含义与整数减法的含义相同,都是已知两个加数的和与其中的一个加数,求另一个加数的运算。)

口算练习:3/5-1/5=7/9-5/9=6/7-2/7=2/3-1/3=问:观察这些算式,对于同分母分数减法,你有什么发现?(同分母分数相减,分母不变,把分子相减)

五、点拨归纳

师:观察这几道分数加、减法算式有什么特点?

观察这几道分数加、减法算式与计算的结果,又发现什么?

板书:同分母的分数相加减,分母不变,只把分子相加减。

追问:计算结果不是最简分数怎么办?(计算的结果不是最简分数的要约成最简分数。)

六、巩固练习

1、完成课本105页做一做学生独立完成,指名回答

2、完成课本106页做一做

学生开火车回答

3、拓展练习(口答):1/12+xx=7/12xx-1/12=7/12

5/xx+3/xx=8/xx

师:做了这道题,你有什么感受?

引导学生得出:只有分母相同(分数单位相同),才能将分子直接相加减;分母可以为任何非0自然数。

七、全课小结这节课你学到了什么?

八、作业

分数教学设计 篇25

一、授课内容的数学本质和教学目标定位

【授课内容的数学本质】

分数与分式联系紧密,二者是具体与抽象、特殊与一般的关系.分数的有关结论与分式的相关结论具有一致性,即数式通性.可以通过类比分数的概念、性质和运算法则,得出分式的概念、性质和运算法则.由分数引入分式,既体现了数学学科内在的逻辑关系,也是对类比这一数学思想方法和科学研究方法的渗透.从整数到分数是数的扩充,从整式到分式是式的扩充.数学知识源于生活、用于生活.分式与整式都是描述数量关系的代数式,研究分式有助于进一步培养数学建模的意识和数学应用的能力.分式概念是形式定义,分式的分母不能为0(即分式有意义的条件)是对分式概念的深入理解.此外,考察使分式值为0(或为正数、为负数)的条件,本质上是解一类特殊的分式方程(或不等式).明确分式的分母不能为0有助于理解解分式方程可能产生增根的道理.

【教学目标定位和教学重、难点】教学目标:

1.了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件.

2.通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式.

3.体会类比等数学思想或方法,获得代数学习的成功经验.本节课的重点为分式概念、分式有意义的条件;难点是分式有意义及分式的'从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.

二、教材的地位和作用

本节课是分式单元起始课,主要内容是分式的概念、分式有意义的条件和用值为0的条件.

分式表示数量关系.分数和整式的知识是学习本节课的基础,本节课内容也是进一步学习分式性质、运算、解分式方程以及后续学习反比例函数的基础.新教材体系下,学生已经历了从有理数到整式再到一次函数的思维提升;从

本节课开始,学生的思维还要经历从分数到分式再到反比例函数的又一次螺旋式上升.

三、教学诊断分析

班级状况:授课班级41名学生多数有较好的数学素养,求知欲强,乐于面对挑战;也有少数学生学习数学的热情不高、代数运算能力较弱.知识基础:学生对分数和整式的知识比较熟悉,也已初步掌握了列代数式、求代数式的值及解简单的一元方程或不等式的方法.本节课中,预计所有学生对由分数类比到分式的过渡不会感到困难;也能顺利发现当发现字母取某些特殊值时,分式无意义.预计可能出现的主要问题:分析复杂分式时,容易遗漏分母不为0的条件或者将其误解为分母中的字母取值不为0.在将分子等于0的条件转化为方程、将分母不等于0的条件转化为不等式后,也可能不知从何入手求解由方程和不等式组成的条件组.这部分内容是教学重点和难点.

四、教法特点以及预期效果分析

(1)学习兴趣的培养,(2)重本节课的教学设计中,我重点关注以下几个问题:为此,在引入部分,打破学科界限,用学生熟悉的诗文素材构建情境、挖掘点难点的突破,(3)应用意识的渗透,(4)思维训练的层次.

问题,提升学生的学习兴趣,激发他们的探究热情,让学生在逐一解决问题的过程中体会成就感、并通过揭示复杂分式的实际背景的练习提升思维层次.接下来,教师引导学生观察、归纳所列出的分式的特点,形成分式概念,突

A的形式B出重点.形成概念的过程中要警惕负迁移的发生.例如,在给出分式表示后,可能有学生因机械记忆“B中含字母”或者“A中含字母”而导致混乱.这时需要教师及时指出,关键是理解分母含字母.又如,学生已学习了一次函数,可能会从变量和函数的角度观察分式.教师可以肯定学生的数学思维,但不必在此展开强调函数观点,紧扣住本节课类比分数认识分式的主要思路即可.在突破难点的过程中,为达到引发类比、化旧知为新知的教学目的,设计了填写表格这个探究环节.通过填表,学生产生认知冲突、然后自己发现问题、分析问题和解决问题的过程,正是体现学生主体性的学习过程.这个设计也能渗透给学生一种认识新事物、学习新知识的方法——

(1)从具体入手:当分式中字母取定具体的数值时,分式即表示具体的数.(2)发现问题:当字母取某些特殊值时,有可能出现分母等于0的情况.(3)分析、解决问题:类比分数有意义的条件可知,分式要有意义,分母不

能为0.

虽然上述过程对相当一部分学生而言确实简单了些,但其中隐含的“从具体入手”、“正向思维”等研究方法并不平凡.华罗庚先生所讲的“巧从拙中来”,庶几近之.另外,这张表也为学生后续学习反比例函数做了初步铺垫.两道例题的分析讲解需要体现教师的主导性.先帮助学生总结出分式有意义和值为0分别需要满足的条件,再通过板书教给学生严谨有序的思维模式,使学生体会到方程和不等式联立的方法有助于理清思路,同时分散了解题难点(列条件、解条件组分为两个步骤).这是帮助学生从感性思维上升到理性思维的重要一步.另一方面,学生领会和掌握这种解题方法需要一个过程.通过多种变式练习,教师引导学生多实践、多谈思路,做到师生互动、生生互动,发现问题后互相提醒、纠正,达到落实双基的效果.三个拓广探究问题力求让不同层次的学生都能有发挥的空间.

练习1引导学生灵活处理方程和不等式组成的条件组:先解方程,再将方程的解逐一代入不等式检验.

练习2引导学生将视野由等量关系拓展至不等关系,类比分数的值为负数的条件得到这个分式的值为负数的条件.

练习3是学生熟悉的追及问题情境,他们可以很快地给出正确代数式,但一般不会首先考虑取值范围.教师可以从肯定学生的生活经验出发,先让学生列式,体会成就感,再从分式要有意义的角度提醒学生关注字母的取值范围,最后引导提升到字母取值应使实际问题有意义的认识高度,潜移默化中渗透数学建模的意识.

游戏环节再次提升学生的兴趣.教师鼓励学生开阔思路、大胆发言、不断出新,师生共同分享“突发奇想”、掌握知识的喜悦.这个设计旨在培养学生的发散思维和创造力,也符合新课标中鼓励学生在自主探索和合作交流中掌握数学知识的理念.

本节课的分层作业中,必做题目涵盖了本课的重、难点内容;选作题目是开放式的,鼓励学生在探究中创新求变、总结规律,提高分类的意识和穷举的能力.

总之,本节课的教法特点是:通过不断提出和解决问题,激发学生的求知欲,使学生在老师的引导下,通过观察、归纳、总结、应用甚至游戏掌握新知.从实际教学效果看,学生思考积极、发言踊跃,始终保持了一种积极的课堂状态.本节课我对基础薄弱的学生能否顺利形成概念给与了特别的关注,保证绝大多数学生能跟上最低限度的教学要求.在思维拓展的环节中,学生也不乏精彩的发言和创见,应该说实现了课前设计的三维教学目标.

分数教学设计 篇26

教学内容:教材第80页例1、“试一试”和“练一练”,练习十四的第1-4题

教学目标:

1、使学生经历探索异分母分数加、减法计算方法的过程,能正确计算异分母分数的加、减法

2、使学生在联系已有的知识经验探索异分母分数加、减法的过程中,进一步体会数学知识之间的内在联系,感受“转化”思想在解决新的计算问题中的价值,发展数学思考

3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心

教学过程:

一、教学例1

1、出示例1,指名读题,并要求根据题意列式

提问:为什么这样列式?(启发学生解释自己列式的思考过程)指出:这是一道分数加法算式。因为相加两个数的分母不同,所以把它叫做异分母分数的加法。(板书:异分母分数的加法)

2、提出问题:以前我们曾经学过同分母分数的加法,那么异分母分数的加法该怎样计算呢?

指导分小组操作:折一折,涂一涂,分别表示出1/2和1/4,再看看1/2和1/4相加的和是多少。

学生分组操作,教师巡视

交流:您能根据操作的情况说出1/2和1/4的得数是多少吗?

追问:你是怎样看出1/2和1/4的得数是3/4的?把涂色部分看作3/4时,原来的1/2被看作了几分之几?想一想,计算1/2+1/4时,先要做什么?

明确:计算1/2+1/4时,先要把1/2和1/4通分,把它们转化成同分母的分数。

要求:按刚才讨论的方法,完成例题中的填空。

3、交流学生填空、计算的`情况

讨论:把1/2和1/4转化成同分母分数的过程应用了什么知识?(分数的基本性质)概括地说,这个过程就是把这两个分数怎样?(通分)

二、教学“试一试”

1、提出要求,让学生独立进行计算

2、学生完成计算后,组织讨论:

(1)例题学习的是异分母分数的加法,5/6-1/3是计算异分母分数的——(减法)(在已经板书的“异分母分数的加法”后添上“和减法”,完成课题的板书)

(2)计算5/6-1/3时,先要做什么?想一想,通分的目的是什么?5/6-1/3的得数是多少?作为得数3/6和1/2,哪个更简洁?应用什么方法可以使3/6化成1/2?

指出:计算结果如果能约分的,要约成最简分数。

(3)你是怎样计算1-4/9的?你是怎样想到把1转化成9/9的?

指出:计算1减几分之几时,先要根据减数的分母,把1转化成与减数同分母的假分数。

3、提出:你会验算上面的两道题吗?你打算怎样验算?

交流后:让学生各自验算,确定上面两道题的计算结果。

4、引导学生总结异分母分数加、减法的计算方法。

(1)提出要求:计算异分母分数加、减法要注意什么?

(2)在学生充分交流的基础上,明确:计算异分母分数加、减法时,要先通分,再按同分母分数加、减法进行计算;计算结果能约分的要约成最简分数;计算后要自觉进行验算。

三、巩固练习

1、做“练一练”

2、做练习十四的第1-4题

四、全课小结

这节课学习的是什么内容?你能把计算异分母分数加、减法的经验和体会说给其他同学听听吗?

分数教学设计(15篇)

在教学工作者开展教学活动前,通常需要准备好一份教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么你有了解过教学设计吗?下面是小编精心整理的分数教学设计,欢迎阅读与收藏。

分数教学设计 篇27

教学内容:

九年义务教六年制小学数学第十册第108-109页例3。

教学目标:

1、使学生理解并掌握分数化成小数的方法,能应用分数的基本性质、分数与除法的关系把分数化成小数,并能灵活地选择适当的方法把分数化成小数。

2、使学生理解并掌握能化成有限小数的分数的特点,能判断一个分数能不能化成有限小数。

3、通过教学培养学生观察、比较、归纳、概括等能力,同时培养学生的创新意识和创造能力。

教学重点:

理解并掌握分数化小数的方法,并能根据分数的特点选择合理、简便的方法把分数化小数。

教学难点:

分数能不能化成有限小数的特征。

教学理念

分数化成小数的基础知识有两个:

一是分数的基本性质,二是分数与除法之间的关系。

教学时先通过复习帮助学生回忆学过的旧知,然后逐步把学生引入到知识的最近发展区,制造认知上的冲突,使学生处于积极的思维状态,并在知识的分化处进行适当的启发、引导,让学生在讨论、交流的研究中自己找到解决问题的办法,实现自主学习。

教学设计:

教学步骤

教师的活动过程

学生的活动过程

设计意图

一、复习铺垫

1、把25、8、12、33分解质因数。

(板书:25=5×5;8=2×2×2;12=2×2×3;33=3×11)

分数和小数的互化”的教学设计

师:你能把上面的这些数乘以几个质数,使它们的积是10、100、1000、……吗?

师:哪些数可以变成是10、100、1000、……?哪些不可以变成10、100、1000、……?

2、归纳概括

师:你有没有发现其中的规律吗?这个规律是什么?

师:这是什么道理呢?

师:下面的数乘以一个或几个质因数能变成10、100、1000、……吗?

6、15、20、16、50、8、125、48、60

3、你会把下列分数改写成小数吗?

师:分母是10、100、1000、……的'分数化成小数的方法是什么?

1、学生口答。

2、学生研究回答:

生:一个数只有质因数

2、5,就能乘以几个质因数变成10、100、1000、……;含有2和5以外的质因数的数不可以。

3、学生口答。

这个复习的目的是让学生知道什么样的数可以乘以一个数变成10、100、100、……,为下面学习一个分数能不能化成有限小数作好知识上的准备。

二、研究能转化成十进制分数化成小数的方法。

分数教学设计 篇28

学习内容:新人教版义务教育课程标准实验教科书数学五年级下册,第69页“真分数和假分数”第一课时。

学习目标:

1、认识真分数和假分数,理解真分数和假分数的意义,掌握真分数和假分数的特征,能辨别真分数和假分数。

2、经过分类、举例、合作、探究等学习活动或方式。

3、学生能渗透数形结合的数学思想,体验数学与现实生活的密切联系。

学习重点:真分数和假分数的意义和特征。

学习难点:假分数的意义的理解。

学习准备:多媒体课件

学习过程:

一、创设情景:

1、复习:什么叫分数?

2、用分数表示出下面各图的涂色部分。(出示教具)

请学生分别说出每个分数的意义。

[设计意图]我以复习上节课的知识导入,为本节课的学习作铺垫。

二、自主探究,学习新知:

1、提问:比较上面三个分数的分子与分母的大小?这些分数比1 大还是比1小?并说明理由。

2、学生观察后,试着回答。

学生:(第一个圆)平均分成了3 份,这样的3 份也就是一个整圆,表示1 ,而阴影部分只有1 份,所以比l 小。

再请学生分别说出另外两个分数。

3、观察这几个分数,你有什么发现?

[设计意图]你有什么发现?这样一个具有挑战性的问题能引发他们学习的热情,激发学生的探究欲望。

引导1:从分子和分母的大小方面进行比较。

这些分数都是真分数,你能归纳一下怎样的分数是真分数吗?试着写一写。

——分子比分母小的分数叫真分数。

引导2:从这些分数与1的大小方面进行比较。

比较一下这些分数和1的大小关系,你能发现什么?

——真分数都小于1。

4、你能写出三个真分数吗?写出来后读给同桌听一听。

5、出示例2 中图形的课件。

(1)我们以前所提到的分数一般都是真分数,下面我们要来认识另外的一种分数,它叫假分数。

(2)同学们猜一下怎样的分数叫假分数?假分数和1比较大小,会怎样?

6、请学生分别用分数表示每组图形中的阴影部分。

提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?

老师强调:第二组图和第三组图中每个圆都表示“1”。

7、观察这几个分数,你有什么发现?

引导1:比较分子和分母的大小。

怎样的分数叫做假分数?

——分子比分母大或分子和分母相等的分数叫假分数。

引导2:根据假分数的实际意义,结合上面的图形来理解。 比较假分数和1的大小关系,你有什么发现?

——假分数大于或等于1。

8、相信你能写出三个不同的假分数!写出来和同桌读一读。

9、现在我们所了解的分数都包括哪些分数?——分数(真分数和假分数)

我们一起回忆,什么是真分数,真分数的特征是什么?什么是假分数?假分数的特征是什么?

[设计意图]学生通过观察、比较、分类,让学生概括出真分数与假分数的概念,内容安排合理,体现了知识间的内在逻辑.力求让学生自己探索发现、概括理解真分数、假分数的意义,突出学生的主体意识,联系生活实际,培养学生的数感,突出培养学生的'创新精神和实践能力。

三、方法应用:

1、基础练习:

(l)学生先独立完成第1 题,然后订正。

(2)学生再独立完成第2 题,引导学生观察:表示真分数的点和表示假分数的点,分别在直线的哪一段上?你发现了什么?

引导:真分数在直线上的哪个部分?假分数呢?真分数和假分数在直线上的分界线是?1呢?

——真分数小于1,假分数大于1或等于1。

[设计意图]通过数形结合可以让学生很明了的发现真分数、假分数与1的关系。

2、扩展练习:见课件

[设计意图]在练习的过程中发展了学生的数学思维能力,也巩固了所学的知识。

四、梳理知识、总结升华:

1、说说你这节课的收获?

2、用一个分数来评价一下你自己在这节课中的表现?

3、老师也用一个分数来评价一下同学们这节课的表现。

老师今天告诉同学们一个成功的秘密,想知道吗?( 1/100的天才+99/100 的努力= 100/100的成功)祝同学们在今后的学习生活中有更大的收获,有更优异的表现!

[设计意图]结合生活实际,让学生体验数学与生活的联系。

五、布置作业:

小组合作,以本节课所学知识为主,为下节课设计一组复习题。

[设计意图]课外作业的设计,给学生提供了一个充分动手、动口、动脑的平台,培养学生的创新能力。

六、板书设计:

真分数和假分数

真分数:分子<分母、真分数<1

假分数:分子≥分母、假分数≥1

[设计意图]板书简洁明了,突出本课的重难点。

分数教学设计 篇29

设计说明

本节课复习的是百分数知识在实际生活中的应用,常见的百分率是小学数学中的重要基础之一。

本节课在教学设计上有如下特点:

1.创设情境,在具体的情境中复习百分数的意义。

在数学教学中,适时地给学生营造一个生活情境,不仅可以吸引学生的注意力,而且有利于学生发现问题,探索新知。复习中,通过创设情境,激发学生的学习兴趣,让学生结合具体情境,体会百分数与生活的密切联系,进一步理解百分数的意义,并在列表对比中,明确百分数与分数的区别和联系。

2.巧用图示,有序地复习百分数、分数、小数的互化方法。

思维导图在教学中备受关注,因为它可以帮助学生理清思考过程,把知识要点清晰地呈现在学生眼前。引导学生有序地复习百分数、分数、小数的互化方法时,结合学生的回答,把三者之间互化的方法用图示表示出来,使学生直观地了解并轻松掌握三者之间的互化方法以及相互间的可逆关系。

3.重视迁移,培养学生类推的能力。

根据百分数与分数的密切关系,百分数问题在解题思路和方法上与分数基本相同这一特点,联系分数知识复习、理解百分数问题中的数量关系,使学生能够正确解答百分数问题。这样设计,可以帮助学生沟通分数、百分数之间的内在联系。

课前准备

教师准备 PPT课件

教学过程

⊙情境激趣

(出示课件)一件绒衣的成分如下:

羊绒:14.8%

超细羊毛:73.5%

天丝:11.7%

读出这件绒衣成分的相关数据,并说出这些数据的意义。

设计意图:通过具体情境,调动学生复习的积极性,激发学生的复习热情,为高效复习作铺垫。

⊙复习百分数的相关知识

1.复习百分数的意义。

(1)什么叫百分数?它的意义是什么?(板书:百分数)

(像14.8%、73.5%、11.7%…这样的数叫做百分数。百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比)

(2)百分数和分数在意义上有什么不同?

(结合学生的回答,用课件展示,列表对比)

2.复习百分数、分数、小数的互化方法。

(1)百分数、分数、小数的互化方法是什么?

①小数与分数的互化方法。(结合学生的回答,课件展示)

②小数与百分数的互化方法。(结合学生的回答,课件展示)

③百分数与分数的互化方法。(结合学生的回答,课件展示)

(2)巩固练习。

①把下面各数化成百分数。

0.625= 0.2= 0.6= 3=

②把下面的分数化成百分数。

= = =

③把下面的百分数化成小数或整数。

42%= 108%= 5.4%= 200%=

3.复习百分数应用题。

(1)复习常见的百分率问题。

(课件出示教材116页12题)

取小麦500 g,烘干后,还有428 g。计算出这种小麦的烘干率和含水率。

烘干率=×100%

含水率=×100%

(解决问题,然后复习其他常见的百分率)

(2)复习百分数乘、除法应用题。

[课件出示教材113页3题第(3)、(4)、(5)小题]

①一件衬衣原价125元,现在降价20%。现在售价是多少元?[125×(1-20%)=100(元)]

②一件衬衣降价20%后,售价为100元。这件衬衣原价是多少元?[100÷(1-20%)=125(元)]

③一件衬衣售价为100元,一条长裤的价钱是这件衬衣的150%,这条长裤的价钱又是一双皮鞋的。这双皮鞋售价是多少元?

长裤:100×150%=150(元)

皮鞋:150÷=180(元)

(3)小结。

解百分数乘、除法应用题的关键是找准单位“1”,解题思路与分数乘、除法应用题的解题思路一样:单位“1”已知,求比较量用乘法计算;单位“1”未知,求单位“1”用除法计算。

设计意图:在系统复习百分数的相关知识的基础上,重点复习应用百分数知识解决问题的思路和解题方法,使学生利用百分数乘、除法解决问题的能力得到进一步提高。

⊙巩固练习

完成教材114页5题。

⊙课堂总结

通过本节课的复习,你都进一步理解了哪些知识?

⊙布置作业

教材116页13题。

板书设计

百分数(一)

1.百分数的意义

2.百分数、分数、小数的互化

3.百分数应用题

分数教学设计 篇30

教学目标

1.结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

2.能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

3.使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

教学重点;:理解整数乘以分数的意义,并能证确计算。

教学难点:运用所学的知识解决分数乘法的实际问题

教学过程

一、复习导入:

1.2/3×2表示的意思是( )

2.计算分数乘整数时,用分数的( )和整数相乘的积作( ),分 母( ).

3.请学生计算下列分数乘法运算题。

1/8×3 .3/10×4 .7/24×12

二、情境创设

教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的1/2 ;笑笑的苹果是小红的`1/3 ,淘气和笑笑各有几个苹果?

1.教师让学生思考这个题,并对学生进行提问。

2.引导学生分析,无论是淘气还是笑笑的苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的苹果数6”看做一个整体。淘气的苹果是6个的1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2

3.教师提问学生说一说自己是怎样计算的?

4.学生自己动手填完课本例题上的方格。

5.怎样表示笑笑的苹果数?

6.教师板书( 笑笑:6×1/3=2)

7.总结分数乘法的意义就是求一个数的几分之几是多少。

8 怎么计算呢?6×1/2 =6×1/2 =3 6×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

三、巩固练习:

1.计算8×3 /10 4× 3/10 24×3/8

2.做课本5页试一试1题,36的1/4 和1/6 分别是多少?

注意让学生体验求一个整数的几分之几是多少的数学意义。

3 . 试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算

四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)

【板书设计】

分数乘法(二)

6× 1/2 = =6×1/2 =3 6×1/3==6×1/3=2

整数乘以分数的意义:就是求整数的几分之几是多少?

整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。

教学反思:本节课有以下优点:1.针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。2.抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。

分数教学设计 篇31

一、教学目标

(一)知识与技能

在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。

(二)过程与方法

结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。

(三)情感态度和价值观

在数学学习过程中培养分析能力、知识的迁移能力、推理能力。

二、教学重难点

教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。

教学难点:对分数除以整数的算理的理解。

三、教学准备

多媒体课件,折纸。

四、教学过程

(一)引入操作情境,尝试计算

教学教材第30页例1。

教师:把一张纸的平均分成2份,每份是这张纸的几分之几?

教师:你会列式吗?(启发学生列出算式。)

教师:你会计算吗?请你试一试,然后在组内交流一下你的想法。

预设结果:

1.把平均分成2份,就是把4个平均分成2份,1份就是2个,就是;用算式表示是:。

2.把平均分成2份,每份就是的,就是;用算式表示是:。

【设计意图】该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的`方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。

(二)借助直观,实现沟通

教师:你能通过折纸的方法来验证你的结果吗?(指导学生动手操作:拿出事先准备好的一张纸,先折出这张纸的涂上阴影,然后再把阴影部分平均分成2份。)

预设:学生可能会做出如下两种图示:

教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。

结合图(1),引导学生说理:把平均分成2份,就是把4个平均分成2份,1份就是2个,就是。

结合图(2),引导学生说理:把平均分成2份,每份就是的,就是。

教师:同学们说得很好!把一个数平均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。

【设计意图】分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。

(三)体验冲突,发现一般规律

教师:把一张纸的平均分成3份,每份是这张纸的几分之几呢?

请你折一折、画一画,自己看图写出计算结果。想一想,你会选择哪一种折法呢?

教师:你会用刚才的方法说明计算结果吗?

预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把平均分成3份,每份就是的,即。

教师引导学生折一折、画一画,或者根据教材第30页图示进行填空,写出计算结果。

教师:通过刚才的折纸操作和上面的算式,你发现了什么规律?

预设结果:

1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。

2.把一个数平均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。

教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。

【设计意图】通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数平均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。

(四)应用规律,尝试练习

教师:请你独立思考并完成教材第30页“做一做”。

【设计意图】对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数平均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。

(五)巩固练习,熟练算法

1.教师:请你完成教材第34页练习七第1、2题。

先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。

2.教师:请你完成教材第34页练习七第4题。

左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。

3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。

引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。

(六)全课总结,交流收获

教师:今天我们共同学习了什么知识?你有什么收获?

分数教学设计 篇32

教材分析

百分数在日常生活中运用非常广泛,它源于分数,又有别于一般分数。教材在安排教学百分数意义时,从实例出发,创设情境,把学生带入生活中去学习百分数。通过比较得出百分数的概念,即“表示一个数是另一个数的百分之几的数叫做百分数”。要特别注意的是百分数只表示两个数相比的一种关系,不表示一个数值。百分数的后面不能带单位表示一个具体的量。这就是百分数与分数之间的区别,所以百分数也叫做百分比或百分率。教学中,要注意孕含百分数应用题的基本思想,通过让学生分析一些百分数表示谁与谁比,为进一步学习打好基础。并抓住一些有说服力的数据和统计资料,对学生进行爱祖国、爱社会主义的思想教育。

学情分析

学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的.含义尤为重要。

教学目标

1、知识与技能:使学生初步认识百分数,感知和理解百分数的意义;能正确读写百分数;理解百分数与分数在意义上的区别;培养学生的分析、比较、概括等思维能力。

2、过程与方法:组织与引导学生经历学习过程,通过讨论交流,体验百分数的意义及在生活中的广泛应用,培养学生的问题意识及合作、交流能力和自学能力。

3、情感、态度与价值观:感受数学在现实生活中的价值,体会百分数与日常生活的密切联系及在实践中的广泛应用。激发数学学习的乐趣,培养学生热爱生活,热爱数学的情感。

教学重点和难点

教学重点:让学生充分体验,理解百分数的意义。

教学难点:让学生理解百分数和分数在意义上的区别和联系。

分数教学设计 篇33

教学内容:

苏教国标版数学六年级(上册)第98—99页例1和“试一试”“练一练”,第100页练习十九第1—3题。

教学目标:

1、让学生体验百分数的产生过程,初步理解百分数的意义,会正确地读、写百分数。

2、经历百分数意义的探索过程,体会百分数与分数的练习与区别,积累数学活动经验。

3、使学生能用百分数的知识描述、处理生活中的有关信息,培养学生的数感。

教学重难点:

理解百分数的意义,会正确读、写百分数。

教学准备:

课前学生根据导学案预习,搜集百分数,ppt课件

教学过程:

一、创设情境,引出课题。

1、设境

师:(出示课件)请看“新闻播报”,谁来读。指名读。

(1).高邮市在邮文化节期间,与外商正式签约项目数量占投资项目总数的73.3%。

(2).三垛镇今年的工业产值是去年的215%。

2、引题

师:同学们认识这些画横线的数吗?(认识)是什么数?(百分数)

怎么读?指名读。

师:百分数在我们的生活中有着广泛的应用。这节课,我们就一起来研究“百分数的意义和写法”,板书课题“百分数的.意义和写法”。

二、置身情境,探究意义。

教学例1。(出示课件)

1、探究

(1)、请注意观察,如果只看投中数,你们认为谁投篮最准?为什么?

(2)、这种方法公平吗?(不公平)为什么呢?指名说。那么,怎样找出投篮最准的人呢?小组交流,指名汇报。

(3)、根据学生回答在课件上出示:先求每人投中数占投球总数的__分之__。各是多少?根据学生回答板书:

师:你们能直接看出谁投篮最准吗?(不能)有办法进行比较吗?(通分)让学生在练习本上做一做。

那么,64/100表示的是的__________占_____________的____________。

65/100表示___________________________________________________。

60/100表示___________________________________________________。

这三个数都表示投中数占投球总数的____________。

(4)、求投中数占投球总数的百分之几,而不求几分之几,这样有什么好处?

(5)、你们课前看到的百分数是像92/100这样写的吗?可以怎样写?试一试。

(6)、(出示课件)百分数通常不写成分数的形式,而是在原来的分子后面加上百分号来表示(%)。

(7)、指导写法:写百分数时,例86%,按从左往右的顺序先写分子86,再写%。在写百分号时,也要注意按从左往右的顺序,先写左上角的小圆,接着写斜杠,最后写右下角的小圆。这样一个百分数就写成了。

让学生练写这三个百分数。

2、交流

(1)、师:刚才,我们借助了百分数选中了投篮最准的人;看来百分数真是个好帮手。课前老师让同学们搜集生活中的百分数。请同学说一说自己搜集的百分数。指名说。小组内交流。

(2)、师:我们再来说说新闻播报中百分数的实际意义。指名说。

3、概括:

(1)刚才,同学们说出了一些具体百分数表示的意义。那么,究竟什么样的数叫做百分数呢?

生交流汇报,出示意义,齐读。

(2)小组讨论:

1、百分数为什么又可以叫做百分比或百分率?

2、百分数不仅可以表示两个数量之间的关系,还可以表示什么?

3、为什么百分数不能用来表示某个具体的数量?

小组交流、指名汇报。

4、对比

完成练习十九第3题。

指名回答。

小组讨论:a运用百分数时要注意哪些?

b百分数和分数有什么区别和联系?

小组交流、汇报。

三、组织练习,巩固提高

(一)、读读写写

1.读出下面的百分数(导学案第5题)

指名读,齐读。

2.写出下面各数(导学案第6题,为了方便,可在加一二题,如百分之零点八)

你写了几个百分数,同学们能用刚学的百分数说说他完成题数的情况,完成了___%,还剩____%没完成,希望你能达到100%。

现在请写好的同学举手。好,同学们都完成了作业,可以说“这次作业我们班完成了____%。

(二)会读、会写,更要会用,请看下题。

3.选择合适的百分数填空。

50%3.9%120%100%

(1)武宁小学学生每月所用零花钱占学校买图书钱数的25%,开展节约活动后,明显减少,现在只占()。

(2)小汽车的速度是卡车速度的()。

(3)只要同学们互相帮助,共同进步,这个单元考试的及格率一定能达到()

(三)读出下面每一句话,你能体会句中百分数要表达的意思吗?你又能想到什么呢?

一本书已看了40%。

自行车厂上半年完成了全年生产计划的60%。

(四)轻松一刻。生活中有许多成语也和数学有关,请看——————妙解成语。

分数教学设计 篇34

教学内容:

义务教育课程标准实验教科书《数学》五年级下册P60—64。

教学目标:

1.结合具体情境,在学生原有分数知识基础上,了解分数产生的背景,理解分数的意义,理解单位“1”不仅是一个物体,也可以是许多物体;知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,进而理解分数的意义和分数单位的意义,并学会用分数描述生活中的事物,体会“整体”与“部分”之间的关系。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

4.在轻松和谐的氛围中学习数学,感受生活中处处有分数,并培养抽象、概括能力。教学重难点:明确分数和分数单位的意义,理解单位“1”的含义。教学准备:多媒体课件、练习纸、一支水彩笔

教学过程:

一、回忆旧知

1。师:把6个苹果平均分给2个小朋友,每人分得几个?若老师只有1个苹果平均分给2个小朋友,每人分得多少?

2。师:你们认识它吗?请大声地读出它?(二分之一)

它是什么数?

3。师:你已经知道了分数的哪些知识?

(分子,分母,分数线)

二、探究新知

(一)了解分数的产生

1。师:对于分数同学们知道的真不少,那你们知道分数是怎么来的吗?

2。师:我给你们准备了几幅图,大家看(课件出示60页主题图1)。

3。师:古人把绳子按相同的长度打上结用来测量物体的长度,两个结中间的一段就表示长度的一个计量单位,(指着图)如图上这样的一段就用1表示,这里有1、2、3三段就用(3)表示,剩下的不足一段,还能用1表示吗?(不能)

4。师:(课件出示60页主题图2)再来看,把桌上的东西平均分给两个同学,每个同学分到的东西还能用整数表示吗?(不能)

5。师:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

6。师:你知道第一个发明分数的.人,他是怎么写这个分数的吗?

7。师:(课件出示62页主题图)3000多年前,古埃及就有了分数记号,人们借助椭圆表示分子为1的分数;20xx多年前,我们中国用算筹表示分数,像这样上面摆3根,下面摆5根,就表示3/5;后来,印度用阿拉伯数字表示分数,这种方法和我国的类似,只是这两种方法都没有分数线,直至公元12世纪,也就是大约800年前,阿拉伯人发明了分数线,这种方法一直沿用至今。

8。师:那分数到底表示什么呢?接下去我们就重点研究分数的意义。(板书:和意义)

(二)探索研究,理解分数的意义

1。师:你能举例说明1/4的含义吗?(学生答)

2。师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3。动手操作,创作分数。

(1)操作。

师:现在你能利用手中的学具,通过折一折、画一画、分一分等方法,创造出几个不同的分数吗?(学生动手操作,教师巡视。)

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

4。认识单位“1”。

师:利用手中的学具,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

把4根香蕉、8块面包平均分,我们又可以称之为把一些物体平均分。

师小结:

不管是一个正方形、一个圆形、一条线段、、4根香蕉、8个面包都可以看作一个整体。(板书:一个整体)一个整体可以用自然数来表示,我们通常把它叫做什么?(学生回答:单位“1”,老师板书),这个1要用双引号,因为它不单单表示

一个物体也可以表示一些物体。

师:你能举例说说可以把什么看作单位“1”?

5。概括分数的意义

师:通过刚才的举例和学习,谁可以更准确地说说怎样才用分数表示呢?(两个学生讲后老师小结)把单位“1”平均分成若干份,(老师板书)这样的一份或几份可以用分数表示。

(三)认识分数单位

1、62页做一做

2、师:自然数的单位是什么?7里面有几个1?26呢?

分数也有自己的单位,什么是分数单位呢?请同学们自学课本62页。

3。找生汇报:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数,这是分数的意义。而表示其中一份的数叫做分数单位。如2/3的分数单位是1/3。

3、练习:读出下面的分数,并说出每一个分数的分数单位。(课件)

三、巩固新知

1。完成课本练习十一部分练习。

2。体会“整体”与“部分”之间的关系

(结合课件演示)

师:这1支粉笔,是全部粉笔的1/5,你能猜出一共有几支吗?(5支)师:为什么是5支呢?

师:现在有2支粉笔,也是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?你是怎么知道的?

师:现在有3支粉笔,还是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?怎么那么快就猜出来了?

师:为什么都是,有的是1支,有的是2支,还有的却是3支呢?

师小结:虽然都是把全部的粉笔平均分成了5份,但是因为单位“1”的数量不同,所以每一份的数量也就不同。因此说一个分数时,一定要强调是哪一个整体的几分之几,即:说清楚是“谁的”几分之几。

四、全课总结

师:谁能说一说我们班的每一个同学占全班同学的几分之几?通过这节课的学习,你有哪些收获呢?

板书设计:

分数的产生和意义

一个物体

一个整体单位“1”

一些物体

把单位“1”平均分成若干份,这样的一份或几份可以用分数表示。表示这样一份的数叫分数单位。

分数教学设计 篇35

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:

明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:

对单位“1”的理解。

教具和学具:

卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二( )七上八下( )百里挑一( )十拿九稳( )

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的'所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

2、67的分数单位是( ),有( )个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

今天这节课我们学习了?你有哪些收获?

小学数学分数的意义教学设计5

教学内容:

义务教育五年制小学数学第八册分数的意义。

义务教育六年制小学数学第十册分数的意义。

教学目标:

1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。

2.使学生理解分数的意义和单位“1”的含义及分子、分母的含义。

3.培养学生形象思维,抽象概括能力和初步的逻辑思维能力。

4.使学生受到初步的辨证唯物主义观念的启蒙教育。

教学重点与难点:

让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。

教具准备:

电脑软件一套。

学具准备:

每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。

教学过程:

课前组织教学

今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)

一、分数的产生

在日常生活中,人们在进行测量和计算的时候,有时不能得到整数得结果,例如,用一个计量单位“米”测量黑板的长度(屏幕显示)量了3米后,剩下的一段不够1米了,还能用整数表示吗?又如,老师只有一个苹果要平均分给两个小朋友,每个小朋友分得多少个/还能用整数表示吗?这就需要用新的数,谁知道用什么数来表示?

板书:分数

对于分数同学们并不陌生,在三年级的时候我们已经初步认识过谁能说几个分数(指名说老师板书),谁还记得分数各部分的名称是什么?

到底什么样的数叫分数呢?分子、分母各表示什么意思呢?这节课我们就来进一步学习分数的意义,板书:的意义

二、分数的意义

1。把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。

2.根据刚才分的过程,把这些物体归两类,为什么这样分?

根据学生的回答板书:一个物体、一个整体(解释整体的含义)。

说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”

上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)

3.请同学们看屏幕,仔细观察回答问题

(1)把一块饼平均分成两份,每份是它的()。

(2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。

(3)把一条线段平均分成5份,每份是它的()其余的是它的()。

(4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。

4.请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。

5.电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。

6.根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。

7.根据分数的意义指名说出刚才写的这些分数表示的意义。

8.教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。

9.做一做电脑显示。

三、课堂练习:

1.让同学们闯三关,电脑显示三关题。

2.三关闯过了,别忘了还要帮小猴分东西呢,苹果、熊猫已分过,还有西瓜和蛋糕,看小狗分西瓜(电脑显示)学生回答。提问:如果小狗把西瓜平均分成8块,小猴吃了3块,吃了西瓜的几分之几?小兔吃了2块,吃了几分之几?还剩下西瓜的几分之几?

分蛋糕,蛋糕上有四朵小花、12支蜡烛,平均分成4份,每份都能用来表示,但是这个所表示的数量一样多吗?为什么?

四、课堂小结:

这节课你学会了什么?

五、板书设计:

分数的意义

一个物体

一个计量单位单位“1” 2/3 4/15 5/11

一个整体

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

大家都在看