比的意义教案

短文网

2025-12-07教案

短文网整理的比的意义教案(精选31篇),快来看看吧,希望对您有所帮助。

比的意义教案 篇1

教学准备:

教学目标:

1、复习、本单元的基本概念,在练习中进一步理解分数的意义。

2、通过输理、比较,建立相关概念的关系。

3、在实践应用中体验数学的趣味性。

基本教学过程:

一、一、基本练习

1、分数的意义。

练习第一、二题。

学生填写后,说说思考方法。巩固对分数意义的理解。其中第二题的2/3,可以让学生说说还可以用什么分数表示。

2、分数的大小比较:

第3题。

先让学生独立填一填,再说一说比较分数大小时是怎样思考的?注意,本题是让学生用分数表示没有涂色的部分。

3、假分数、带分数的互化:

第5题。

说一说假分数、带分数互化的方法:

4、填符号:

第6题。

说一说你是怎么想的?

二、运用知识模型:

1、第7题。

按要求在圈内填上适当的分数。

2、第4题。

先引导学生解决第1问题,学生根据题意收集有关信息,再根据分数的意义或分数与除法的关系解决问题。

然后引导学生说说“还能用分数表示什么?”如站着的人数占这群学生数的几分之几,男生的.人数占这群学生数的几分之几等。第3个问题,主要用分数进行交流,感受分数与生活的联系,教师组织学生展开充分交流。

3、第8题

教师可以引导学生观察年历卡片,可以让学生根据年历自己数一数,再得出结论,加深对分数的理解。在完成教材的前两个问题后,教师要充分利用年历卡片这个学习材料引导学生用分数进行交流。

三、实践活动:

课前可以组织学生简要设计一张数学报,自己想一想各栏目所占幅约占这张报的几分之几,再在课堂上进行交流,培养学生的数感,体会分数的应用。

四、:

教学反思:

比的意义教案 篇2

一、教学目标:

1、使学生认识百分数。

2、了解百分数的意义。

3、会写百分数。

4、区分百分数与分数的不同。

5、让学生在各种活动中,培养比较、分析、分辨的能力。

二、教学重难点:

理解百分数的意义

三、教学过程:

(一)、引出百分数,教学百分数的读法。

1、百分数的引出

师:近年来,我们学生的近视率引起了大家的高度重视,根据去年年底的统计,我市学生的近视情况如下(媒体出示)

师:这里出现了三个新的数,它们分别读作:百分之十八,百分之四十九,百分之六十四点二,你还在什么地方见过上面这样的数呢?

2、揭题

生展示他们找到的百分数。

师有选择的板书并小结:看来生活中这样的数确实挺多的。数学上把这样的数,叫百分数。那么什么是百分数的意义?百分数怎么写?还有哪些跟百分数有关的知识呢?这节课,我们就一起来学习一下。

(二)、凸显百分数的优点,教学写法

1、比较中凸显百分数的优点

师:大家都在关心我们学生的近视情况,作为老师当然更要关心我们学校同学的近视情况。下面是老师调查的二、三年级的近视情况(出示表格)

年级 总人数 近视人数 近视人数占总人数的 近视率

二年级 20 2

三年级 25 3

师:二年级的近视人数占总人数的多少呢?三年级呢?哪个年级的近视情况好些呢?你是怎么比较的?可以先在草稿本上写写算算。

学生反馈:可能会出现通分成分母是50的,也可能是100的。

师挑选通分成分母是100的提问:为什么把分母都通分成100呢?(便于比较)

2、教学写法

师:二年级近视人数占总人数的10/100,又可以写成二年级近视率是10%。(媒体出示再板书)我们写百分数的时候在分子10的后面加上百分号。看看我们写百分数的时候要注意什么呢?(百分号的小圆圈写小点)那么三年级近视人数占总人数的12/100,可以怎样写呢?生写在草稿本上,指名一生板演。

(三)、百分数意义、

1、指导着说百分数的意义

师:三年级的近视率12%指的是哪两个数之间的关系?

师:也就是说三年级的近视率12%表示?(三年级近视人数是总人数的12/100)(板书)

师:那么二年级的近视率10%又表示什么?(二年级近视人数是总人数的10/100)(板书)

2、生自主说

师:那么谁能说说我市小学生的近视率18%,中学生的近视率49%,高中生的近视率64。2%分别表示什么意思呢?自己轻轻地说一说。

生反馈说,师选择小学生近视率表示意义板书。

师:看到这些信息,你想说什么呢?

3、小组内说

师:通过这些百分数的呈现,我们大家简洁明了的看到了学生近视情况的严重性,其实在生活中百分数的应用非常广泛,同学们刚才也找了很多,你能把你找到的百分数所表示的意义在小组内说说吗?

生反馈,师挑选组的代表说,并板书。

4、小结百分数意义

师:说了那么多百分数的意义,那么到底百分数表示什么呢?

师小结:刚才同学们都已经说的都非常接近了。百分数就表示一个数是另一个数的百分之几。(板书意义)

(四)、辨别百分数与分数区别

1、辨别

师:我们来看看下面的百分数是表示谁是谁的关系呢?

出示:

鸡的只数是鸭的75%

一根绳子的长度是一根铁丝的51/100。(51/100可以改写成51%吗?)

出示:

一堆煤重87/100吨。(看看下面这个分数可以改写成百分数吗?为什么?)

2、师小结:分数可以表示一个具体的数,也可以表示两个数之间的关系,而百分数只能表示两个数之间的关系,后面不能加单位。

3、加深理解进行判断

(1)一段绳子长29/100;

(2)一段绳子长29%米;

(3)分母是100的分数都是百分数;

(4)百分数的分母都是100

(五)、巩固练习

师:简单回顾一下,我们这节课学习了哪些知识?你会写百分数了吗?

1、写出下面的百分数

百分之一 百分之二十八 百分之零点五

2、读出下面百分数,想想下面的信息给了你哪些启示?

(1)一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国森林覆盖率不到14%,却是出口一次性筷子的大国。

(2)地球总储水量中只有3%是淡水,而这些淡水中可以直接饮用的只有0。5%。

(3)今天我们班同学的出勤率是100%。

四、教学结束:

课堂总结

师:这节课你有哪些收获呢?其实爱迪生说过天才=99%的汗水+1%的灵感

同学们对于学习也要付出努力,不怕辛苦。

比的意义教案 篇3

【教学设计】

第八章第4节气体的微观意义

一、教材分析

用微观解释宏观,离不开统计规律。本节教材有意识地渗透统计观点,提出什么是统计规律。教学时可以举出学生比较熟悉的生活中的事例,帮助学生理解统计规律的意义,并理解压强以及气体实验定律的微观解释。通过分析气体分子运动的特点,去学习压强的产生原因。

二、教学目标

(一)、知识与技能

(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。

(2)能用气体分子动理论解释三个气体实验定律。

(二)、过程与方法

通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。

(三)、情感态度价值观

通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。

三、教学重点、难点

1.用气体分子动理论来解释气体实验定律是本节课的重点。

2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。

四、学情分析

根据学生的情况教师可以先让学生课前完成“抛币实验”然后进行全班交流家与评价,让学生发表自己的看法,从中领略到自然与社会的奇妙与和谐,增加对科学的求知欲和好奇心。

五、教学方法

讨论、谈话、练习、多媒体辅助

六、课前准备

1.学生的学习准备:预习气体的微观意义

2.教师的教学准备:多媒体制作,课前预习学案,准备实验器材。

七、课时安排:

1课时

八、教学过程

(一)预习检查、总结疑惑

检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。

设问:气体的状态变化规律从微观方面如何解释

(三)合作探究、精讲点拨

1、统计规律

2、气体分子运动的特点

设问:气体分子运动的特点有哪些

(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。

(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。

(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。

(4)大量气体分子的.速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。

今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。

3、气体压强微观解释

首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:

温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率

体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内

n越小。

然后再设问:气体压强大小反映了气体分子运动的哪些特征呢

这应从气体对容器器壁压强产生的机制来分析。

先让学生看用小球模拟气体分子运动撞击器壁产生压强的机制:

显示出如图1所示的图形:

向同学介绍:器材,实验

得出结论:由此可见气体对容器壁的压强是大量分子对器壁连续不断地碰撞所产生的。

进一步分析:v越大则平均冲击力就越大,而单位时间内单位面积上碰撞的次数既与分子密度n有关,又与分子的平均速率有关,分子密度n越大,v也越大,则碰撞次数就越多,因此从气体分子动理论的观点看,气体压强的大小由分子的平均速率v和分子密度n共同决定,n越大,v也越大,则压强就越大。

4用气体分子动理论解释实验三定律

(1)教师引导、示范,以解释玻意耳定律为例教会学生用气体分子动理论解释实验定律的基本思维方法和简易符号表述形式。

范例:用气体分子动理论解释玻意耳定律。

一定质量()的理想气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大几倍时,则单位体积内的分子数(n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比。这就是玻意耳定律。

书面符号简易表述方式:

小结:基本思维方法(详细文字表述格式)是:依据描述气体状态的宏观物理量(、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所述的宏观物理量(如一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出有关的微观量(如n)的变化,再依据推出的有关微观量(如v和n)的变与不变的情况推出宏观因变量(如p)的变化情况,结论是否与实验定律的结论相吻合。若吻合则实验定律得到了微观解释。

(2)让学生体验上述思维方法:每个人都独立地用书面详细文字叙述和用符号简易表述的方法来对查理定律进行微观解释,然后由平时物理成绩较好的学生口述,与下面正确答案核对。

书面或口头叙述为:一定质量()的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(n)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小。这与查理定律的结论一致。

用符号简易表示为:

(3)让学生再次练习,用气体分子动理论解释盖吕萨克定律。再用更短的时间让学生练习详细表述和符号表示,然后让物理成绩为中等的或较差的学生口述自己的练习,与下面标准答案核对。

一定质量()的理想气体的总分子数(N)是一定的,要保持压强(p)不变,当温度(T)升高时,全体分子运动的平均速率v会增加,那么单位体积内的分子数(n)一定要减小(否则压强不可能不变),因此气体体积(V)一定增大;反之当温度降低时,同理可推出气体体积一定减小。这与盖吕萨克定律的结论是一致的。

用符号简易表示为:

四、当堂检测

九、板书设计

气体的微观意义

一、统计规律

二、气体分子运动的特点

三、气体压强微观解释

四、用气体分子动理论解释实验三定律

十、教学反思

本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

本节课时间45分钟,其中情景导入、展示目标、检查预习5分钟,讲解统计规律10分钟,气体分子运动的特点5分钟,气体压强微观解释10分钟,学生分组实验5分钟左右,反思总结当堂检测5分钟左右,其余环节5分钟,能够完成教学内容。在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!

比的意义教案 篇4

教学目标:

使学生进一步理解百分数的意义,体会百分数与分数与分数、比的联系和区别,积累数学活动经验,进一步发展数感。

教学重点:

使学生更加准确把握用百分数表示数量的关系,进一步体会百分数与生活的联系。

教学过程:

一、基本练习

1.什么叫百分数?

2.说出下面百分数的`实际意义

地球上陆地面积大约占29%,海洋面积大约占71%。

完成书上练习十九第4题的填空。

3.完成练习十九第5题:启发学生利用比所表示的份数关系进行思考,沟通比与百分数之间的关系。

4.完成练习十九第6题。

(1)说一说题中5%和60%的具体意义。

(2)独立完成书中的填空。

(3)交流自己的想法。

二、综合练习

1.完成练习十九第7题。

(1)出示题目,说说题目中百分数的实际意义。题目中的百分数有什么特点?

(2)讨论:

在这几种食物中,蛋白质含量最高的是哪一种?最低的呢?脂肪含量最高和最低的呢?

100克黄豆中大约含蛋白质和脂肪各是多少克?其他食物呢?

2.完成练习十九第8题。

(1)出示示意图,理解图意。

(2)讨论:图中的65%表示什么?还有多少没有完成?如果把已经完成的和没有完成的相加,结果是多少?

3.完成练习十九第9题。

(1)独自看图填空。

(2)汇报交流,并使学生意识到:百分号前面的数可以小于或等于100,也可以大于100。

4.讨论练习十九第10题和11题。

(1)第10题,先说出男生占40%是实际意义。

(2)第12题,让学生说一说什么情况下两个学校的女生人数相同,什么情况下不同。

三、全课。

比的意义教案 篇5

教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

教学重点:

理解单位“1”和分数的意义。

教学难点:

理解单位“1”和分数的意义。

教学准备:

教具准备:自制教学课件

学具准备:小棒、练习纸

设计意图:

《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

教学过程:

一、谈话导入

1、通过师生之间的谈话引出分数。

2、关于分数,你已经知道了什么?

3、提出要求:

师:从刚才的表现可以看出xx班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?

二、分数的产生

1、板书课题

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义

1.理解一个整体

(1)、找出各种材料的1/4。

师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

(2)、汇报交流

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

突出整体:

师:这里的1/4是如何得到的呢?

生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

师:这是他的想法,还有不同想法吗?

生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

进行知识迁移:

生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

不同点:材料不同。

跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?

师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

师:同学们真是了不起!已经能很快地找到单位1了。

3.理解分子、分母的含义

(1)、找其他分数

师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?

那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

(2)、汇报交流

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

师:观察这些分数,你发现了什么?

生:分母都是4

师:为什么分母都是4呢?

生:因为都是平均分成了4份

师:把什么平均分成4份?——单位“1”。

师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

师:分母其实就是表示——平均分的份数

师:同学们的观察力可不一般呐。还有什么发现吗?

生:分子各不相同,都差1

师:分母为什么会不一样呢?

生:取的份数不同

师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3

师:分子其实就是表示——取的份数

师:同学们不仅观察能力强,分析、概括能力也很出色。

4.揭示分数的意义。

(1)逐步理解分数的意义

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

现在老师再写一个分数5/9,你能说说它的含义吗?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的.5/9。

师:说的真好。如果不是平均分成9份,板书5/(),那么它的含义是什么呢?

生:把单位“1”平均分成很多份,取这样的5份,就是5/()。

师:很多份可以是几份?——2份,3份……

师:我们可以用一个词来表示(板书:若干份)

师:如果取的份数也不是5份了,板书()/(),那么这个分数的含义是什么呢??

生:把单位“1”平均分成若干份,取这样的若干份,就是()/()

师:可以取这样的一份,也可以取这样的……几份。

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

1/4,2/4,3/4,4/4的分数单位就是——1/4

师:5/9的分数单位?

生:1/9

师:5/99

生:1/99

师:()/1000

生:1/1000

师:老师都还没说分子呢,你怎么就知道分数单位了?

生:分数单位就是表示一份的数

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

四、练习巩固。

师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

1.填一填

(1)说说3/5的意义

(2)同意吗?

(3)3/8的分数单位是多少?有几个这样的分数单位。

2、点击生活

哪位同学愿意来读一读,并说说其中分数的意义。

(1)、我校五年级学生约占全校学生的1/6

(2)、长江约3/5的水体受到不同程度的污染

师:还有几分之几的水体没受污染呢?

师:受污染水体多还是没受污染的水体多?——怎么想的?

师:有什么想说的?——要保护环境

师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

(3)、姚明的头部高度约占他身高的1/8

师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

五、总结全课、质疑问难

师:这节课我们学习了什么?你有什么收获?还有什么问题?

比的意义教案 篇6

一、教学过程

(一)引入新课

1.同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

2.揭示课题:小数的意义与读写 (板书:小数的意义与读写)

(二)展示目标(见教学目标1)

二、自主学习

(一)出示自学提纲

自学提纲(自学教材P50页例1,并完成自学提纲问题,将不会的问题做标注)

1.把1米平均分成10份,每份是多少米?3份呢?

2.分母是10的分数可以写成几位小数?

3.把1米平均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?

4.思考什么是分数?什么是小数?

(二)学生自学(学生对照自学提纲,自学教材P49页例1,并完成自学提纲问题,将不会的问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1.解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题并解决。

(2)教师引导学生解决学生还遗留的问题。

2.交流小数的意义。

(1)这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。

(2)抽象。概括小数的意义。

把1米看成一个整体,如把一个整体平均分成10份。100份。1000份……这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几。百分之几。千分之几这样的分数表示。

(3)什么叫小数?引导学生讨论。

(4)师生共同概括:

分母是10.100.1000……的分数可以写成小数,像这样用来表示十分之几。百分之几。千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

3.交流小数的计数单位。

四、达标训练

1.填空。

(1)0.1是( )分之一,0.7里有( )个0.1。

(2)10个0.1是( ),10个0.01是( )。

(3) 写成小数是( ), 写成小数是( )。

2.课本做一做。

3.判断:

(1)0.40里面有4个0.01。( )

(2)35克=0.35千克 ( )

4.把小数改写成分数。

0.9 0.09 0.0359

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

五、堂清检测

(一)出示堂清检测题。

1.填空题。

(1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。

(2)小数点右边第二位是( ),计数单位是( )。

(3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。

(4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。

(5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。

2.读出下面各数。

0.78 5.7 0.307 8.005 6600.506 88.188

3.写出下面各数。

零点一二 七点七零七 二十点零零零九

四千点六五 零点九一八 五十三点三五三

(二)堂清反馈:

布置作业

教材P55页 1.2.3题。

板书设计

小数的意义与读写

十分之一---------------- 0.1

百分之一----------------0.01

千分之一----------------0.001

分母是10.100.1000……的分数可以写成小数,

像这样用来表示十分之几。百分之几。千分之几……的

数叫做小数。

比的意义教案 篇7

教学内容:教科书第36页例1、“试一试”“练一练”,练习六第1-5题。

教学目标:

1.使同学初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。

2.使同学在说明所表示的意义的过程中,进一步培养分析、综合与笼统、概括的能力,感受分数与生活的联系,增强数学学习的信心。

教学重点:正确理解分数的意义和单位“1”的含义。

教学难点:引导同学自主概括出分数的意义。

教学对策:通过创设互相协作、积极探索的学习情境,组织同学动手操作、动脑考虑,自主探索,教师适时点拨,引导和启迪同学考虑。

教学准备:教学光盘

教学过程:

一、揭题。

二、新授。

1.教学例1

出示例1中的一组图

请大家根据每幅图的意思,用分数表示每个图中的涂色局部。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

同学汇报所填写的分数,你认为这些图中分别是把什么平均分的?

一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

左起第四个图形与前三个图形有什么不同?

一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

(1)在这几个图形中,分别把什么看成单位“1”的?

(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

(3)从这些例子看,怎样的数叫作分数?

拿12根小棒自已发明一个分数

说说你是怎么做的?

假如老师要表示6根小棒可以用什么分数表示?

2. 教学“试一试”

同学在小组内说说上面每个分数的分数单位,以和各有多少个这样的分数单位。

反馈交流时,教师请同学同桌两人合作回答,一人说分数,另一人说分数单位。

3.完成“练一练”

各图中的`涂色局部怎样用分数表示?请大家在书上填空。说说是怎样想的。

每个分数的分数单位是多少?各有几个这样的分数单位?

三、巩固

1.做练习六的第1题

每个分数的分母与分数单位有什么联系?

2.做练习六的第2题

先让同学在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。

同样是三分之二,为什么涂色桃子的个数不同?

3.做练习六的第3题

照样子说说题中每个分数的意义。

在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1

4. 做练习六的第4题

先让同学看图指一指直线上从几到几的这一段可以表示单位“1”。再让同学中直线上的点表示各分数。然后让同学说说各是怎样想的。

5. 做练习六的第5题

同学独立完成后,说说所填写的两个分数有什么不同。

这两个分数都是把12枝铅笔看作单位“1”平均分后得到的;第一个分数要把单位1平均分成12份,第二个分数要把单位1平均分成2份。

四、总结。这节课学习了哪些内容?

教学反思:分数意义的归纳鼓励同学用自身的语言说出,切实做到了淡化概念,注重实质。使同学建构的过程得以凸显,内化的知识得到外显。特别是“若干”一词,扣得很有价值,让同学做到了真正理解,使同学在新情景中实现迁移,举一反三。

授后小记

早在三年级的时候同学已经初步认识了分数的意义,本课主要让同学弄清“单位‘1’”和分数单位的意义。

1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以看作单位“1”。

2、将单位“1”平均分成若干份,表示这样一份的数叫做分数单位。

同学的练习中,“‘一节课的时间是2/3小时’的分数意义”一题中把什么看作单位“1“个别同学仍有一定困难。

比的意义教案 篇8

一、教学内容:

教材第60-62 页的内容。

二、教学目标:

1 .使学生进一步理解并掌握分数的意义。

2 .知道一个物体、一个计量单位、一个整体都可以用单位“1 ”表示。

3 .引导学生学会抽象概括,培养初步的逻辑思维能力。

三、重点难点:

1 .理解和掌握分数的意义。

2 .理解单位“1 ”。

3 .突破一个整体的教学。

四、学具准备

正方形纸片

五、教学过程

一、创设情境。

1 .测量。

师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)

2.计算。

教师让学生把一个苹果平均分给两个同学,每人分得饼的个数怎样来表示? 它结果不能用整数来表示,这样就产生了分数。

3 .讲述。

在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的.数——分数来表示,这样就产生了新的数—分数。今天,我们就来学习“分数的意义”。

二、教学实施

1、出示课件

说说每个图下面的分数是:

(1)把什么看做一个整体?

(2)平均分成了几份?

(3)表示这样的几份?

2、小组共同合作交流

1.出示4个苹果,6只熊猫能否平均分成若干份,要平均分,把什么看作一个整体?

2.结合小组汇报出示课件,展示结果

3、概括总结。

老师:刚才同学们在表示 的过程中,有什么发现吗?

学生甲:都是把物体平均分成几 份,表示这样的一份。

学生乙:我发现有的是把1 个图形平均分,有的是把4 个苹果、6 只熊猫平均分,还有的是把1 米平均分。

老师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1 来表示,通常把它叫做单位“1”。

(3)举例。

老师:对于这个整体,你还能想出其他的例子吗?

学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。

3、(1) 概括意义。

老师:通过上面的学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1 ”可以很小,也可以很大??刚才同学们举了很多分数的例子,那么到底什么是分数,你能尝试用文字描述一下吗? 先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?

学生试说,教师板书。

板书:把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。 强调必须是平均分。

揭示课题:分数的意义。

4、巩固练习

课本62页做一做,填在书上,学生汇报

5.学习分数单位。

(1)提出问题:“我们学过的整数和小数,它们都有计数单位,分数有没有计数单位呢?”让学生自学课本,找出分数单位的定义,并能举出例子。

(2)说一说课本62页做一做各分数的分数单位,它们分别有几个这样的分数单位。

(3)分数单位与哪个数有关?

让学生观察分数单位,从中发现“分母是几,分数单位就是几分之一”。

三、巩固练习

出示课件

四、、总结

1、想一想,这堂课上你学到了什么?

2、如果把这堂课上学习的知识看做单位“1”,请你估一估,你学到了这些知识的几分之几?

板书设计

分数的意义

一个物体

一个整体单位“1” 平均分 若干份(一份)

一些物体分数单位

比的意义教案 篇9

一、说教材

1、教材地位:加法是数学中最基本的运算之一。在前三年半学生已经学会加法的计算方法。本节课是在学生已经学过加法知识的基础上,明确概括出加法的意义,学生学会整数加法的意义,为以后学习小数、分数加法的意义打下基础。加法运算定律的学习,不仅有助于加深理解加法的一般计算方法,还能使一些计算简便。同时也为以后学习用字母表示数打下初步基础。

2、教学目标:

知识和技能方面:理解加法的意义。理解并掌握加法交换律。

能力方面:培养学生观察、比较、归纳、概括等初步的逻辑思维能力。培养学生应用所学知识解决实际问题的能力。

思想品德方面:通过概括加法的意义,初步渗透辩证唯物主义思想。通过变式练习,培养学生良好的学习习惯。

发展性方面:通过日常生活中的事例,将数学知识应用于生活中,用数学的思想、方法分析生活中遇到的问题。

3、教学重点:理解加法的意义,掌握加法交换律及其应用。

难点:加法交换律的应用。

二、说教法

本节课设计的基本思路是:观察——比较——讨论——概括——应用,教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与学习的全过程。根据本节课教学目标和教材特点,我采用以下几种教法:

1、情境教学法。我们知道创设问题情境,能使学生的学习兴趣得到激发,使学生融入到数学情境中去,积极动脑思考,使学生认识到数学来源于生活,又服务于生活。如:通过教师左右手分别出示铅笔,导入问题,求一共有多少支铅笔?用什么方法解答,从而“引出什么叫加法”,激起同学们的学习兴趣。为后面学习加法的意义做好认知准备。

2、直观引导观察法。理解加法的意义是本课的重点。将例题以线段图的形式出现,唤起学生的感性认识。从线段图上学生直接感受到求花的朵数,北京到济南的路程,就是要把两个数合并成一个数,所以要用加法计算。让学生用自己的语言表述为什么用加法算,既讲清楚两例题目的算理,又为加法意义的概括奠定良好的认知基础。

3、小组讨论交流法。掌握加法交换律及应用是本课重点也是难点。学习加法交换律,用四组加法算式为观察点,让学生个人探索,小组交流讨论,通过计算、观察、比较、讨论等一系列实践活动,从几组算式间的联系去发现并总结规律,逐步概括出加法交换律。最后抽象出用字母表示的定律。它是学生自己探索得到的,有实感才能有认识,认识深刻才能理解透彻,理解透彻才能熟练地应用。这样的设计基本体现了学生学习的主体性、积极性、创造性。

4、分层练习法。学生在理解了加法交换律后,就要应用它,这是本课的重点也是难点。《数学课程标准》指出:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。根据教学目标,练习分为基本练习、巩固练习、深练习等,这样既有助于学生掌握知识,又利于满足不同层次学生的需求。贯彻全面发展与因材施教相结合的教学原则?/SPAN>

5、教具:小黑板两块,铅笔13支。

三、说学法

“教会学生如何学习”,是当前教改研究热点。学生掌握了学习方法,就等于拿到了打开知识宝库的金钥匙。在教学过程中,应重视学习方法的指导,主要学法有:

1、个人自学法。加法各部分名称比较容易懂,通过学生自己看书,明确加法的各部分名称,从而培养学生的学习能力。

2、观察比较法。概括加法的意义是学习的重点,通过线段图引导学生观察、比较,从感性认识上升到理性认识,使学生对加法的意义有深刻的.认知。

3、交流讨论法。学生个人探索,同桌交流,小组讨论。通过计算、观察、比较、讨论等活动,去发现并总结出加法交换律。发挥学生的主体作用,让学生敢想、敢说、敢问,培养学生初步的归纳推理能力。

4、练习法。练习是为了使学生更好掌握新知,深化理解。学生掌握了加法交换律,应用加法交换律是本课的难点。练习上采用基本练习、巩固练习、深化练习等。通过练习加深学生对加法交换律的理解,初步培养学生演绎推理能力。

四、说教学程序

㈠创设情境,导入新课。

师双手分别出示铅笔,问:求一共多少支?学生列式解答后,提出问题:为什么用加法算?引出课题:加法的意义。(板书)

(意图:使学生初步感知加法的意义。)

㈡直观观察,抽象概括。

1、学习加法的意义。

⑴出示两个线段图,列式解答。

⑵根据列式,说说为什么要用加法算?把自己用加法算的理由告诉大家。

教师引导学生概括出加法的意义。(板书)把两个数合并成一个数的运算,叫做加法。找出关键字词。

(意图:通过两个线段图列式,并引导观察比较,概括出加法的意义。)

⑶应用加法的意义。

用小黑板出示练习十一第1题。先指名说,再同桌说。

(意图:加深巩固什么是加法?什么样的运算是加法。)

2、学生自学加法各部分的名称。

⑴看书P47自学后,师问生答师板书(加数、和)。

⑵观察比较讨论。

观察比较:加法算式中的和与其中一个加数比较,你发现了什么?

讨论:是不是任何一个加法算式中的和都比其中一个加数大呢?

引出:任何自然数相加的和都比一个加数大。

一个数加上0,还得原数。举例:0+7=7,7+0=7。

0和0相加得0。0+0=0。

㈢探索加法交换律。

1、(出示四组算式)计算各式,并根据结果探索加法交换律。

学生计算后,观察每组算式的结果,发现了什么?比较它们的相同点和不同点。引导得出结论:(板书)两个数相加,交换加数的位置,它们的和不变。学生举例。

2、用字母表示加法交换律。

a+b=b+a(板书),说说用字母表示加法交换律有什么好处?

㈣巩固练习,深化理解。

1、基本练习,体现知识的目的性。

(小黑板出示)填空:

⑴把两个数成一个数的运算。叫做加法。

⑵相加的两个数叫做,加得的数叫做。

⑶两个数相加,加数的位置。它们的不变。

⑷用字母表示加法交换律:。

2、巩固练习,体现知识的层次性。

用小黑板出示P48做一做的第1题。

3、深化练习,体现知识的灵活性。

用小黑板出示练习十一第3题。

㈤课堂小结。

今天学习了什么知识?你懂得了些什么?

㈥布置作业。

P48做一做的第2题,练习十一的第2、4题。

板书设计:

加法的意义和加法交换律

例⑴25+20=45(朵)⑴20 +30 =30+20

加数 加数和⑵125+243=243+125

⑵137+357=494(千米)⑶14 +80 =80+14

把两个数合并成一个数⑷23 +505=505+23

的运算,叫做加法 。a+b=b+a

两个数相加,交换加数的位置,它们的和不变。

这叫做加法交换律

比的意义教案 篇10

1、成正比例的量

教学内容:成正比例的量

教学目标:

1.使学生理解正比例的意义,会正确判断成正比例的量。

2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

教学重点:正比例的意义。

教学难点:正确判断两个量是否成正比例的关系。

教学过程:

一揭示课题

1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的此导下,学生会举出一些简单的例子,如:

(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二探索新知

1.教学例1

(1)出示例题情境图。

问:你看到了什么?

生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25㎝2。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

①在这一基础上,教师明确说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

②学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素:

第一,两种相关联的量;

第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三,两个量的比值一定。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

(4)想一想:

师:生活中还有哪些成正比例的量?

学生举例说明。如:

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

2.教学例2。

(1)出示表格(见书)

(2)依据下表中的数据描点。(见书)

(3)从图中你发现了什么?

这些点都在同一条直线上。

(4)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

生:175㎝3。

②体积是225㎝3的水,杯里水面高度是多少?

生:9㎝。

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

生:水的体积是350㎝3,相对应的点一定在这条直线上。

(5)你还能提出什么问题?有什么体会?

通过交流使学生了解成正比例量的图像特往。

3.做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

比值表示每小时行驶多少千米。

(2)表中的路程和时间成正比例吗?为什么?

成正比例。理由:

①路程随着时间的变化而变化;

②时间增加,路程也增加,时间减少,路程也随着减少;

③种程和时间的比值(速度)一定。

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

4.课堂小结

说一说成正比例关系的量的'变化特征。

三巩固练习

完成课文练习七第1~5题。

2、成反比例的量

教学内容:成反比例的量

教学目标:

1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。

2.根据反比例的意义,正确判断两种量是否成反比例。

教学重点:反比例的意义。

教学难点:正确判断两种量是否成反比例。

教学过程:

一导入新课

1.让学生说一说成正比例的两种量的变化规律。

回答要点:

(1)两种相关联的量;

(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;

(3)两个量的比值一定。

2.举例说明。

如:每袋大米质量相同,大米的袋数与总质量成正比例。

理由:

(1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;

(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数

减少,大米的总质量也相应减少;

(3)总质量与袋数的比值一定。

所以,大米的袋数与总质量成正比例。

板书:

3.揭示课题。

今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?

板书课题:成反比例的量[内容结束]

比的意义教案 篇11

教学目标

1、情感态度与价值观:增强学生民族自豪感和培养学生学习的积极性。

2、知识与技能:使学生通过观察、测量了解小数是如何产生的。使学生理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

3、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

教学重点理解小数的意义

教学难点掌握小数与分数的关系,深刻理解小数的意义。

教法自主探索、合作学习

教学准备多媒体课件、卡片、米尺

教学课时1课时

一、旧知复习

二、生活中的小数

1、小数的产生

2、请同学们利用学具盒中的米尺分组测量课桌、书本、黑板的长与宽。

小结:从日常生活和测量中,往往得不到整数的结果,除了可以用分数的形式表示以外,还可以用另外一种形式小数来表示。分数与小数之间有什么联系呢?带着这个问题我们共同来研究小数的意义。

三、探究新知

探索一:一位小数的意义

把1米平均分成10份,每一份在尺子上是多少?写成分数是多少米?写成小数呢?

小结:分母是10的'分数,可以写成一位小数

板书:一位小数表示十分之几

探索二:二位小数的意义

还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学

小结:分母是100的分数,可以写成两位小数。

板书:二位小数表示百分之几

探索三:三位小数的意义

如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?

小结:分母是1000的分数,可以写成三位小数

板书:三位小数表示千分之几

总结:

①分母是10、100、1000 …的分数,可以用小数表示。这就是小数的意义。

②把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。

探索四:小数的计数单位及进率

小数的计数单位是十分之一、百分之一、千分之一。用小数写作0.1、0.01、0.001

那么相邻两个单位间的进率是多少?

板书:每相邻两个计数单位之间的进率是10

四、练习达标

1、把下面各图中涂色的部分用分数和小数表示分数和小数表示出来。(课本P33页“做一做”)

2、判断题

(1)0.1、0.01、0.001…是小数的计数单位。

(2)十分之一、百分之一、千分之一…是小数的计数单位

(3)仿照整数的写法,写在整数个位的后面,用圆点隔开,用来表示十分之一、百分之一、千分之一…的数,叫做小数。

3。填空

0.8里面有个0.1;0.008里面有8个;

0.32里面有32个;6个是0.6;

0.5表示把整体;平均分成份,取其中的份。

0.24表示把整体;平均分成份,取其中的份。

板书设计

《小数的意义》

一位小数表示十分之几

二位小数表示百分之几

三位小数表示千分之几

每相邻两个计数单位之间的进率是10

课后反思

比的意义教案 篇12

分数的意义

1、进一步认识分数,发展数感,体会数学与生活的密切联系

2、进一步体会“整体”与“部分”的关系

3、理解有关单位“1”的数学内涵,进而揭示分数的意义,认识分数单位伯含义。 认识分数的意义,体会整体与部分的关系

观察分析,比较法,小组交流学习法

主题图的放大图,学生自备20根小棒

一课时

一、创设情境

(1)展示主题图

(2)让学生说出从图中获取的主要信息

(3)揭示课题

二、师生共同探究新知

(一)再创情境,探案例1

1、中秋期间,我们的传统习俗是合家分享一块大月饼,喻示合家和美,团圆之意。小华一家也不例外。(示图)

他告诉我们什么?我分得这个月饼的1/4

谁能告诉大家,这里的1/4是把()看作一个整体呢??

2、小红家买的是盒装月饼,每盒8个,她说:我分得这盒月饼的1/4。谁知道小红所说的1/4是把什么看作一个整体呢?

分析一下他俩得到的月饼,你们发现了什么现象?有什么问题吗? 小组交流,再全班反馈

(二):教学单位“1”、分数意义和分数单位

1、关于单位“1”

学生小组交流“议一议”

师让学生小组“议一议”的3个情境,全班反馈(师对应板书)

归纳:一个物体或是由许多物体组成一个整体,通常把它叫做单位“1” 观察板书内容,体会这里单位1的量,及其所表示量的对应的分数的实际意义。(可以同桌交流)

2、关于分数的意义

理解了什么是单位1的量,我们进一步认识分数的意义

学生活动:(小组合作)拿出一些小棒,把它看作单位1

使它能平均分成5份,6份??

情况反馈

归纳分数的意义:让学生用自己的话先说,再对照书上的概念进行巩固。同时板书:分数

说一说,议一议,上面分数的实际意义

课堂活动:说一说生活中的分数;画一画(书上的第2题)

3、关于分数单位的'认识

把单位“1”平均分成若干份,表示这样一份的数,又叫做这个分数的单位。 让学和举例说一说:

再议一议:分数单位与分数什么有关系?(分母)

三、全课总结

1、反思与质疑

本课我们研究了哪些方面的新内容,说说自己的理解。再针对主题图的情境试述其中各分数的实际意义。

2、还有什么疑惑的,或者有什么不同的想法?

师生共同梳理

单位“1”——分数——分数单位

四、布置作业

课本第25~26页1、2、3题

分数

单位“1”:??

分数的意义:??

分数单位:??

单位“1”——分数——分数单位

比的意义教案 篇13

活动目的:

1、让学生了解到假期的宝贵,并充分利用假期做一些有意义的事。

2、让学生为自己设计一个寒假计划,使学生能按照计划在寒假时间里有更多的收获。

活动准备:

1、回忆以往假期自己做过的有意义的事。

2、想想自己最想实现的愿望。

3、为自己设计一下这次寒假生活的计划表。

活动过程:

1、上课前,老师想把一段话送到孩子们的眼中和心中。

(幻灯播放一些小学生丰富的假期生活片断)

假期,是每个学生都喜欢的。 假期,是每个学生最快乐的时光。 所以说,假期是人生最宝贵的。

2、同学们你们已经是二年级的小学生了,经历几个假期了,下面,就让我们回忆一下以往假期我们都是怎么度过的。

3、出示以前假期学生活动的照片,学生假期制作的一些美术作品、工艺品、书法作品、比赛获奖证书等。

4、以往的假期生活是丰富多彩的,又是让人回味无穷的,现在就让我们一起来分享一下李高琦同学的愉快假期吧!

(1)李高琦同学讲述她的`假期生活故事。

《美丽的南奥》

(我的假期生活是愉快的,也是高兴的。昨天,我和妈妈一起去了美丽的南澳旅游。在路上,我看见了一座座高山,一辆辆豪华的汽车,一棵棵高大挺秀的树木……我的心里不禁有种喜悦。)

(2)王政皓同学讲自己的假期故事:

《我的假期生活》

(这个寒假真令人依依不舍。看,它是一个多么丰富多彩的假期啊

我的寒假生活之一:学习。假期生活中,学习是必不可少的,这样可以让你巩固以前的知识还可以提前预习一下以后将要学的部分……)

5、同学们的假期生活是这样快乐而有意义。让人羡慕,令人向往。其他同学的假期中也一定会有许多值得回忆的事情。这也更让我们感受到了假期生活的宝贵。那么怎么样能使我们的假期生活更有意义呢?哪位同学愿意谈谈自己的想法。

6.对了,同学们都有自己的愿望吧,有的愿望并不是很难实现的,谁愿意说说自己的一些小愿望。

(我想学会滑冰:我想学会自己制作电脑动画;我想让自己变得更强壮——)

7、孩子们有这么多愿望,那么为什么不去努力实现呢,现在正有一个好时机,临近寒假了,又到了我们最轻松的时间了。我们何不利用这个好时机去努力实现自己的愿望呢!现在就请同学们自己为自己设计一个寒假目标怎么样?

8、学生自己设计寒假目标及计划。

汇报自己设计的假期安排。

9、学生评选最佳设计奖。

10、修改、整理自己的设计方案。

要想把这个假期很好的利用起来,不是很难。关健看你能不能按照自己的计划去做。同学们今天为自己设计了如此完美的一个假期计划。希望大家真正能按照计划去执行。如果你做到了,相信你一定能度过一个愉快而有意义的寒假。在这里,我也提前祝全体同学寒假愉快!

本次班会到此结束了。

比的意义教案 篇14

教学目标

1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。

2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。

3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。

教学重难点

教学重点:理解分数的意义

教学难点:认识单位“1”和概括分数的意义

教学工具

ppt

教学过程

一、温故知新:

师:三年级上学期我们已初步学习了分数,谁能说出几个分数哪?

生:

师:谁能说出分数各部分的名称:生说师板书。

师总结引入新课:从以上看来同学们对分数已经有了初步的认识,但是关于分数的知识还有很多,这节课我们一起进一步研究分数。

二、探究新知

(一)分数的产生

1、出示米尺:同学们这是什么?(生:米尺)知道干什么用的吗?(生:测量用的)好我们一起测量我们的黑板(或人的身高),老师量时要认真观察,看会遇到什么问题,想一想应如何解决?(生:最后测量时不够一米了)

师:(出示情景图)其实古人也发现类似的情况:他们用打了结的绳子来测量石头的长度,每两个结之间表示一个单位长度。发现这块石头长3段多一点。这时旁边记录人提出疑问:剩下的不足一段怎么记哪?

2、(出示一个西红柿图:)同学们,把1个西红柿平均分给2个同学,每人能分得一个完整的西红柿吗?

3、教师小结:生活中在进行测量、分物或计算时,往往不能正好得到整数的结果,要想准确表示结果,这时常用分数来表示,这样分数就产生了。(出示并板书:分数的产生)

T:小结:我们通过把一个物体、一个计量单位、或是一些物体等都可以平均分成4份,取其中一份得

3、教师总结:课件出示图,像这样一个物体、一个计量单位、或是一些物体等都可以看作一个整体,像这样的一个个整体都可以用自然数1来表示,这个1在数学上通常叫做单位“1”。

板书:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”(齐读)

谁能说说自然数1与单位“1”有什么不同吗?生:………

我们把这个整体平均分成若干分,就是把单位“1”平均分成若干分,所以分数的意义是:

把单位“1”平均分成若干分,表示其中一份或几份的数就叫分数,齐读一遍

(同学们表现得非常棒,同学们看看看生活中的单位“1”。出示图)

四、巩固训练大闯关(看谁反应快、回答得对):

(出示练习题见课件)

1、填空:

2、学生独立完成书上练习十一1、2、3题。

五、总结:通过学习你学到了什么,有哪些收获?

通过这节课的学习,我们知道分数是怎样产生的,什么叫分数也就是分数的意义,还知道分数单位及单位“1”的概念,整节课同学们表现的都非常太棒,就请大家为自己的精彩表现鼓鼓掌!关于分数还有很多很多的知识呢!今后我们进一步进行探究。这节课就上到这儿,同学们再见!

比的意义教案 篇15

课题:生命的意义

奥斯特洛夫斯基

第一课时

【教学目标】

1.了解有关小说的文体常识。

2.了解作家及作品的相关内容。

3.能正确认读、运用生字词。

4.有感情地朗读课文,初步感知课文内容,理清文章结构层次。

5.体会文中环境描写的作用。

【重点难点】

熟读背诵"人最宝贵的是生命......"。

体会环境描写的作用

【教学过程】

一、新课导入

二、检查预习

1.介绍小说的文体常识(小说定义、三要素及作用)

2.作者奥斯特洛夫斯基的简介以及《钢铁是怎样炼成的》故事梗概。

3.文中重点字词的字音字义。

三、整体感知课文内容。

自由朗读课文,感知课文内容。

四、自助探究,小组合作

1、了解课文内容,标出小节数,标出生字词,思考:哪段说明了生命的意义?

2.想一想:作者是在什么地方想到生命的意义的?周围的环境怎么样?说明此地散发出什么气息?说说环境描写渲染了哪两种不同的气氛?在通往墓地的路上,作者经过了什么地方?环境如何?这又渲染了什么气氛?这两次的景物描写分别还有何作用?

学生探究后展示结果,教师补充:

渲染了肃杀气氛。

.前者同时也透露出保尔沉郁、悲愤的情绪;后者又隐喻着烈士们的牺牲换来了新生活的景象。作者独具的`匠心,显示了烈士生命的意义,也为下文引出保尔凭吊烈士时对生命价值的深刻思考做了有力的铺垫。

五、拓展延伸

写一处景物描写的片段,要求能够渲染出某种气氛。

六、总结归纳

七、作业积累:

1、背诵第七段

2、阅读《钢铁是怎样炼成的》

第二课时

【教学目标】

再次有感情的朗读全文,研析课文第七段。

纵观全书全文把握人物的性格特点。

【重点难点】

熟读背诵"人最宝贵的是生命......"。

体会生命的意义和价值

【教学过程】

一、导入新课

提问背诵,导入新课。

二、合作探究出示问题,小组合作,班级交流

1、属于人物哪种描写方法?(心理描写)

2.文中哪些词语能说明生命的宝贵?(最宝贵只有一次仅有)

3.“人,最宝贵的东西是生命”抒发了保尔怎样的感情?(抒发了革命者对生命、生活的热爱和珍视)

4."这仅有的一次生命......呢?"是一个什么句式?作者是如何自答这个问题的?设问学生找出读出所找之句,教师板书:不为......,不因......

5.到底怎样做生命才有意义呢?(可以引文中的文字)

把生命精力毫无保留地献给了世界最壮丽的事业。

6、如何理解“人,应当赶快生活?”

齐读这一节

四、拓展延伸

.文中提到“不为虚度年华而悔恨”,“不因碌碌无为而羞耻”。我们在生活中接触的都是一些平平凡凡的人,或工人,或农民,或做小生意的人,他们在为生计忙碌,他们似乎也没有保尔一样的崇高理想,你们说他们是“虚度年华”和“碌碌无为”的吗?

(学生思考,然后教师提问,没有固定答案,言之成理即可。)

五、总结归纳

生命很短暂。我们应该让有限的生命发挥出无限的价值。不辜负生命,让生命绚烂光彩。

六.作业:

1.阅读:《钢铁是怎样炼成的》

2.你准备怎样渡过你的一生呢?试着写一份“我对未来的设想”的计划。

比的意义教案 篇16

教学内容

第1课时平均数的意义及求平均数的方法

教学活动是师生积极参与交往互动,共同发展的过程。教材用象形统计图呈现了每名同学收集到的矿泉水瓶的数量,通过“移多补少”的方式使学生知道求平均数的过程。整个探究过程,师生从具体直观的实物矿泉水瓶过渡到抽象的数,学生的思维仍处于由具体形象思维过渡到抽象逻辑思维的转折时期,仍需要依据实际经验或借助具体形象,通过下定义的方式获得概念。针对这一特点,在教学例1时,从以下三方面入手:

1.让学生根据已有的生活经验、实践操作以及多媒体动态演示,把概念的关键性和认知结构相联系,使学生掌握概念。

2.针对四年级学生好奇心强,有求知欲望,具有一定的探索意识的特点,在教学时,学生将通过数学活动了解数学与生活的密切联系,学会综合运用所学知识和方法解决问题。

3.教师以组织者、合作者的身份引导学生从不同角度发现生活中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立解决某些简单的实际问题。

课前准备

教师准备多媒体课件

学生准备小棒

教学过程

⊙讲故事,激趣导入

师:同学们,你们喜欢听故事吗?老师给大家讲一个唐僧师徒四人在西天取经途中发生的故事。(课件出示)有一天,孙悟空摘了一些又大又红的桃,猪八戒抢着分了起来,分给孙悟空2个,师傅3个,沙和尚3个,自己4个。同学们,你对猪八戒的分法有什么看法呢?(这样分不公平)

(1)提问:那么怎样分才公平呢?(把这些桃合起来再平均分,每人3个)

(2)指名汇报分法。

生1:4比2多2,从4中拿出1给2,则每份都是3。

生2:把这些桃放在一起,再重新平均分。

师:大家看,现在就公平了,平均每人分得3个桃。这个“3”在数学上就叫2、3、3、4这一组数的平均数。在生活中经常要用到平均数,今天我们就来学会平均数。(板书课题)

设计意图:从故事情境中引入学会内容,不仅激起了学生学会平均数的兴趣,而且为一节课的.顺利进行创设了良好的开头。

⊙自主探究,理解新知

1.教学例1。(课件出示主题图)

(1)提问:他们4人收集的矿泉水瓶一样多吗?怎样理解“平均每人收集了多少个?”(强调:假设每人收集的矿泉水瓶同样多)

(2)根据学生的回答,老师提问:请同学们想一想,怎样才能使他们4人收集的矿泉水瓶一样多?

学生操作:拿出小棒,一根小棒代替一个矿泉水瓶,先按每个人收集的个数摆放,再动脑想、动手操作,使4人收集的矿泉水瓶同样多。

(3)学生汇报自己的想法。

师:为什么要把小明的2个移给小亮,小红的一个移给小兰呢?(因为小明收集得最多,把多的移出来补给少的)

(4)老师边演示边小结。

我们通过把多的矿泉水瓶移出来补给少的,使得每个人收集的矿泉水瓶同样多,这种方法就是“移多补少法”。用这种方法可以求出他们4人平均每人收集的矿泉水瓶的个数。

2.提问:除了这种方法,你还有其他的方法吗?(先把4个数合起来,再平均分)

小结:“合”就是求出4人一共收集了多少个矿泉水瓶,“分”就是把收集的矿泉水瓶的总数再平均分成4份,求每份是多少。(先求出矿泉水瓶的总个数,再除以4)

设计意图:学生通过移一移、画一画、算一算,从感官上理解平均数的由来,理解平均数的意义。

3.总结算法。

(1)提问:同学们能根据这个想法写出算式吗?

(师生共同完成板书)

(14+12+11+15)÷4

=52÷4

=13

(2)分析算式:我们把“14+12+11+15”的和称为总数量,“4”称为总份数,“13”就是平均数,也就是平均每人收集的个数。通过刚才的计算我们可以得出一个关系式:总数量÷总份数=平均数。

小结:我们可以利用“移多补少”的方式来求平均数,还可以用“先合后分”的方式来求平均数,在掌握基本方法的同时,还要学会根据题目中数据的特点灵活选择算法,怎样算简便就怎样算。

设计意图:给学生营造一种自主探究的学会氛围,让学生在探究中发现问题

比的意义教案 篇17

教学目标

1.使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识。

2.进一步弄清概念间的联系与区别。

教学重点

使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识。

教学难点

弄清概念间的联系和区别。

教学步骤

一、铺垫孕伏。

1.填空【演示课件“数的意义”】

0、1、79、 、0.25、0.6、100、 、 、 、85%、30、90%、7、8、2.35……

学生分类填数:

2.导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数。这节课我们就把这几种数的意义和有关知识进行一下整理和复习。(板书课题:数的意义)

二、探究新知【继续演示课件“数的意义”】

(一)整数

1.小组讨论。

2.师生总结。

自然数:0、1、2、3、……

自然数是整数。

教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数。

想一想:自然数有什么特征?

总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的。

(二)分数。

1.引导学生思考:

①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数)

表示其中一份的数是这个分数的什么?(分数单位)

②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么?

2.填空练习。

①把单位“1”平均分成4份,表示这样的3份是 ;把3平均分成4份,每一份是 .

② 的分数单位是( ),它至少再添上( )个这样的单位就成了整数。

3.教师说明:两个数相除,它们的商可以用分数表示。

即:

4.教师提问:同学们想一想,分数可以分为哪几类?

教师板书:

谁能说出真、假分数的意义及有关知识?(举例说明)

①分子比分母小的分数叫做真分数。真分数小于1.

②分子比分母大或者分子和分母相等的.分数,叫做假分数。假分数大于1或者等于1.

③分子是分母的倍数的假分数可以化成整数。

④分子不是分母倍数的假分数可以化成带分数。

⑤反之,整数和带分数也可以化成假分数。

教师板书:假分数

教师说明:假分数、带分数、整数可以相互转化。带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式。

(三)小数。

教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗?

教师板书:

教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之—……都是计数单位。各个计数单位所占的位置,叫做数位。数位是按一定的顺序排列的。

(四)百分数。

教师提问:你们还记得百分数的意义吗?

教师板书:百分数(百分率或百分比):用%表示。

三、全课小结。

这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识。

四、随堂练习【继续演示课件“数的意义”】

1.填空。

(1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的 ,每段长米 .

(2)分数单位是 的最大真分数是 ,它至少再添上( )个这样的分数单位就成了假分数

比的意义教案 篇18

教学目标

1、理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。

2、理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。

教学重点和难点

掌握比的意义,建立比的概念,能准确地求出比值。

教学过程

老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)

导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。

(一)准备题

(事先板书)口头列式解答。

1、一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?

2、一辆汽车,2小时行驶100千米,每小时行驶多少千米?

板书:1002=50(千米)

师:观察上面的两道题,它们有什么共同特点?(都用除法)

(二)讲授新课:比的意义

1、观察练习1。

问:32表示什么?(3是2的几倍。)

谁和谁比?(长和宽比。)

23表示什么?(2是3的几分之几。)

谁和谁比?(宽和长比。)

师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。

板书:长和宽的比是3比2。宽和长的比是2比3。

也就是说,32可以说成3比2,23也可以说成2比3。

提问:3分米、2分米都表示什么?(长度)

师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。

2、观察练习2。

提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?

师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即100∶2可以说成100比2。)

路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)

3、归纳总结。

师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上比。)什么叫做比?(学生讨论后,老师归纳并板书。)

板书:两个数相除又叫做这两个数的`比。

4、练一练。(投影)

(1)书法小组有男生6人,女生5人,男女生人数的比是()比(),女生人数和男生人数的比是()比()。

(2)小红3小时走11千米,小红所行路程和时间的比是()比(),这个比表示()。

提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)

(三)比的写法和各部分名称

师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)

3比2记作3∶2

2比3记作2∶3

100比5记作100∶5

∶叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。

提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)

比值可以是哪些数?(分数、小数、整数)

练习:你会求比值吗?(板书)

100∶2=1002=50

(老师说明:求比值和解答应用题不同,不写单位名称。)

(四)比、除法、分数之间的关系

师:两个数相除又叫做两个数的比,比和除法到底有什么关系?

学生讨论,老师出示投影。

生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。

师:为什么要用相当于这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。

提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)

师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成

成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。

提问:比和分数有什么关系?

生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)

师:分数是一个数,所以比同分数也是相当于的关系。

(五)反馈练习

1、第56页的做一做,学生动笔在本上做。

2、(投影)把下面的比写成分数形式。

3、选择答案。

航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是

4、判断正误:(举反馈牌)

(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的

(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。

师:写比要注意比的顺序,前、后项不能颠倒。

(六)课堂总结

今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?

(七)布置作业

(略)

课堂教学设计说明

本节课是在学生学过分数与除法的关系、分数乘除法的意义和计算方法以及分数乘除法应用题的基础上进行的,因此本课从除法应用题入手,通过复习同类量相除,不同类量相除的内容,引出比的概念,培养了知识迁移能力。在理解比的意义过程中,让学生通过观察、分析归纳出比的意义,体现了概念教学的特点,使学生不仅获取了新知识,也培养了学生自学能力和分析归纳能力。课后练习,重在加强学生对概念的理解,及时反馈了学生掌握概念的情况。

比的意义教案15篇

在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?下面是小编整理的比的意义教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

比的意义教案 篇19

教学目标

1,使学生知道分数是怎么产生的,理解分数的意义,明确分数与除法的关系,会比较分数的大小,认识真分数和假分数,知道带分数是一部分假分数的另一种形式,并能比较熟练地进行假分数与带分数,整数的互化。

2,使学生理解和掌握分数的基本性质,能比较熟练地进行约分和通分。

3,使学生理解求一个数是另一个数的几分之几用除法计算,并能解答求一个数是另一个数的几分之几的'应用题。

教学重点

1,使学生理解分数的意义,明确分数与除法的关系,学会比较分数的大小。

2,使学生理解真分数和假分数的含义,知道带分数是假分数的一部

分,能熟练地进行假分数与带分数,整数的互化。

3,使学生理解和掌握分数的基本性质,能较熟练地进行约分和通分。

教学难点

1,使学生理解分数的意义,理解分数和除法的关系,能根据分数的意义和分数与除法的关系,正确解答求一个书是另一个数的几分之几的应用题。

2,使学生认识真分数,假分数,学会真分数,假分数及带分数的互化;掌握分数的基本性质,能根据分数基本性质解决有关问题。

课时安排:

1,分数的意义……6课时

2,真分数和假分数……4课时

3,分数的基本性质……2课时

4,约分和通分……4课时

5,整理和复习……2课时

比的意义教案 篇20

教学目标:

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比与除法、分数的联系,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。

3、通过主动发现的讨论式学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力,培养爱国主义情感。

教学重点:

比的意义

教学准备:

多媒体课件、 三支红粉笔、 五支笔

教学流程:

一、创设情境,理解意义

1、师:同学们,我们刚刚过完国庆节,你知道今年10月1日是祖国几周岁的生日吗?56年前的10月1日,五星红旗第一次在广场上冉冉升起,让每一位中国人为之自豪。但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢!

出示出一面国旗:

3、判断:小强身高1米,他的爸爸身高173厘米,小强和爸爸身高比是1∶173。

明确:同类量相比单位名称要相同。

四、总结全课,拓展延伸

1、去年奥运会中国女排在首场比赛中以3∶0击败了美国队,打出了我国的女排风采。这里的3∶0表示什么意思?它和我们今天学习的比相同吗?为什么?

强调:这里的3∶0是表示两个队各赢了几局,不是相除关系,而今天学的比是指两个数的相除关系。

2、通过今天的学习,你有什么收获?

3、你知道吗?公元4世纪希腊数学家欧多克斯,利用线段找到了世界上最美丽的几何比——黄金分割,它的比值大约是0。618,比大约为2∶3。

介绍:黄金割应用非常广泛,国旗的宽与长的比是2比3,接近黄金分割,现在你们知道五星红旗为什么这么美观了吧!

生活中还有很多地方用到黄金分割:

T型台上选模特也要求模特的身长与腿长的比符合黄金分割。

理发师也将黄金分割运用到发型设计中去。

……

课后同学们还可以去调查。

教学内容:

九年义务教育六年制小学数学课本第十一册“比的意义”。

教学目标:

1.掌握比的意义,会正确读、写比。

2.记住比的各部分名称,会正确求比值。

3.理解比与除法、分数之间的关系,明确比的后项不能为0的道理,同时懂得事物之间的相互联系性。

4.通过自学讨论,激发学生合作学习的兴趣,培养学生分析、比较、抽象、概括和自学探究的能力。

一、创设情境,诱发参与

1、师:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?可以提出什么问题,怎样列式解答?

生1:牛奶比果汁多1杯。

生2:果汁比牛奶少1杯。

生3:果汁的杯数相当于牛奶的

生4:牛奶的杯数相当于果汁的

师:2÷3是哪个量和哪个量比较?

生:果汁的杯数和牛奶的杯数比较。

师:3÷2求得又是什么,又可以怎样说?

生:牛奶的杯数和果汁的杯数比较。

2、师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。今天这节课我们学习用一种新的方法对两种量进行比较。(板书:比)

3、师:那么这节课你想学习比的哪些知识呢?

(什么叫比,谁和谁比……)

二、自学探究新知

1.探究比的概念

教师指着板书问:2÷3求的.是什么?是哪个量和哪个量的比?

生:2÷3求的是果汁是牛奶的几分之几,是果汁和牛奶的比。

师:对!2÷3求的是果汁是牛奶的几分之几,也可以说成果汁和牛奶的比是2比3。

(板书:果汁和牛奶的比是2比3,学生齐读。)

师:照这样,牛奶是果汁的几分之几也可以说成牛奶和果汁的比。

生:牛奶是果汁的几分之几也可以说成牛奶和果汁的比是3比2。

(板书:牛奶和果汁的比是3比2)

师:都是果汁和牛奶的比较,为什么一个是2比3,而另一个却是3比2呢?

生:因为2比3是果汁和牛奶的比,而3比2是牛奶和果汁的比。

师:对,研究两个数量的比较,谁和谁比,谁在前,谁在后,是不能颠倒的。

出示试一试。

师:1:8表示什么意思?

生:1和8表示洗洁液1份,水8份。

师:怎样表示容液里洗洁液与水体积之间的关系?

生:先求出体积再比较。

课件出示:走一段900米长的山路,小军用了15分钟,小伟用了20分钟。让学生填表。

师:小军和小伟的速度是怎样求出来的?900:15表示什么?900:20又表示什么?

师:说说900米和15分钟的意义。

生:900米和15分钟分别是小军走的路程和时间。

师:那么小军的速度又可以说成哪两个量的比?

生:小军的速度可以说成路程和时间的比。

师:什么叫比?(同桌互相说一说,然后汇报。)

生1:除法叫比。

生2:两个数相除叫比。

师:两个数相除,以前叫除法,今天就叫做比。多了一种叫法,你觉得“比”字前面加上一个什么字比较妥当?

生1:加上“又可以”。

生2:加上“又”字。

师:两个数相除又叫做两个数的比。想一想这个比表示的是两个数之间的什么关系?

(随着学生的回答,教师在“相除”下面加上着重号,学生齐读比的概念。)

2.自学探究比的各部分名称等知识。

师:请同学们自学课本第68~69页。把自己认为重要的知识画出来,自学完后同桌互相说说“我自学到了什么”。

(学生同桌相互说完后,集体汇报探究。)

生:我学会了比的写法。

(老师指着2比3,让学生到黑板上写出2∶3。)

师:2、3中的符号“∶”是什么呀?

生:这是比号。(板书:比号)

师:写比号时,上下两个小圆点要对齐放在中间。(让学生同桌互相看看比号写得是否正确,并接着汇报。)

生:我知道了比号前面的数叫做比的前项,比号后面的数叫做比的后项。

师(指着2∶3)问:前项后项各是几呀?(学生答后接着汇报。)

生:我知道了比的读法。

(教师指着2∶3,指名学生试读2比3,然后学生齐读2比3。)

师:我们已经知道比的读法、写法,以及各部分的名称,想一想,你还学到了什么知识?

一、教材及学生情况分析:

“比的意义”是小学六年级第十一册教材中教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。

2、教学目标:

“从知识与技巧”、“过程与方法”、“情感态度与价值观”三个维度确定以下目标。

(1)理解并掌握比的意义,会正确读与写。记住比各部分的名称,并会正确求比值。

(2)通过主动发现的讨论式学习,激发合作意识,理解并正确掌握比与除法、分数之间的联系,明确比的后项不能为零的道理。同时懂得事物之间是互相联系的。

(3)培养学生比较、分析、抽象、概括和自主学习的能力。培养他们在生活中发现数学问题,提出问题的意识。

3、教学重点难点:

理解掌握比的意义,比与分数、除法之间的联系。

二、教学方法的设计

1、用创设情境法,激发学生对比的知识的研究兴趣。

2、从日常生活中,培养学生能够发现数学问题。

3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。

4、当堂巩固,当堂反馈练习, 练习形式多样,使学生从多种学习方式的活动中理解比的意义。

5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。

三、教学过程的活动与安排

(一)创设情境,导入新课

利用一则消息引起学生对比的知识的研究兴趣,学生对这则消息进行讨论、交流时,不但可以受到思想教育获得情感体验,同时能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。

(二)自主探究,合作交流

1、“比的意义”教学。

第一步给出班级男生人数与女生人数两个条件,请学生提出问题并列式,根据学生列的除法算式,明确是男生和女生两个量在比,启发学生思维,除了用以前学的除法知识对两个量进行比较外,还可以用一种新的方法进行比较。然后展开“比的意义”教学活动,说成男生人数与女生人数的比是多少比多少。第二步看算式,运用新知识说说。(说明:从学生身边的数量中提取数学问题,从而引出新知识。运用旧知识进行传递,轻松快乐。)第三步,出示表格(填表)使学生初步知道两个不同类的数量之间的关系也可以用比来表示。在上面两个例子的基础上,让学生概括出比的意义。

2、比的读法与写法、各部分的名称、求比值的方法的教学。

教师引导学生掌握比的读法和写法,在小组合作学习中,自主探究比的各部分名称和求比值的方法。然后组织同学们汇报学习成果,引导学生介绍求比值的方法。知道后,并引导学生运用方法,能够写出几个比的实例,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数。

3、比与除法、分数之间的关系,比的后项为什么不能为零?

通过引导学生看板书,合作交流能够比较出“比”、“除法”、“分数”之间有什么联系,填写出表格,再通过“相当于”这一词的理解,明确他们的区别。

(三)、总结、归纳引导学生谈学习感受。

通过本节课学习,同学们学到了那些知识,请把你的收获告诉大家好吗?在学生汇报中,使本节课的知识点得以巩固。

(四)、多层次练习,巩固新知识。

练习形式多样,既巩固本节课的知识,又增加了乐趣,特别是培养学生养成了独立思考的习惯。

比的意义教案 篇21

【教材分析】

《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。

【设计理念】

《课标》指出:学生的数学学习应当是一个生动活泼、主动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在看一看、想一想、说一说、做一做中动手、动脑、动口,逐步理解知识,掌握方法,学会思考,获得积极的情感体验。

【教学内容】

教科书P50~51小数的产生和意义及“做一做”,练习九部分习题。

【教学目标】

1、知识与能力:使学生通过观察、测量了解小数是如何产生的。理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

2、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

3、情感态度价值观:增强学生民族自豪感和培养学生学习的积极性。

【教学重难点】

1、重点:理解小数的意义。

2、难点:探索分数与小数的关系,深刻理解小数的意义。

【教学具准备】

PPT课件、米尺、彩带两条(2米和0。9米)

【教学过程设计】

一、情景导入

1、教师:同学们喜欢做游戏吗?今天老师带大家做一个游戏,游戏的名字叫“猜一猜,测一测。”

2、师出示2米的彩带,同学们猜一猜有多长,指名回答后让学生测量验证。师再出示0。9米的彩带,让学生猜测,然后测量出结果是9分米。

提问:9分米如果用米做单位用分数表示是多少米?(米)用小数表示是多少米?(0。9米)

二、教学小数的产生

1、课件出示老师收集的一些图片。

看来生活中小数真是无处不在啊!人们进行测量和计算时往往得不到整数的结果,于是小数就产生了。(师板书:小数的产生)

2、除了用整数,小数,我们还可以用什么样的数来表示?(分数)还是用米作单位,用分数表示又是多少米呢?(9/10米)

师:刚才我们在表示第二条彩带的长度时,有的同学用分数表示,有的同学用小数表示,看来小数和分数之间一定有联系。那么分数和小数之间究竟有什么奥秘呢?今天老师就和同学们一起去探索他们的秘密。探索秘密需要一样工具就是直尺。

【设计意图】利用学生喜欢游戏和活动的好奇心理,充分激发、调动学生学习的积极性,让学生再猜一猜、量一量的活动中经历知识的形成过程,体验到整数在生活中使用的局限性,使学生体会到在进行测量和计算时,往往得不到整数的结果,这时常用小数来表示,从而引入小数,让学生感受到小数是因为需要而产生的,从而激发学生的探究欲望,为新知的探究过程做好充分的铺垫。

二、教学一位小数意义

1、认识一位小数:大屏幕出示米尺,把1米平均分成10份,其中的一份是多少?如果还用米做单位,用分数怎么表示?小数呢?

板书:(1分米、1/10米、0.1米),谁能说说0.1米表示什么意思?

(1)那如果3份、7份呢?分别用分数、小数表示是多少?

(2)像这样的你能找一个让同学说说吗?(学生说老师补充板书)

2、观察这一些小数,你发现它们有一个什么共同的特点吗?(一位小数)将分数与小数联系起来看,又发现什么共同的特点呢?(分母是10是的分数可以用一位小数来表示)

(学生:分数和小数之间有着密切的关系,十分之几的分数用一位小数表示,一位小数表示十分之几。)学生有困难教师可引导。

3、教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关,有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。

猜想一下两位小数与什么样的分数有关?

三、教学两位小数意义。

1、学习两位小数。

(1)刚才是把1米平均分成10份,那如果老师把1米平均分成100份(老师将尺放大)取1份是几分之几米?用小数怎么表示?取3份呢?取6份呢?

(2)仔细观察这组分数和小数的特点,看看你能得到什么结论。(分母是100的'分数可以用两位小数表示)

(通过学习迁移,引导学生自主学习二位小数。)

教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几。

猜一猜:下面老师要将1米平均分成多少份?

(3)、教学三位小数意义。

1、认识三位小数:同学们想一想,如果将尺平均分成1000份。你又能得到什么结论?

1毫米、 1/1000米、0.001米

6毫米、 1/1000米、0.006米

13毫米、 13/1000米、0.013米

2、小结:分母是1000的分数可以用三位小数表示。

是不是只有这三种小数呢?

四、总结小数的意义

1、教师:我们把1米平均分成10、100、1000份,用分数、小数都会表示了,如果老师再把1米平均分成10000份,这样的几份写成小数是几位小数;那么100000份呢?(万分之几是四位小数,十万分之几是五位小数)

【设计意图】由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示……到通过联想认识四位小数、五位小数的意义,再到抽象概括小数和的意义,学生经历了知识的形成过程,在获取数学知识的同时,也获得了学习的方法,提高了学习的能力。

2、教师引导学生观察这些分数和小数,然后讨论:分数和小数之间有什么联系呢?

3、学生回答后教师小结:分母是10、100、1000……的分数可以用小数表示这就是小数的意义。(教师板书)

4、反馈:教材第51页做一做。

让学生独立完成,教师提醒学生要先看一看每一幅图平均分成了多少份?然后教师讲评。

【设计意图:】教材在学生理解小数的意义之后,安排了“做一做”活动:通过用分数和小数表示出涂色部分,使学生进一步感知分数与小数的联系,加深对小数意义的理解。

五、认识小数的计数单位和进率。

(1)课件出示智慧闯关第一关

0.3里面有()个1/10 0.5里面有()个1/10 0.07里面有()个1/100 0.09里面有()个1/100

师:学生讨论完成,并说一说为什么这样想?

师指名回答后小结:像0.3、0.5这样的一位小数,我们都可以看成有许多个1/10组成的,那么我们就说十分之一是一位小数的计数单位,写作0.1。同理,像0.07、0.09这样的两位小数,可以看成有许多个1/100组成的,那么我们就说百分之一是两位小数的计数单位,写作0.01。

师:同学们猜一猜三位小数的计数单位是什么?写作?

(2)课件出示智慧关第三关

0.1米里面有()个0.01米

0.01米里面有()个0.001米

教师小结:每相邻两个计数单位之间的进率是10。

(3)课件出示智慧关第三关

0.8的计数单位是( ),里面有( )个()。

0.06的计数单位是( ),有6个()。

0.032的计数单位是( ),有()个( )。

【设计意图:】通过设计有层次的强化巩固练习,有针对性地对使学生对所学知识进行练习、内化,使在课堂中探究所得的新知识、新概念在练习中逐步得到深化,从而内化为学生的知识和能力。

三、课堂巩固

1、练习九第2、5题

2、判断(课件出示)

【设计意图】在学生对小数的意义有了一定的理解以后,利用幻灯出示一组有一定深度的练习题,让学生通过新旧知识的对比,逐步加深理解,熟练运用。从而深刻地了解小数的意义、小数的计数单位以及小数与分数的相互关系,达到强化、内化、深化新知的目的。

四、课堂小结:同学们顺利的闯过了关,在这节课上有什么收获?

把你的收获告诉同学们。

五、课堂延伸:课件《小数点的历史》

【设计意图】通过学生自由阐述对于本节知识的理解情况,及时了解和掌握学生的学习反馈情况,再一次让学生通过自身的表现,体验学习取得成功的快乐。同时通过播放小数点的历史的视频让学生了解小数产生的背景,体会劳动人民以及以往一些数学上的伟大发现和发明,激发学生学习的动力,使学生加深对数学学习的乐趣,从而树立学好数学的信心,在以后的学学习道路上更加努力,表现的更加出色。

【板书设计】

小数的产生和意义

米1分米1厘米1毫米

9/10米1/10米1/100米1/1000米

0.9米0.1米0.01米0.001米

比的意义教案 篇22

教学目标

1、 结合具体情境,进一步体会小数的意义及其与日常生活的密切联系。

2、 会正确读写小数。

3、 通过实际操作,体会小数与十进制分数的关系,并能进行互化。

重点 了解小数的意义,会正确读写小数。

难点 理解小数的意义。

教具 课件、正方形卡纸

教学过程

复习导入:元6角4分=( )元

10元5角=( )元

=( )元

7分=( )元

谁能说出生活中还有那些小数。

学习目标:

1、理解小数的意义。

2、会正确读写小数。

3、小数与分数能进行互化。

自主学习(方式)、教师指导方案:

1、看书上第2页认一认。

2、把“1”平均分成1000份,其中的1份是( ) ,也可以表示( )。

其中的59份是( ),也可以表示( )。

3、读出下面的小数,并写出它们所表示的`意义。

0.9读作:

表示:

0.304读作:

表示

0.06读作:

表示:

展示方式:(学习目标中1、2……采取什么方式展示)

1、 抽生回答,集体点评。

2、 小组交流,抽生回答。

3、 学生展示,集体交流。

检测内容:

填空:

0.2 表示是( )位小数,它表示( )分之( )。

0.15是( )位小数,它表示( )分之( )。

0.008是( )位小数,它表示( )分之( )。

0.3里面有( )个十分之一

0.05里面有( )个百分之一

0.009里面有( )个千分之一

板书设计:

小数的意义

把1平均分成10份,其中的一份是1/10,也可以表示为0.1.

把1平均分成100份,其中的一份是1/100,也可以表示为0.01.

作业:

6页2、3、4题

比的意义教案 篇23

教学目标:

1.知识与技能:结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义。

2.过程与方法:经历探索小数意义的过程,了解小数在生活中的广泛应用。

3.情感目标:在探索交流的学习过程中,体验数学学习的乐趣。

教学重点:

理解小数的意义。

教具准备:

长方形、正方形的图片,多媒体课件等。

教法学法:

根据课程标准和教材内容,我将采用启发式教学法引导学生主动地进行观察、实验、猜测、验证、推理与交流。

教学学法:

动手实践、自主探索与合作交流成为学生学习的主要方式,促进学生的个性发展和能力提升。

教学过程:

为达成以上目标,突出重点,突破难点,我设计以下五个教学环节。

一、创设情境,提供素材。

这一环节分两步,第一步观察情境,读写小数。

课件出示信息窗,引导学生观察,并提问:从图中你了解了哪些数学信息?学生观察图片,说出各种鸟蛋的质量,接着追问:你是怎样读写这些小数的?学生试着读写小数。教师随时订正学生读写小数的方法。因为学生已经学习过一位小数的读写方法,在此不必做过多讲解,放手让学生在读写的过程中总结出小数的读写方法,完成知识的迁移。

第二步根据信息,提出问题。

提问:根据这些信息,你能提出什么问题?学生可能提出:0.25千克中的0.25表示什么意思?0.365千克中的0.365表示什么意思?本环节的设计意图是创设问题情境,激发学生提出问题的兴趣。

二、分析素材,理解概念。

这一环节分 两步,第一步认识两位小数的意义。

这一步分四个小环节,第1个小环节,首先引导学生选择需要解决的问题;要解决0.25表示什么意思,首先要弄清0.01表示什么?(板书0.25 0.01)

第2个小环节,出示一张正方形纸片【提问】:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?

先请同学回答,学生应该知道0.1与1/10的关系,再让学生慢慢过渡到0.01与1/100的关系。

(师板书:0.1——1/10 0.01——1/100)

在正方形纸片上表示出0.25。

提问:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

先让学生小组讨论,然后小组合作完成,全班交流。

教师引导学生明确0.25就是25/100,也就是25个1/100。

板书:0.25 25/100

第3个小环节,多媒体出示0.05、0.10的方格图,阴影部分表示什么? 板书:0.05 5/100 0.10 10/100

第4个小环节,小组讨论:这些小数有什么共同特点?

让学生先小组交流,请不同的同学说出自己想法,再进行全班交流。

引导学生概括出两位小数表示的意义。

【设计意图】学生已经知道一个小数的意义,我们通过对一位小数意义的复习,过渡到对两位小数意义的学习,让学生在探索新知识的时候将数学知识串联起来。 第二步,认识三位小数的意义。

这一步分四个小步,第一个小步【提问】:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?

直接让学生口答,学生在两位小数的启发下,可以自然迁移到三位小数。

第二小步,教师多媒体出示大正方体塑料块动态平均分产生0.365的过程,引导学生理解0.365就是365个1/1000,也就是365/1000。

第三小步,多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么? 请同学们看着多媒体的方块图数一数。

第四小步,引导学生概括出三位小数表示的意义。

【设计意图】学生在复习一位小数意义,学习二位小数意义之后,可以通过自学,自己探索发现三位小数的意义,这利于学生归纳,探究能力的发展。

三、借助素材,总结概念

【提问】:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

学生寻找生活中的`小数,并结合实际说出它们的意义。集体交流,师引导学生总结出小数的意义。从而知道:像0.1 、0.25 0.365这样表示十分之几、百分之几、千分之几的数,叫做小数。(并出示课题:小数的意义。)

【设计意图】通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。 第四个环节,巩固拓展,应用概念

我设计两个层次的练习,第一个“自主练习1”,这是练习十进分数与小数的关系,进一步理解小数的意义,通过完成练习,了解学生对小数意义的理解情况。

第二个是“自主练习2”,借助学具巩固小数的意义,学生用不同的方法表示出每个小数的意义,关注学生对小数意义的掌握情况。

【设计意图】自主练习题的设计,是为了让学生巩固今天所学的内容,将新学习的知识点都适当的安排习题,可以检测学生当堂学习的效果。

四、课堂总结

谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

[设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

为直观,简单,适合全班同学完成。

自主练习12题

这是思考题,对今天学习知识的实际应用,可以让感兴趣的同学进行练习。

比的意义教案 篇24

教学目标

1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。

2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。

教学内容分析:

小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。

重难点

重点:

知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的'累积。

难点:

运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

教学过程

活动1【导入】

一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。

师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。

师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。

师:这段不足1的长度怎样表示呢?(用分数表示)

在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

师:猜一猜,这段不足1的长度是这个标准的几分之几呢?

老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。

预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的

预设2:红色纸条对折,不足1的部分是红色纸条的

预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。

我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。

在刚才的测量过程中我们发现不足1的部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?

活动2【讲授】

二、分物中体会单位“1”可以是多个物体

师:刚才我们找到了,生活中其他的地方有没有呢。

大米

1000克

拿出小片子,请你分别表示出它们的。

我们表示的都是,可是为什么对应的数量却都不相同呢?

回顾一下找的过程,你对分数又有了哪些新的体会?

师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”

活动3【讲授】

三、分物中认识分数单位,深入体会分数的意义。

师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。

合作建议:

独立思考:想一想、画一画,用这些糖还能表示出哪些分数。

小组讨论:在小组内说一说你找到的分数所表示的意义。

预设:

观察这两个分数你有什么发现吗?

相同点:都是把6块糖平均分成6份

不同点:取的份数不同

联系:2个是

师:你会表示吗?

师:我们发现有几个就是六分之几。

师:你会表示吗?

师:那么有几个就是三分之几。

像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。

师:有些同学还找到了一样的分数,对吗?

师:表示了这么多分数,谁能来说说分数的意义。

活动4【导入】

四、巩固练习

1、填一填

2、猜一猜

师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。

师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?

师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?

师:同学们想不想知道我给大家今天的学习情况评几颗星呢?

出示

师:你知道这是几分之几吗?

有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

比的意义教案 篇25

师生活动

一、 导入新课。

二、 教学新课。

三、实际应用

四、总结

“猜猜哪杯糖水甜?

1、出示2杯糖水:1号杯——水30克,其中糖5克,

2号杯——水20克,其中糖4克。

小组讨论,说说你是怎样判断的。

学生交流。

小结:根据糖和糖水的关系或糖和水的关系,才能判断出谁甜。

2、依据糖和糖水的关系,判断小组上表格中的3杯糖水谁最甜?小组分工合作完成。

学生交流,说说你是怎么比较的?

1、百分数的意义。

如果要想比较这一共的糖水谁最甜,该怎么办?

指出:在实际生产、生活、工作中,为了便于统计和比较,通常把这样的分数用分母是100的分数来表示。

把表格中的分数改写成分母是100的分数。说说这些分数的意义。

揭示出百分数的意义。

2、百分数的读写法。

自学书上的有关内容。

把表格中的百分之几改写成百分数的形式,并说说意义。

练习:练习十九 4

练一练 1看到这些图形,你想到了什么数?

举例:说说准备资料中的百分数的`意义。

折出百分数。

3、百分数和分数的比较。

下面的说法你认为对吗?

(1) “六年级男生人数是全年级总人数的57/100”,可以说成“六年级男生人数是全年级总人数的57%”。

(2) “学校十月份用纸13/100吨”,可以说成“学校十月份用纸13%吨”。

小结:百分数和分数的不同。

根据提供的信息说说百分数的意思,及从信息中你想到了什么。

说说自己的收获。

比的意义教案 篇26

活动目标

1、认识序数1—5,初步了解序数的意义。

2、初步感知序数的顺序数。

3、形成良好的秩序感。

活动准备

1、教具:跑道,“数字卡片”,五种动物图片。

2、“动物与房子”,口杯架。

活动过程:

1、预备活动

师幼问侯,走线,线上游戏师:请你像我这样做……小朋友们好!今天呀陈老师要带你们到一个很神秘很好玩的地方,想去吗?

师:要到这个地方去,就要经过一条弯弯的窄窄的独木桥,小朋友要脚尖亲脚跟,一步一步的慢慢的向前走,千万别说话哦,因为河里的鳄鱼正在午睡,如果吵醒了它,它就会把我们抓走的。当音乐响起的时候,我们就出发啦!(当你再次回到凳子旁的时候,请你停下来)

线上游戏:小熊盖房子师:好玩的地方到了,这儿有漂亮的花,高高的大树,还有许多可爱的小动物,你们猜猜看,这是什么地方?

幼:森林王国

师:森林里,小熊搭好的新房子,请了好多小动物来参观,我们一看,都有哪些小动物呢?(小熊卷起小棍子,要盖一座新房子,它请小动物来参观,第一个来的是小耗子,第二个来的是小兔子,第三个来的是猫妈妈,第四个来的是小鸭子,第五个来的是臭蚊子。)

2、集体活动

师创境:森林王国真热闹,这边小熊盖好了新房子,那边呢,正在召开1年度秋季田径运动会,这不,小动物都不甘示弱,来参加比赛了,让我们到比赛现场去看看吧

A、出示跑道(黑板范画)

师:这就是小动物们参加田径比赛的跑道,每一条跑道都有不同的颜色,让我们看看颜色标记吧(从上往下看或从下往上看,红黄蓝绿白)

B、用数字卡片做标记师:请小朋友数一数,一共有几条跑道?谁坐得好,就来帮我用相应的数字宝宝按顺序来做标记吧

C、说出颜色与对应的跑道,加强对序数的认识问:红色跑道为第几跑道?第3跑道是什么颜色?

D、动物出场,对应跑道师:请幼儿介绍出场动物分别站在第几跑道

E、比赛开始,放音乐“运动员进行曲”师:小动物们已经站在了起跑线上,另一边就是终点,谁离终点最近谁就是第一名,好,比赛开始了(放音乐)让我们在心里默默的为他们加油吧(移动物)

F、公布比赛结果师:请小朋友用你们最亮最好听的声音来公布比赛结果,让森林里的所有动物都知道这个好消息,好吗?(另请个别幼儿对应跑道公布结果)

G、你们真了不起!学会了使用第一、第二、第三、第四、第五这样的序数词,下面还有工作要忙呢,动物协会的看小动物爱运动,并取得了好成绩,决定把小熊搭好的新房子买下来,奖励给获奖的动物们,动物们就要搬进新家了,你们愿意帮忙吗?

3、分组活动

师:把你们的小凳子转向桌子,再看看这是小熊搭好的房子,一共有几层?数房子呢要从下往上看,看看红色的房子是第几层?第五层房子是什么形状?

师(放学具)当老师说“开始工作”的时候,小朋友顺时针方向开始取学具,拿取一座房子一个学具袋

A、按老师指令搬家师:请你们帮老鼠搬到长方形的房子,小狗搬到绿色的房子,小猫搬到第五层......

师:请你们带老师参观一下动物们的新家吧(幼儿用序数介绍动物的新家)

师:听说小兔得了第一名,我要去祝贺它,谁带我去?它住在哪儿?

B、对应搬家师:森林王国里的狮子大王看到小朋友这样能干,又有新工作交了,大王说,谁得了第几名就搬到第几层,哎呀,这可有点难度哦,请小朋友对应搬家(搬完后验证)(收学具)

4、游戏活动(找口杯)(延伸序数的.方向性)

师:动物们忙了这么久,口渴了,我们来帮它们找到它们的口杯,好吗?

A、带领幼儿数茶杯架的排数和格数,延伸方向B、师扮演小狗:我的茶杯在第二排第一格,谁帮我找找?小猫:这是我的茶杯,这是第几排第几格呀?(渗透反方向数)

5、师:今天真开心,观看了森林王国的运动会,还帮获奖的小动物搬了新家,从而学会了使用第一、第二这样的序数词,其实呀,生活中时时刻刻都有序数的存在,比如小朋友的座位,喝茶呀,吃饭时,放学时要排好队,不能抢,从而养成良好的秩序感。

活动结束后,请你们看看你们的茶杯放在第几排第几格,有空悄悄告诉我,好吗?小朋友们再见!

比的意义教案 篇27

教学内容

小数的意义

教学目标

1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

重点难点

重点:体会十进制分数与小数的关系,初步理解小数的意义。

难点:能够正确进行十进制分数与小数的互化。

教具准备

课件、正方形纸2张。

教学过程

一、情境导入。

1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

生:好。

2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

铅笔:元一支圆珠笔:元一支

猪肉:元一斤黄瓜:元一千克

教师:上面这些物品的价格有什么特点?

学生:都不是整元数。(都是小数。)

教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

学生依次读出:零点一、一点一一、九点五、五点九六。

师:大家知道这些小数是几位小数吗?

生:......

2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

生:身高体重跳高跳远

小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

板书:小数的意义

二、自主探究。

1.一位小数的意义

a.那么多的小数,我们今天就从开始入手研究。

b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说表示什么意思?

学习单元角米分米网格图

c.生反馈表示什么意思。

d.思考:我们选用的图都不一样,为什么都可以表示?

你还能在图中找到其他小数吗?他们表示什么意思?

学生交流反馈。

学生:1元=10角,元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成元。

生2:1米=10分米,米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成米。

生:......

2.两位小数的意义

师:同学们真了不起,都善于思考问题,勇于探究,你们又是什么意思呢?

a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说表示什么意思?

学习单元分米厘米网格图

b.生反馈表示什么意思。

c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

学生交流反馈。

学生:1元=10分,元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成元。

生2:1米=100米,米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成元。

生:......

3.三位小数的意义

我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

小数我们写的完吗?其实呀,小数的位数越多就分的越细。

大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

三、巩固练习

教师:可以表示成分数吗?可以表示成小数吗?

学生:分别是和。

教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

同学们在小组内进行游戏交流,教师巡视指导。

四、探究结果报告。

教师:通过刚才游戏,你们发现了什么?(出示课件)

师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……

1.像、这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

2.像、这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

3.像、25这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

四、教师小结。

小数中,每相邻两个计数单位间的进率都是10。

五、课外拓展。

分享最美数字

比的意义教案 篇28

教材分析

除法是与乘法相反的运算.在前三年半学生经过大量的整数除法计算和应用题的练习,对除法的意义已有了一定的感性认识,这里在已学的基础上对除法的意义及乘、除法各部分间的关系加以概括,使学生有更明确的认识.另外教材以前研究的是商是整数而没有余数的除法,虽然学生在以前的学习中也曾接触过有余数的除法,但是学生没有从字面上真正理解它的含义,所以本小节教材是在学生原有的基础上对有余数除法的概念及关系式明确地概括说明.

本小节的教学重点是使学生掌握乘、除法及有余数除法各部分间的关系,并对它们进行验算.学习这些知识的同时,也是为进一步学习解简易方程打基础的,数学教案-除法的意义和乘、除法各部分间的关系。那么教学难点又主要体现在两方面:一方面是学生对理解整除概念时,对整除算式中,哪个数能被哪个数整除的几种不同叙述分不清,容易混淆.另一方面是使学生理解余数为什么比除数小.

教法建议

1、运用知识的迁移进行教学.在教学中,教师要以学生原有的知识为基础,把旧知与新知联系在一起.再结合具体的实例进行教学.例如,在教学乘法的意义时就可以通过学生学过的一道乘法应用题引出,充分让学生思考,并观察、分析、比较由乘法算式转换成除法算式所发生的变化,最后再通过学生的讨论(小组、同桌、集体)、互相交流,让学生用自己的话总结出除法的意义.从而提高学生的语言表述能力.讲解有余数的除法时,也可以采用以上的教学方法.

2、注意概念的归纳与概括.在教学有余数除法概念时,可以通过与整除对比的方法,让学生自己从中发现问题,并从发现中归纳总结出什么叫做“有余数的除法.”这样可以让学生从感性认识上升到理性认识,也可以避免学生死记硬背的现象.

3、在教学中,充分发挥学生的主体作用,借用各种教学手段来调动学生的积极性,使学生参与知识形成的全过程.通过学生的想一想、看一看、说一说、做一做悟出知识的真谛,以求得其思维的发展,能力的培养,体验成功后的喜悦.

教学目标

1.使学生理解除法的意义,理解除法是乘法的逆运算,并会在实际中应用.

2.使学生自己总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算.

3.在分析过程中,培养学生的推理、概括能力.

4.培养学生养成良好的验算习惯.

教学重点

使学生掌握乘、除法各部分间的关系,并对乘、除法进行验算.

教学难点

理解乘、除法的互逆关系,以及用除法意义说明一些题为什么用除法解答.

教学步骤

(一) 铺垫孕伏

1.口算: 7×5= 9×6= ( )× 4=32

35÷5= 54÷6= 32÷( )=8

35÷7= 54÷9= ( )÷4=8

2.导入:我们已经做过大量的整数除法计算和应用题的`练习,对于除法知识也有了初步的了解.这里我们要在原有的知识基础上,对除法的意义加以概括,使同学们能运用这些知识解决实际问题.(板书课题:除法的意义)

演示课件“除法的意义”出示课题 下载

(二)探求新知

1.教学除法的意义.

(1)出示一组题,学生独立列式解答.演示课件“除法的意义”出示例题 下载

①四年级有4个班,每班40人,一共有多少人?

②四年级有160人,平均分成4个班,每班多少人?

③四年级有160人,每40人分一班,可分成几个班?

根据学生的回答板书:

教师提问:观察,比较上面的3道题,为什么列式和计算方法都不同?

40,4和160在三个题中分别叫做什么数?

第②、③题分别是已知什么?求什么、怎样算?

(第②、③题分别是已知两个数的积和其中的一个因数,求另一个因数,用除法计算.)

分组讨论:根据上面除法算式和乘法算式的联系看,除法是一种什么样的运算呢?

演示课件“除法的意义”出示问题(启发学生用自己的语言概括除法的意义.) 下载

教师归纳:已知两个因数的积和其中的一个因数,求另一个因数的运算,叫做除法.

(2)教学除法各部分的名称.继续演示课件“除法的意义” 下载

教师提问:在除法中已知的积叫做什么?(被除数)

已知的因数叫做什么?(除数)

求出的未知因数叫做什么?(商) (教师板书)

(3)教学除法是乘法的逆运算.

引导学生观察:第②、③与①的已知条件和问题有什么变化?

使学生明确:在乘法中是已知的,在除法中是未知的;在乘法中未知的,在除法中变成已知的.也就是乘法是知道两个因数求积,而除法与此相反,是知道积和其中一个因数求另一个因数,所以除法是乘法的逆运算.

反馈:做68页的“做一做”

根据36×14=504直接写出下面两道题的得数.

504÷14=□ 504÷36=□

(4)教学关于0和1在除法中的特性.继续演示课件“除法的意义” 下载

①启发同学想:一个数除以1得什么数?

学生自己举例

引导学生得出:一个数除以1,还得原数.

②启发同学想: 0除以一个不是0的数得什么数?

引导学生自己举例

老师提问:为什么相除的结果都是0?

教师强调:因为一个数和0相乘才得0,所以0除以一个不是0的数商都是0.

③学生讨论: 0能作除数吗?为什么?

教师说明:如5÷0不可能得到商,因为找不到一个数同0相乘得5.0÷0不可能得到个确定的商,因为任何数同0相乘都得0.

2.教学乘除法各部分间的关系及其应用.演示课件“除法的意义”出示口算题 下载

(1)口算:

①4×5 ②320÷8

20÷4 320÷40

20÷5 40×8

(2)引导学生根据上面第①组算式总结乘法各部分间的关系.继续演示课件 下载

教师概括: 积=因数×因数

一个因数=积÷另一个因数.(板书)

引导学生观察第②组算式,自己总结出除法各部分间的关系.

教师板书: 商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(3)教学乘法验算

教师出示:32×27=864,让学生用以下两种方法验算.

验算:

教师提问:以上两种算式应用了什么方法验算的?为什么?

教师总结:过去我们验算乘法时,用交换两个因数的位置,再乘一遍的方法.今天我们根据乘法各部分间的关系,可以用算出的积除以一个因数,看是不是等于另一个因数.

(4)教学除法验算

教师出示:2871÷33=87,让学生用以下两种方法验算.

教师提问:以上两种算式应用了什么方法验算的?为什么?

教师总结:应用除法各部分间关系,可以验算除法.以前学过的用乘法验算除法,就是应用被除数=商×除数,现在应用“除数=被除数÷商”也可以验算除法,也就是用除法验算除法.

3.反馈:

试算第69页的“做一做”,并说出根据.

计算下面各题,然后用两种方法验算.

102×85 1794÷69

(三)巩固练习

1、练习十五第1题.(讨论、口答)

应用除法的意义说明下面各题为什么用除法算.

(1)水果店运来20筐苹果,共500千克.平均每筐苹果有多少千克?

(2)光明小学图书室有2400本图书.图书的本数正好是学生人数的4倍.光明小学有多少学生?

2、练习十五第3,4两题.(做在本上)

练习十五第3题.

把3060÷85=36,改写成一道乘法算式和一道除法算式.

练习十五第4题.

根据8610÷35=246,直接写出下面两道题的得数.

246×35= 8610÷246=

(四)全课小结:

总结性提问:

(1)你今天学习了什么?

(2)除法的意义是什么?

(3)乘、除法中各部分间的关系是什么?

(4)乘、除法的两种验算方法各是什么?

(5)0能作除数吗?为什么?

(五)作业

练习十五第2,5,6题.

2题、(1)一本书有95页,每页按624个安计算,这本书一共有多少个字?

(2)把上题改编成两道除法应用题.

5题、计算下面各题,并各用两种方法验算.

(1)325×24 (2)4890÷15

6题、 7952÷71 1634÷19 3000÷120

2943÷27 5625÷25 20xx÷38

板书设计

数学教案-除法的意义和乘、除法各部分间的关系

比的意义教案 篇29

学习内容:

教材第69页例1、例2,以及70页“做一做”。

学习目标:

1.我能理解真分数和假分数的意义。

2.我能掌握真分数和假分数的特点。

学习重点:

理解真分数和假分数的意义。

学习难点:

掌握真分数和假分数的特点,掌握假分数与整数的`互化。

学习过程:

一、导入新课

二、合作探究、检查独学

1.小组内检查独学部分的题目完成情况,质疑探讨。

2.思考:(1)理解真分数和假分数的意义,说一说自己的思维过程。

我的想法:________________________________。

(2)哪些假分数可以化成整数?哪些假分数不能化成整数?

我的想法:________________________________。

3.小组代表展示、汇报

4.总结升华:

我认识了________________的特征,真分数的分子比分母________,真分数____1;假分数的分子比分母________或分子和分数________,假分数____1。

5.我能行:完成课本第70页“做一做”。

(1)下列分数哪些是真分数,哪些是假分数?

真分数:( );

假分数:( )。

(2)完成第70页“做一做”第2题。(做在书上)

比的意义教案 篇30

学习目标:

1、体会小数所表示的意思,理解小数的意义。

2、理解和掌握小数意义。

教学重点:通过练习,体会小数的意义,知道小数所表示的.含义。

教学难点通过练习,体会小数的意义,知道小数所表示的含义。

教学准备:学生、老师准备计数器、小黑板

教法:小组合作交流法

学法:小组合作学习

教学课时:2课时

学习过程:

一、情景导入,呈现目标

1、你的身高是多少?你会用小数来描述吗?

2、你都在哪里见过小数?说一说,并写出几个你见过的小数来。

二、探究新知(自学后完成下面问题)

1、把1元平均分成十份,其中一份用分数表示是()元,用小数表示是()元。十分之三表示其中()份,用小数()表示。

2、把1元平均分成100份,其中的一份用分数表示是()元,其中的37份用分数()表示,用小数()表示。

3、1、11表示()元()角()分。

三、合作探究,当堂训练

1、用数表示下面各图中得涂色部分?(课本第2页第2题)

2、想一想填一填?(学生独立完成)

3、自己画一方格纸,并画出0、1、0、5、0、6?

4、找一找生活中的小数,小组交流,选代表汇报。

四、精讲点拨(根据学生出现的问题进行精讲。)

五、学习收获,自我总结:

1、小组评价:你认为第几小组表现最棒,为什么?

2、自我总结:通过今天的学习,我学会了,以后我会在______________方面更加努力的。

课后反思:(略)

比的意义教案 篇31

教材位置

人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。

教学目的

1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。

2、培养学生的迁移、类推能力。

3、渗透数学“来源于生活,又运用于生活”。

教具准备

多媒体课件。

学具准备

草稿纸若干

教学重点

相同数位对齐

教学难点

小数点对齐

教学方法

探究式学习法

学情分析

学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。

学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。

整数加法笔算时是先将个位对齐以达到相同数位对齐的`目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。

学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。

教学过程

一、复习。

1、谁的竖式最漂亮,计算更准确。

4235+5478 3251+438

7621+37543 4320+317

小组内完成后,讨论下列问题。

1列竖式时要注意什么?怎样列竖式更快捷?

2计算时要注意什么?

2、整数加法的意义是什么?它的计算法则是什么?

二、激趣导入。

1、提问:夏天到了,你最喜欢吃什么水果?

2、听故事,做数学。

明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?

3、抽一生列式板演,全班齐练。

4、继续听,继续算。

后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?

你还会求出他们一共重多少千克吗?

5、揭示课题:

小数加法的意义和计算法则

三、新授。

1、小数加法的意义。

同整数加法一样,都是把两个数合并成一个数的运算。

2、小数加法的计算法则。

刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:

(1)小数与整数比较,有什么特征?

复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。

为小数加法的意义和法则的类推作理论铺垫。

设问起疑,引起学生的兴趣,提高学生的注意力。

体现数学来源于生活,生活中到处存在数学问题。

进一步复习巩固单位换算的知识,为引出课题作准备。

类比推理的运用,训练学生知识迁移能力。

(2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的

目的?

(3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?

3、指导看书P111。

4、试练。

完成P111做一做并回答问题。

四、延伸拓展。

1、你会用两种方法计算吗?

1元8角7分+3角2分

7角6分+3元4角4分

2、听故事,列算式:

小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?

五、巩固训练。

4235+5748 37251+438

4.235+5.748 3.7251+4.38

42.35+5.748 37.251+4.38

4.235+57.48 372.51+4.38

六、板书设计。

小数加法的意义和计算法则

3 7 3 5克 3. 7 3 5千克

+ 4 0 7 5克 + 4. 0 7 5千克

7 8 1 07. 8 1 0千克

7810克=7.81千克 3.735+4.075=7.81(千克)

在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。

初步学会对加法法则的运用。

加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。

训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。

加深对计算法则的理解,能运用法则准确计算。

大家都在看