《比例的意义》教学设计

短文网

2025-12-07教案

短文网整理的《比例的意义》教学设计(精选19篇),快来看看吧,希望对您有所帮助。

《比例的意义》教学设计 篇1

教学内容:

比例的意义(教材第40页的内容)

教学目标:

1、理解和掌握比例的意义。

2、了解比和比例的区别与联系。

2、能用比例的意义判断两个比能否组成比例。

教学重难点:

1、认识比例,理解比例的意义。

2、在已有知识的基础上,结合实例引出新的知识。

教具准备:

情景图、多媒体课件、习题卡。

教学过程:

一、导入

出示课题:比例

看到课题你想到了以前学过的什么知识?(生1,生2等回答)

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5

求完比值你觉得哪些比有联系?

【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】

“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义

二、揭题示标。

预设:生:1、比例的意义是什么?

生:2、比例的意义有什么作用?

(师趁机板书在黑板右上角)

【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】

本节课我们就来完成这两个目标:

三、自主探索

出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?

【设计意图:对学生同时进行思想品德教育和爱国教育】

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)

【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】

(二)自学

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享

谁愿意把你的结果和大家分享?师相机板书

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

出示“比例的意义”概念

擦去开始板书中的“?”并把比例可用分数形式表示板书出来

【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】

师:你能说一说组成比例要具备哪些条件吗?

生:…

师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?

生:…

【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】

四、当堂检测(牛刀小试)

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21

(2)15∶3和60∶12

五、当堂训练:

1、把下面的式子进行归类:

(5)72:8=3X3(6)3.6:6=0.6

比:()

比例:()

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()

(2)、如果两个比可以组成比例,那么这两个比

的比值一定相等。()

(3)、比值相等的两个比可以组成比例。()

(4)、0.1∶0.3与2∶6能组成比例。()

(5)、组成比例的两个比一定是最简的整数比.()

六、拓展提升(思绪飞扬)

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?

设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握

七、全课总结

今天这节课你有什么收获?

八、课堂作业

第43页第2、3题。

九、抽查清。(每组4号同学完成)

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5

十、板书设计

比例的意义

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

十一、教学反思:

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的`各种能力,全课体现了以下几个特点:

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

《比例的意义》教学设计 篇2

比例的意义和基本性质

1、教学内容:

科教版数学第十二册第74~76页

2、教材分析:

比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的.第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。教学内容:

教材第30.31页比例的意义和比例的基本性质,完成第31页练一练和练习六第1~5题。

教学目标:

会判断两个比成不成比例,使学生理解比例的意义和性质。教学重点:

使学生理解比例的意义和性质。教学难点:

培养学生初步的综合和概括能力。教具准备:电脑课件。教学过程:

一、复习旧知:

1、同学们,你们知道吗?我国有着悠久的青铜器铸造史,先秦古籍《考工记》中就有这样记载:(请同学读)。(出示鼎和鉴的图片。)

除了青铜器铸造史令我们骄傲,我们国家还有闻名世界的四大发明,它们是什么?那你们知道火药是怎样制造的吗?(指名读)从刚刚的这些资料中有我们学过的数学知识吗?

2、关于比你知道哪些知识呢?(板书意义、名称和基本性质)。

二、引入新课:

(一)教学意义

1、出示3:5:40:7.5:3。你能把这几组比分分类吗?小组讨论,汇报。(有两种可能:一种是按照形式来分,一种是按照比值来分)板书按照比值来分的情况:3:5和24:40、:和7.5:3。既然它们的比值是相等的,因此我们可以用什么符号来连接呢?(等号)

2、指出:像这样表示两个比相等的式子叫做比例。

3、那么我们怎么去判断两个比能不能组成比例呢?

4、教学例1:

根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次第二次

买练习本的钱(元)2买的本数3

5、出示结果。

《比例的意义》教学设计 篇3

尊敬的各位评委:

你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

一、教材分析

1、教学内容:人教版六年级下册P39正比例的意义。

2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

3、教学重点,难点、关键:

教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

4、教学目标:

根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

二、学况分析

六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

三、教法

遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

四、学法

引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

五、教学过程

本节课我安排了六个教学环节

第一个环节:游戏导入,激发兴趣

用游戏的`方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

第二环节:引导观察,启发思考

教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

第三环节:创设情景,观察实验

用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

第四环节:探究成正比例的量

学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

第五环节:巩固练习,拓展提高

第六环节:全课小结

六、效果预测

在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

《比例的意义》教学设计

作为一名人民教师,就不得不需要编写教学设计,借助教学设计可以更好地组织教学活动。那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的《比例的意义》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《比例的意义》教学设计 篇4

【学习内容】:

人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。

【学习目标】:

1、结合具体情境,通过计算,能说出比例的意义。

2、能应用比例的意义判断两个比能否构成比例。

3、通过观察、比较、小组讨论说出比和比例的区别。

【学习重点】:

比例的意义,应用比例的意义判断两个比是否能构成比例。

【学习难点】:

应用比例的意义判断两个比是否能构成比例。

教学过程

一、复习旧知、导入新课

同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。

二、比较分析,探究新知

1、出示情景图,说一说各幅图的情景。

第一幅:xx前的升国旗仪式

第二幅:学校每周一的升旗仪式

第三幅:教室前面的红旗

第四幅:谈判桌上的红旗

(对学生进行爱国主义教育)

问题:1:你能说一说这四幅图中国旗的'相同点和不同点吗?

2:你们想知道这些长和宽是多少吗?

出示国旗的长宽数据。

3:请同学们观察、计算一下,国旗的长和宽的比值是多少?

3板书:2.4:1.6=2360:40=2

4、探求共性,概括意义

师:比较一下,你什么发现?

师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

生:用等号(师把左右两个中间板书=)

师:同学们现在用了等号表示出这样一个式子,(板书:式子)谁来说一说这个式子就表示了什么?

生:表示相等的两个比。

生:表示两个比值相等的比

(师板书:比相等)

师:像这样表示两个比相等的式子叫做比例。板书

同桌互相说说

这个就是今天我们学习的——比例的意义(板书:比例的意义)

三、合作探究,进一步理解比例。

1、探索组成比例的条件

师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?

(教师再强调:一定是比值相等的两个比才能组成比例。)

2、寻找比例

师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶10 60∶40=5∶ )

3、介绍比例的第二种表示方法

师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书: )

4、区分比和比例

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)

从形式上区分:比由两个数组成;比例由四个数组成。

从意义上区分:比表示两个数相除;比例表示两个比相等的式子。

四、根据意义,判断比例

师:刚刚我们认识了新的式子比例,那要是让你来判断两个比是不是能组成比例,你会怎么办?

生:看比值是不是相等

1、完成“做一做”。

下面哪组中的两个比可以组成比例?把组成的比例写出来(见书上做一做)

2、试一试,5:8 与1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

3、反馈:(1)你给5:8找的朋友是( ),组成的比例是( ),向大家介绍你用了什么方法找到的。

4、想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

5、处理做一做第二题。

6、处理练习六第一题。

四、目标检测

1、判断:

(1)、有两个比组成的式子叫做比例

( )

(2)、如果两个比可以组成比例,那么这 两个比的比值一定相等。

( )

(3)、比值相等的两个比可以组成比例

( )

(4)、0.1:0.3与2:6能组成比例

( )

(5)、组成比例的两个比一定是最简的 整数比

( )

2、写出比值是5的两个比,并组成比例。

3、练习六第二题。

4、拓展练习:某罪犯作案后逃离现场,只留下一只长25厘米的脚印。已知脚的长度与人体身高之比是1:7,你能推测罪犯身高大约是多少吗?

五、总结

师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)

六、板书设计:

比例的意义

操场上的国旗:2.4∶1.6=1.5

教室里的国旗:60∶40=1.5

2.4∶1.6=60∶40 也可以写成

表示两个比相等的式子就叫做比例。

《比例的意义》教学设计 篇5

教材分析

这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。

学情分析

1、本班现有学生92人,男生49人,女生43人。

2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。

3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

教学目标

1、知识与技能:理解比例的意义,认识比例各部分的名称。

2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。

3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

教学重点和难点

1、掌握比例的意义。

2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

3、能根据一个比例写几个不同的比例。

教学过程

教学环节教师活动预设学生行为设计意图

一、复习

1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?

2、怎样求比值?求下面各比的比值,你发现了什么?

20∶252.7∶4.56∶10生回答。

学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。

揭示

课题这节课我们在比的知识基础上,进一步学习新知识。

揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。

探究

比例的意义

1、课件出示

例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。

列表如下:

竹竿长(m)23......影子长(m)69......

2、你能写出多少个有意义的比?并求出它们的比值。

3、观察这些比,把能用等号连接的比用等号连接起来。

4、教师板书

3∶2=9∶6

2∶6=3∶9

强调:这些都是比例。

引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。

5、2∶9和3∶6能组成比例吗?你是怎么知道的?

6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”

1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。

2、学生试写:

2:3=6:9

2:6=3:9

3、学生合作探究:什么是比例?

4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。

1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。

2、让学生分享在主动参与、探究中获取知识的愉悦心情。

3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。

认识比例的各个项

1、课件出示:在一个比例中两端的`两项叫外项,中间的两项叫内项。

要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。

介绍分数形式的比例写法。

学生小组合作探究,找出3∶2=9∶6和2:6=3:9

的内项和外项。加深认识,学以致用。

五、巩固练习

1、请同学们用比例的意义判断一下,0.4∶25能否和1.2∶75组成比例?为什么?

2、说一说比和比例有什么区别。

3、在6∶5=30∶25这个比例中,外项是和,内项是和。

4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?

5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?

1、学生独立完成。

2、汇报答题情况。

检测学生学习效果。

六、比与比例的区别

1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。

2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。

《比例的意义》教学设计 篇6

教学目标

1.使学生理解并掌握比例的意义和基本性质。

2.认识比例的各部分的名称。

教学重点

比例的意义和基本性质。

教学难点

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教学过程

一、复习准备。

(一)教师提问复习。

1.什么叫做比?

2.什么叫做比值?

(二)求下面各比的比值。

12∶16 4.5∶2.7 10∶6

教师提问:上面哪些比的比值相等?

(三)教师小结

4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

用等号连接。

教师板书:4.5∶2.7=10∶6

二、新授教学。

(一)比例的意义(课件演示:比例的意义)

例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

class=Normal vAlign=top width=166>

时间(时)

class=Normal vAlign=top width=166>

2

class=Normal vAlign=top width=166>

5

class=Normal vAlign=top width=166>

路程(千米)

class=Normal vAlign=top width=166>

80

class=Normal vAlign=top width=166>

200

>

1.教师提问:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是几比几?

第二次所行驶的路程和时间的比是几比几?

这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

2.教师明确:两个比的比值都是40,所以这两个比相等。因此可以写成这样的等式

80∶2=200∶5或 .

3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

教师提问:什么叫做比例?组成比例的关键是什么?

板书:表示两个比相等的式子叫做比例。

关键:两个比相等

4.练习

下面哪组中的两个比可以组成比例?把组成的比例写出来。

(1)6∶10和9∶15 (2)20∶5和1∶4

(3) 和 (4)0.6∶0.2和

5.填空

(1)如果两个比的比值相等,那么这两个比就( )比例。

(2)一个比例,等号左边的比和等号右边的比一定是( )的。

(二)比例的基本性质(课件演示:比例的基本性质)

1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的.两项叫做比例的外项,中间的两项叫做比例的内项。(板书)

2.练习:指出下面比例的外项和内项。

4.5∶2.7=10∶66∶10=9∶15

3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以80∶2=200∶5为例,指名来说明。

外项积是:80×5=400

内项积是:2×200=400

80×5=2×200

4.学生自己任选两三个比例,计算出它的外项积和内项积。

5.教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质

板书课题:加上“和基本性质”,使课题完整。

6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

教师板书:

《比例的意义》教学设计(精选16篇)

作为一名教职工,很有必要精心设计一份教学设计,借助教学设计可以让教学工作更加有效地进行。那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的《比例的意义》教学设计,希望能够帮助到大家。

《比例的意义》教学设计 篇7

教学内容:

《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

学生分析:

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

设计理念:

学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

教学目标:

1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

教学流程:

一、复习铺垫,猜想引入

师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

2.猜想

师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

师:从字面上看“反比例”与“正比例”会是怎样的关系?

生:相反的。

师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

生:(略)

反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

二、提供材料,组织研究

1.探究反比例的意义

师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

(1)表中有哪两个相关联的量?

(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

2.小组讨论、交流。(教师巡回查看,并做适当指导。)

3.汇报研究结果

(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

生2:已行路程十剩下路程=总路程(一定)。

生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

4.做一做(略)

5.学习例6

师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

三、巩固练习,拓展应用

1.基本练习。(略)

2.拓展应用。

师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的.同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

3.综合练习

四、总结

反思:

《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

《比例的意义》教学设计 篇8

【教学目标】

1、理解比例的意义,认识比例各部分的名称。

2、让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质判断两个比能否组成比例,会组比例。

3、培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

【教学重点】理解比例的意义和基本性质。

【教学难点】

应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

【教学准备】课件,扑克牌10张(2~10以及A),圆规一个。

【教学过程】

一、复习准备

(1)一辆汽车4时行160km,路程和时间的比是多少?这个比表示什么?

(2)求下面各比的比值,你发现了什么?

121634184、52、、7106

教师:同学们发现4、52、、7和106的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

二、探究新知

1、提出问题

这节课我们在比的知识基础上,进一步学习新知识。

揭示课题——比例的意义和基本性质。板书:比例的意义和基本性质

2、探究比例的意义

课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

竹竿长(米)26……

影子长(米)39……

教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

学生讨论并写出比,教师选几个有代表性的比在黑板上板书。

教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

学生口答,教师板书:32=96,62=93……

教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

教师:29和36能组成比例吗?你是怎么知道的?

指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”再判断

25和80200能否组成比例?并说明理由。

组织并指导学生完成书上第50页的课堂活动。

3、认识比例的各部分

教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

指导学生看书后汇报。

教师:请同学们分别找出32=96和62=93的内项和外项。

学生找出后,随学生的汇报教师板书:

要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

4、教学比例的基本性质

教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

5、运用比例的基本性质判断两个比是否能组成比例

教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0、425能否和1、275组成比例?为什么?

学生讨论后回答:因为0、4×75=25×1、2,所以0、425和1、275能组成比例。

三、巩固提高

(1)说一说比和比例有什么区别。

讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

(2)在65=3025这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

2,3,4和6

四、全课总结

先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

五、课堂作业

(1)指导学生完成练习十一的第1题。

要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

(2)学生独立完成练习十一的第2题,教师订正。

《比例的意义和基本性质》教学设计7

教学内容:

义务教育课程标准实验教科书人教版数学六年级下册。

教学目标:

1.理解和掌握比例的意义和基本性质。

2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。

教学过程:

一、认识比例的意义

1.出示小红、小明在超市购买练习本的一组信息。

(1)根据表中信息,你能选出其中两个量写出有意义的比吗?

(学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)

(2)算算这些比的比值,说说你有什么发现。

(学生说出自己的发现,教师用“=”连接比值相等的两个比。)

(3)说说什么叫比例。

(学生各抒己见,师生共同归纳后板书:比例的意义)

评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

2.即时训练。

A.判断下面每个式子是不是比例,依据是什么?

(1)10∶11(2)15∶3=10∶2

a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。

b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?

评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

3.教学比例各部分的名称。

(1)引导学生读教材(相关内容),认识比例各部分名称。

(2)集体交流。(教师板书:内项、外项)

(3)把比例写成分数形式,指出它的'内、外项。

(4)任意写一个比例,同桌相互说一说比例各部分的名称。

二、探究比例的基本性质

1.填数。

(1)出示比例8∶()=()∶3。想一想,这两个空可能是哪两个数。

〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕

(2)观察思考:在填这些数的过程中,你有什么发现?

(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)

(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)

A.先验证黑板上的比例式,再验证自己写的比例式。

B.概括比例的基本性质。同桌相互说一说比例的基本性质。

(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)

评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。

2.即时训练。

应用比例的基本性质,判断下面的两个比能否组成比例。

3.6∶1.8和4∶24∶9和5∶10

小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。

三、巩固新知,解决问题

1.猜数游戏。

在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?

3∶5=6∶()()∶5=6∶()3∶5=()∶()

2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)

利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)

评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。

总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。

《比例的意义》教学设计 篇9

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教学重点:

认识反比例关系的意义,掌握成反比例量的变化规律及其特征。教学难点:能够比较有条理的叙述判断过程。教学过程

一、谈话导入:

师:上一节课我们研究了正比例关系,现在谁能说一说判断两个量是不是成正比例的依据是什么?指名说

师:咱们一块做几道题判断一下。出示:

1、除数一定,被除数和商

2、单产量一定,总产量和面积

3、加数一定,和和另一个加数

4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据

师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)

二、学习

师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)

师:到底同学们的`猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流

学生自己填,在小组活动,师巡视学生台前展示交流

师:这两个情境中的两个量有什么共同点?这和之前我们推测的一样吗?你能根据我们这两道题总结一下什么是反比例关系吗?指名说,出示大屏幕定义,齐读

师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?

指名说,(大屏幕出示红色字)

师:你能举出一些生活中成反比例的关系的例子吗?指名举例,追问:相关联的量是哪两种?不变的量是什么?

师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。

今天我们学习了反比例关系,大家想想它和我们之前研究的正比例关系有什么相同和区别?指名说出示表格,明确正比例和反比例的异同点。

师:还记得正比例关系图象是什么样的吗?反比例关系也可以用图象来表示,(出示研究单中的两幅图),它和正比例关系图象有什么不同?对,它们是一条

光滑的曲线。拿第二道题举例,你能看出杯子的底面积分别是40平方厘米,50平方厘米时,水的高度分别是多少吗?指名说

师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?

三、练习

1、书上51页8、9、10题,独立写,集体交流。

2、书上51页11题,指名交流,说理。

四、总结

师:这节课你有什么收获?指名说

师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。

《比例的意义》教学设计 篇10

【教学内容】

苏教版P40页例3、练一练及练习九的3----7题。

教学目标:

1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

教学重点:理解比例的意义。

教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

教学过程:

一、创设情境,导入新课

师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)

师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)

师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)

好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)

2厘米

3.2厘米

4.8厘米

3厘米

6.4厘米

4厘米

9.6厘米

6厘米

二、新授

师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?

(学生板演,观察到比值相等,教师板书:两个比相等)

师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)

教师边指着这组相等的.比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)

(教师再强调:一定是比值相等的两个比才能组成比例。)

师:你还能从四面国旗中找出哪些比例?

(学生写在练习本上,然后汇报。教师板书)

师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)

?师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

学生从形式上区分:比由两个数组成;比例由四个数组成。

学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

三、巩固应用

(一)数的比例

课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)

(二)形的比例

出示两个具有放大关系的三角形

3厘米

5厘米

4.5厘米

7.5厘米

师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)

(三)生活中的比例

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

1、课本41页第3题(学生独立完成,小组订正交流。)

2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)

四、总结

师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)

师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。

五、课堂检测

1、下面哪些组的两个比可以组成比例?如果能,在()打对号。

10:2和35:42()0.6:0.2和:()

:4和3:():和12:8()

2、在下面的六个比中,选择两个比组成比例。

::4:71.4:2.8:10:15

3、写出比值是的两个比,并组成比例。

4、小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?

六、布置作业

课本练习九4题、7题

《比例的意义》教学设计 篇11

第一课时比例的意义

教学内容:

比例的意义(教材第40页的内容)

教学目标:

1、理解和掌握比例的意义。

2、了解比和比例的区别与联系。

2、能用比例的意义判断两个比能否组成比例。

教学重难点:

1、认识比例,理解比例的意义。

2、在已有知识的基础上,结合实例引出新的知识。

教具准备:

情景图、多媒体课件、习题卡。

教学过程:

一、导入

出示课题:比例

看到课题你想到了以前学过的什么知识?(生1,生2等回答)

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5

求完比值你觉得哪些比有联系?

【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】

“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义

二、揭题示标。

预设:生:1、比例的意义是什么?

生:2、比例的意义有什么作用?

(师趁机板书在黑板右上角)

【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】

本节课我们就来完成这两个目标:

三、自主探索

出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?

【设计意图:对学生同时进行思想品德教育和爱国教育】

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)

【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】

(二)自学

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享

谁愿意把你的结果和大家分享?师相机板书

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

出示“比例的意义”概念

擦去开始板书中的“?”并把比例可用分数形式表示板书出来

【设计意图:这一环节的'设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】

师:你能说一说组成比例要具备哪些条件吗?

生:…

师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?

生:…

【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】

四、当堂检测(牛刀小试)

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21

(2)15∶3和60∶12

五、当堂训练:

1、把下面的式子进行归类:

(5)72:8=3X3(6)3.6:6=0.6

比:()

比例:()

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()

(2)、如果两个比可以组成比例,那么这两个比

的比值一定相等。()

(3)、比值相等的两个比可以组成比例。()

(4)、0.1∶0.3与2∶6能组成比例。()

(5)、组成比例的两个比一定是最简的整数比.()

六、拓展提升(思绪飞扬)

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?

设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握

七、全课总结

今天这节课你有什么收获?

八、课堂作业

第43页第2、3题。

九、抽查清。(每组4号同学完成)

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5

十、板书设计

比例的意义

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

十一、教学反思:

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

《比例的意义》教学设计 篇12

一、教材分析

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

二、学情分析

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

四、教学重难点

重点:理解反比例函数意义,确定反比例函数的表达式.

难点:反比例函数表达式的确立.

五、教学过程

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

位:m)随宽x(单位:m)的.变化而变化。

请同学们写出上述函数的表达式

14631000(2)y= tx

k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y= (2)xy=10 (3)y=k-1x (4)y= -

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

k x?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=1.5时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

《比例的意义》教学设计 篇13

教学目标:

1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。

3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。

教学重难点:

教学重点:理解比例的意义和基本性质。

教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

师生问好!

师:课前我们先进行一组口算练习,下面请##同学上台主持。

一、求比值

3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=

5 : 20= 8.8 : 1.1= 16 : 96=

二、化简比

4 : 5= 2 : 20=

32 : 4= 4 : 44=

15 : 25= 10 : 80=

师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分

(小组活动)

师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?

(学生回答)

师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?

(学生回答)

师:同学们真了不起,提出了这么多问题!

学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。

(小组活动)

师:哪个小组的同学愿意来汇报自主学习的内容?

生汇报:我来汇报……其他小组有什么评价或补充吗?

师评价

师:看来同学们学的不错,表示两个比相等的式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?

(生答)

师:我真为你们感到骄傲,想到了这么多不同的答案!

组成比例的'四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

说出老师指的这个数是比例的外项还是比例的内项?

(师指生齐说)

师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成

师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?

师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。

师:看来同学们学的真不错,其实,在比例的2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示

(指1生读温馨提示)

(生合作探究)

师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。

(生汇报展示)

师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。

师:下面我们就用比例的基本性质解决拓展应用

师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?

(生谈收获)

师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》

师:下面我们进行达标检测

(生完成后)

师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。

(小组汇报)

师:全对的同学请举手,组员全对的奖励一颗小印章。

师:同学们这节课表现得真棒,继续努力,好,下课!

教后反思:

《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。 备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:

一、找准知识衔接点,为新知做好铺垫

比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。

二、相信学生利用导学案自学的能力,大胆放手。

课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。

三、从情境图入手,丰富资源

从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。

四、自主探索、合作交流、探究新知。

在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。

五、练习由易到难

每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12 : ( ) = ( ) : 5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。

根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。

每一次的课,总会有一些优点,但也发现了自己的一些不足:

一、采用多种评价方式

二、研究教材、挖掘教材、如何准确地处理和把握教材的能力还有待提高。

只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。

《比例的意义》教学设计 篇14

教学内容

人教版教材第33-34页比例的意义和基本性质。

教学目标

1、理解比例的意义,认识比例各部分的名称。

2、能运用比例的意义判断两个比能否组成比例,并会组比例。

3、理解并会应用比例的基本性质。

教学过程

一、情境导入,复习比的知识

教师出示课件,结合画面引入。

师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

教师板书课题:比例的意义和基本性质。

师:说到比例,我们很容易想起前面学过??(教师拖长声音)

生:比(几乎异口同声地)

师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

二、自主探究,学习比例的意义

1、探求共性,概括意义

师:刚才第三题10:6 与 4.5:2.7 的比值有何特点?

生1:我发现这两个比的比值相等 。 师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

生2:用等号。(师把左右两个中间板书 = )

师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?

生:比例(有几个学生低声说)

师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)

师:你现在想知道什么叫比例吗?

生:想(学生声音响亮,愿望强烈)

师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式: a:b=c:d或 = (b、d不能为0)

2、根据意义,判断比例

师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?

生:看比值是不是相等

师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10 和 9∶15 (2)20∶5 和 1∶4

师:比一比 看谁说的又快又好!

生1:因为 6∶10 = 0.6

9∶15 = 0.6

所以 6∶10 = 9∶15

生2: 因为 20∶5 = 4

1∶4 = 0.25

所以 20∶5和1∶4不能组成比例. (学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)

师:请同学们自己独立完成学案上的课堂训练

(一)第1题。(再次巩固判断两个比是否成比例的方法,并熟练解题思路。)

[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

三、合作探究,学习比例的基本性质

1、组织看书,认识名称

师:a:b里比号前面的a叫——(生齐答:前项)比号后面的b叫——(生齐答:后项)。那么在比例里的各部分有哪些名称呢?请同学自学课本,并汇报。然后完成学案上的课堂训练

(一)第2题进行巩固。

2、活动探究,总结性质

小组活动内容:

①观察比例的两个内项与两个外项,算一算,你发现了什么。

②如果把比例写成分数形式,是否也有上面发现的规律?

③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再找几个比例进行验证。

④通过以上研究,你发现了什么?(5分钟后,学生基本停止了讨论。)

师:请汇报你发现的规律。

生1:两个外项的积等于两个内项的积

生2:不对,老师,我有个反例:0:1=1:0 0×0=0,1×1=1,所以??

还没等生2说完,生3迫不及待:不对,比的后项不能为0的,你这个不是比例。

生2:那我0:1=0:2 (很着急的改了)

生4:那0×2=0 ,1×0=0,还是两个外项积等于两个内项积。

师:同学们验证得非常认真,现在我们可以一致公认——(生齐答:任何一个比例里,两个外项的积等于两个内项的.积。)

师:和比的基本性质一样,我们把这种性质叫做比例的——(生齐答:比例的基本性质。)(板书:基本性质)

3、应用性质,自主判断

师:刚才我们应用比例的基本性质解决了这两个问题(课件展示刚才的问题:下面哪组中的两个比可以组成比例?把组成的比例写出来(1)6∶10和9∶15 (2)20∶5和1∶4)

师:学过比例的基本性质后,你有新的方法解决这个问题吗?不一会,就有学生举起了小手。

生1:第(1)题,只要算一下6×15=90,10×9=90,乘积相等,所以能组成比例.

生2:第(2)题,20×4=80,5×1=5,乘积不相等,所以不能组成比例.

师:很好!同学们发现了一种新的判断两个比是否成比例的方法,现在请大家用你发现的方法完成学案课堂训练

(二)。

4、总结方法,辨析概念

师:我们学了比例的意义和基本性质后,你有几种方法判断两个比能否组成比例?

生:两种,一种是利用比例的意义,通过计算两个比的比值来判断;另一种是利用比例的基本性质,通过计算能够构成内项与外项的两个数的积是否相等来判断。

师:(惊喜!)这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢?

生1:比是两个数相除,是一个算式;比例是两个比相等,是一个等式

生2:比有两项,比例有四项。

生3:比与比例各部分的名称不同,比的项分别叫做前项和后项;比例的四项,有两个叫做外项,有两个叫做内项。

师:同学们的概括能力很强,你们真的很棒!

师:把你们回答的内容总结一下,边说边展示课件:从意义上、项数上进行对比:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。 [设计意图:以上比例基本性质的教学,把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。]

四、灵活运用,大显身手

师:以上就是我们这节课学习的内容,大家想要知道自己掌握的情况,请认真完成学案灵活运用与拓展天地的部分。

[设计意图:这一部分设计了活用知识点与拓展天地两个部分,其中活用知识点侧重于考察基础知识、而拓展天地则侧重于培养学生的发散思维。拓展天地的这个问题要想写出全部的八个比例式,需要综合运用比例的意义与基本性质,难度比较大,而教师的教学设计就是要善于把学生已有的知识引向纵深,并以此为载体促进学生能力的提高。]

五、归纳小结,交流收获

师:同学们,通过本堂课的学习,你有什么收获,还有什么疑问?

[设计意图:培养学生反思自己学习过程的意识,有利于学生掌握、巩固新知,并促使学生能深入思考和探索。

《比例的意义》教学设计 篇15

教学内容:

青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。

教学目标:

1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。

2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。

教学重点:

理解比例的意义和基本性质,能正确判断两个比能否组成比例。

教学难点

自主探究比例的基本性质。

教学过程

一、导入

1、谈话

师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?

生1:比的意义。

生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

生3:比的前项除以后项,所得的商就是比值。

……

(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)

二、合作探究,学习新知

1、比例的意义

师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?

生:比例?(书:课题比例)

师:看到这个课题你想知道什么?

(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)

生:什么叫比例呢?

生:(书)表示两个比相等的式子叫做比例。

师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)

师:你也能举出一个这样的例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?

(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。

师:通过以上练习,你认为这句话中哪些词最重要?为什么?

生1:两个比,不是一个比

生2:相等,这个比必须相等

生3:式子,不是两个等式是式子。

师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?

(1)0、8:0、3和40:15

(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15

(4)3/18和4/24

(学生独立判断,师巡视指导,然后汇报)

师:先说能否组成比例,再说明理由,

生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。

同理教学:(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。

师:怎样改能使它组成比例呢?

生:4:8=15/2:15或8:2=15:15/4

同理教学(4)3/18和4/24

师:像3/18和4/24是比例吗?

师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?

2、认识比例各部分的名称。

师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?

生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)

师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?

生:2和32是它的内项,16和4是它的外项。

师:请同学们快速抢答老师指的数是比例的外向还是内项。

生:(激烈抢答):外项

师:同学们反应真快,分数的形式中哪些是比例的项呢?

生:2和32是内项,16和4是外项。

师:老师指分数比例学生抢答。

3、探索比例的基本性质。

师:同学们学得真不错,敢不敢和老师来个比赛?

生:(兴趣高涨):敢!

师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?

师:谁来。

生1:4:5,生2:8:9不能组成比例。

生:对。

师:服气吗?不服气咱们再来一次,

生1:1、2:1、8,生2:3:5

师:不能。对吗?

生:对。

师:老师又赢了,这回服气了吧。(学生点头)

师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?

生:想。

师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:

1、可以通过观察、算一算的.方法进行研究。

2、你能得出什么结论?)

师:现在请将你的发现在小组里交流一下,看看大家是否同意。

(学生讨论)

师:哪个小组愿意将你们的发现与大家分享?

生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。

师:有道理,不错,还有其他发现吗?

生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。

师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)

师:这是两个外项的积,(师板书:两个外项的积)

(学生板书:16×4=64)

师:这是两个内项的积,(师板书:两个内项的积)

师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?

师:其他组的同学同意他们这个结论吗?

生:同意。

(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)

师:真的所有的比例都是这样吗?怎么验证?

生:可以多举几个例子看看。

师:这是个好建议,那快点行动吧。(学生独立验证)

生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、

生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、

师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。

4、比和比例的区别

师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)

师:哪一组的代表来说一说。

生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。

生:比和比例形式不同。比是一个比,比例是两个比。

生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。

5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。

三、巩固练习

1、下面每组比能组成比例吗?

(1)6:3和8:5(2)20:5和1:4

(3)3/4:1/8和18:3(4)18:12和30:20

生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。

生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。

师:怎样改一下使它们能组成比例?

生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。

生4:还可以把1:4改成4:1,也能组成比例。

生5:第(3)个可以组成比例,因为3/4×3=1/8×18。

生6:第(4)个可以组成比例,因为18×20=360,12×30=360。

师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。

2、填一填。

2:1=4:()1、4:2=():3

3/5:1/2=6:()5:()=():6

师:最后一题还有没有别的填法?

生1:5:(1)=(30):6

生2:5:(30)=(1):6

生3:5:(2)=(15):6

生4:5:(15)=(2):6

师:怎么会有这么多种不同的填法?

生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。

3、用2、8、5、20四个数组成比例。

师:你能用这四个数组成比例吗?

师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?

生:2和20做外项,8和5做内项时有4种:

2:8=5:202:5=8:20

20:8=5:220:5=8:2

8和5做外项,2和20做内项时也有4种:

8:2=20:58:20=2:5

5:2=20:85:20=2:8

四、课堂总结

师:说一说,这节课你有哪些收获?

生1:知道了比例的意义。

生2:学习了比例的基本性质

生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。

师:这节课哪个地方给你留下的印象最深刻?

《比例的意义》教学设计 篇16

【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第32-33页例1及“做一做”。

【教学目标】

1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。能根据不同要求,正确的列出比例式。

3、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。

【教学重点】比例的意义。

【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。

【教学准备】多媒体课

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例?

表示两个比相等的式子叫做比例。

2、今天是星期天,小瑜和小丽一起到文具店去买东西。

(1)小瑜用12元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?

(2)反馈:

①谁买的本子便宜些?说说你的理由。

②还有别的方法吗?

③这两个比能组成比例吗?为什么?

二、关键点拨

1、比例的意义。

出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时)25

路程(千米)80200

根据表中的数量你能写出几个比例?你是怎么想的?他们的`比值分别表示什么?

2、小结:判断两个比能否组成比例,最关键是看什么?

3、比和比例有什么区别?

生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

三、巩固练习

1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。

2、独立完成“做一做”第2题后反馈交流。

3、5:8和1:5这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

反馈:

(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。

(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

反思与体会:

在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。

《比例的意义》教学设计 篇17

比例的意义和基本性质导学案

教学内容:比例的意义和基本性质教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。教学重点难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

一、趣味导课

1、谈话

师:大家或许曾在电视节目中看到过这样的情节:一个侦探,只要发现了罪犯的脚印,就可估计出罪犯身材大约的高度,这是为什么呢?其实是因为在我们人体上存在着许多有趣的比!例如:将拳头翻滚一周,它的长度与脚的长度的比大约是1:1,身高与双臂平伸长度的比大约也是1:1,身高与胸围长度的比大约是2:1……那么这些有趣的比还有什么用处呢?比如:你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。像这些生活中的例子,实际上就是用这些有趣的比去组成一个个的比例来进行计算的。这节课我们就一起来学习“比例的意义和基本性质”。板书课题

2、复习

(1)、什么叫做比?什么是比值?(2)、怎样求比值?(3)、求比值

6:10

9:15

1/2:1/3

6:4

:

学生求出各比的比值后,再提问:观察一下,这几个比的比值有什么特点?因为这两个比的比值相等,所以我们可以用一个符号连起来。板书:像这样表示两个比相等的式子叫做比例

二、探究新知

(一)深入探讨:(1)比例有几个比组成?

(2)是不是任意两个比都能组成比例?

(3)判断两个比能不能组成一个比例,关键要看什么?

(二)做一做出示课件中的做一做

(三)教学比例的基本性质

1、自学比例各部分的名称。

教师:下面我们就来看看组成比例的`四个数分别被叫做比例的什么?(学生看书第二页中间内容后回答)随着学生的回答教师出示:

: = 60: 40

└-内项-┘

└------外项-------┘

师:那下面谁能来说一说这个比例当中各部分的名称呢?()

2、研究比例的基本性质及应用。(1)小游戏——我是诸葛亮

三、系列训练

1、应用比例的意义和基本性质判断3:4和6:8,:2和7:10能不能组成比例。

先一起做第一个,然后指名回答第二个。

2、把下面的等式改写成比例:(能写几个写几个)16 × 3 = 4 × 12学生写后根据学生回答教师板书:16:4=12:3

4:16=3:12 16:12=4:3

4:3=16:12 3:4=12:16

12:16=3:4 3:12=4:16

12:3=16:4

四、总结归纳

1、“比”和“比例”两个概念有什么区别?引导学生从意义上、项数上进行对比。

最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

2、比例的基本性质是什么?应用比例的基本性质可以做什么?课堂总结:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。大家可以想想这句话的意思来联想一下“解比例”的做法。

板书

比例的意义和基本性质

表示两个比相等的式子:=10:6第一种—— 12:16=112 :2 16:4=20 : 5因为16×5=80 4×20=80所以16:4=20:5

第二种—— 3:4和6:8

因为3×8=24 4×6=24 3×8=4×6

所以3:4 = 6:8

《比例的意义》教学设计 篇18

教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.

教学目标:

知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:理解比例的意义和基本性质.

教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

教学准备:课件

教学过程:

一、激趣导入

1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

2、请同学们看大屏幕,课件出示P32页四幅图。

二、探究新知

1、比例的意义

师问:

①这四幅图中有什么共同的事物?(齐说)

②这四面国旗出现在什么场合或什么地点?(指生回答)

③这四面国旗的长与宽分别是多少?(指生回答)

④这四面国旗的大小相同吗?

说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。

⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)

⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)

师问:

①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。

那么我们能用什么符号可以把它们连接成等式?生:等号

谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40

②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40

③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)

师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)

师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)

师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义

问题:

①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)

②判断两个比能不能组成比例,关键要看什么?

③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)

我们已经了解了比例的意义,下面我来考一考大家:

课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。

2、比例各部分名称

师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?

学生回答上面的问题,教师课件演示。

做一做:指出下面比例的内项和外项(课件出示)

4、5∶2、7=10∶6240/160=144/96

3、比例的基本性质(课件出示)

观察:2、4∶1、6=60∶40

思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)

用下面的比例验证你的发现:

6∶10=9∶158∶2=20∶5

你能用一句话把发现的规律说出来吗?(找3名同学回答)

下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)

师:看大屏幕(课件出示)2、4/1、6=60/40

问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?

指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件

演示2、4/1、6=60/40→2、4X40=1、6X60

4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?

课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?

讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。

因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5

5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示

6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?

生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的.基本性质,看两个外项和两个內项的积是否相等。

三、巩固新知(课件出示)

做一做,相信你能行!

1、判断

①10∶5=2是比例。()

②在比例里,两个外项的积与两个內项的积的差是O、()

2、填空

①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()

②2:9=8:()

3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)

四、通过这节课的学习,说说你有什么收获或学到了那些知识?

五、课后作业:搜集生活中的比例,看看比例在生活中的作用?

板书设计比例的意义和基本性质

2、4:1、6=3/260:40=3/2

2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。

2、4:1、6=5:10/32、4;1、6=15:10

5:10/3=15:105:10/3=60:40

60:40=15:10

2、4X40=96在比例里,两个外项的积等于两

1、6X60=96个内项的积。这叫做比例的基本性质。

《比例的意义和基本性质》教学反思

本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。

教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。

在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。

习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。

通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。

我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。

本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。

《比例的意义》教学设计 篇19

教学内容:比例的意义

教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

教学重点:比例的意义。

教学难点:找出相等的比组成比例。

教学过程:

一、旧知铺垫

1、什么是比?

(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1

(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

1.2:1.4=12:14=6:7

2.求下面各比的比值。

12:16:4.5:2.710:6

二、探索新知

1.教学例1。

(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

①说一说各幅图的情景。

②图中有什么相同之处?

(2)你知道这些国旗的长和宽是多少吗?

①出现各图中国旗的长、宽数据。

②测量教室里国旗的长、宽各是多少厘米。

(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

学生回答教师板书:

60:40=

(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

①学生回答长、宽比值。

2.4:1.6=

②两面国旗的长和宽的比值相等。

板书:2.4:1.6=60:40

也可以写成=

(5)什么是比例?

在这一基础上,教师可以明确告诉学生比例的意义,并板书:

表示两个比相等的式子叫做比例。

(6)找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

过程要求:

①学生猜想另外两面国旗长、宽的比值。

②求出国旗长、宽的比值,并组成比例。

③汇报。

如:5:=15:10=

5:=15:105:=2.4:1.6

==

2.做一做。

完成课文“做一做”。

第1题。

(1)什么样的比可以组成比例?

(2)把组成的比例写出来。

(3)说一说你是怎么找的。

(4)同学之间互相交流,检验各自所写的比例。

第2题。

(1)学生独立写比例,看谁写得多。

(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3.课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

三巩固练习

完成课文练习六第1~3题。

四作业

课后记:

教学内容:比例的基本性质

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的.基本质性。

教学过程:

一、旧知铺垫

1.什么叫做比例?]

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4:和5:2

:和:0.2:和1:4

3.用下面两个圆的有关数据可以组成多少个比例?

如(1)半径与直径的比:=

(2)半径的比等于直径的比:=

(3)半径的比等于周长的比:=

(4)周长与直径的比:=

二探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外

项项项项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:

两个外项的积是×=0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

大家都在看