北师大六年级数学下册教案

短文网

2025-12-07教案

短文网整理的北师大六年级数学下册教案(精选10篇),快来看看吧,希望对您有所帮助。

北师大六年级数学下册教案 篇1

学情分析

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

教学目标

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点和难点

教学重点:认识反比例关系的意义。

教学难点 :掌握成反比例量的变化规律及其特征。

教学过程一、复习导入

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?

点名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?

(板书:每袋重量和袋数的积一定)

乘积8000是什么数量,这种数量关系用式子怎样表示?

[板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的量,它们是什么关系的量呢?

像例4、例5里这样两种相关联的`量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

问:两种相关联的量成不成反比例的关键是什么?

(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

三、巩固练习

1. 做“练一练”第l,2,3,4,5题。

指名口答,说说理由。思考时可以引导看数量关系式,说明理由。

2.拓展应用。

3.综合练习

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

北师大六年级数学下册教案 篇2

教学目标

1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。

2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。

3、结合欣赏和设计美丽的图案,感受图形世界的神奇。

教学重难点

1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。

2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。

教学过程

一、情境导入利用课件显示美丽的图案,配音乐,让学生欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这些美丽的图案,你有什么感受?

2、让学生尽情发表自己的感受。(你看到的这些生活中的美丽图案,你想说什么?)

三、观察、分析图案:

1、课件展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?(教材中呈现的花瓣是曲线图形,学生在画这个图时会感到困难,可以让学生看着图进行分析,也可以剪好一个基本图形,让学生在操作中体会图案设计的基本过程。)

2、小组内进行交流。

3、小组代表汇报研究结果。(汇报花瓣图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)

4、你还有其他方法吗?

5、教师小结:

其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。

四、设计图案。

1、鼓励学生观察分析图形的变换,进一步认识平移,旋转和轴对称。让学生说说自己的方法,把自己的思考过程表达出来。

2、小组合作设计图案。(组长汇报交流的结果。)

3、作品展示:

(1)作品展示:把学生设计的图案分小组张贴在教室的前面,学生参观作品。

(2)学生评价:每个小组学生上台对自己小组的作品进行评价,比一比看谁评价得好。

4、全班交流,学生欣赏并评价。(学生点评)

课堂小结:

同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?同学们,数学就在我们生活中,只要你拥有丰富的知识,你就能够享受数学带来的无限乐趣!让我们睁开智慧的双眼,去探索,去发现,好吗?

北师大六年级数学下册教案 篇3

学习目标:

1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的图形。

2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

学习难点:在方格纸上画出线段旋转90度后的图形

课前准备:钟表,课件,教具

学习过程

环节学案

回顾旧知

1、物体的'运动有( )和( )。

2、平移和旋转都只改变图形的( ),不改变图形的( )和( )。

自主探索

1、钟面上指针旋转的方向就是( )方向;相反的方向就是( )方向。

2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。

3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。

4、旋转三要素指( )( )( )。

合作探究

当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。

达标检测

基础性作业:

课本29页练一练1、2题(看课件)。

一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。

提高性作业:

1、画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。

拓展性作业:

如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N

北师大六年级数学下册教案 篇4

教学过程:

一、引入变量的概念

师:老师买了10个苹果,吃了2个,还剩?个吃了4个,还剩?个吃了7个,还剩?个

问:在老师刚才叙述的吃苹果这件事中有几个量?其中哪些量是变化的?怎样变化?

(有三个量;吃的个数与剩下的个数是变化的;一个增加,一个减少。)

师:一个量变化,另一个量也随着发生变化,可以看出,这两个量是互相依赖的变量,也可以说是相关联的量。

二、新授

师:好,下面我们一起看书P18。

1. 看第一个例子,说说这个统计表的内容是什么?

(是小明体重变化的情况)

问:表中的`哪些量在发生变化?

年龄在变,体重也在发生变化:年龄增加,体重也在增加。

问:我们能不能用一个图象来表示这两个量之间的变化关系呢?用一个什么图表示合适呢?(折线统计图)

2. 看第二个例子。骆驼被称为沙漠之舟,这就是反映骆驼体温随时间的变化而变化的图象。请你认真观察图象,图象中反映了哪些变量之间的关系?

(时间、体温)

指导学生读懂图意:

(1) 一天中,骆驼体温最高是多少?(400C)最低是多少?(350C)

(2) 一天中,在什么时间范围内骆驼的体温在上升?(4时到16时)在什么时间范围内骆驼的体温在下降?(0时到4时,16时到24时)

师:骆驼的体温是随时间而呈周期性的变化。

(3) 第二天8时骆驼的体温与前一天8时的体温有什么关系?

师:次日8时指第2天8时,与第一天8时相比,增加了24小时,应是图中的32时。

3. 看第三个例子。是蟋蟀叫的次数与气温之间的近似关系。

问:你认为它们之间的这种关系能不能用一个含有字母的式子来表示呢?

h=t7+3

三、引导学生举出生活中一个量随另一个量变化的例子。

如:一天的气温随时间的变化而变化;汽车行使的路程随时间的变化而变化等。

问:你能举出生活中一个量随另一个量变化的例子吗?

(学生举例,只要合理,老师就要给予肯定。)

四、课堂小结。

同学们,在我们的生活中存在着大量互相依赖的变量,其中一个量变化,另一个量也会随着发生变化,我们就称这两个量是两个相关联的量。

北师大六年级数学下册教案 篇5

【教学目标】

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

【教学重点】

圆锥体体积计算公式的推导过程.

【教学难点】

正确理解圆锥体积计算公式.

【教学步骤】

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

5、推导圆锥的体积公式:

圆锥的体积是和它等底等高圆柱体积的.1/3

V=1/3Sh

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

(二)教学例1

1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

学生独立计算,集体订正.

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积.

(2)已知圆锥的底面直径和高,求体积.

(3)已知圆锥的底面周长和高,求体积.

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

四、随堂练习

1、求下面各圆锥的体积.

(1)底面面积是7.8平方米,高是1.8米.

(2)底面半径是4厘米,高是21厘米.

(3)底面直径是6分米,高是6分米.

【板书设计】

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

北师大六年级数学下册教案 篇6

教学内容:

教材第4~5页例2、例3和练一练及练习一。

教学要求:

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教具学具准备:

教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

教学重点:

掌握圆柱侧面积的计算方法。

教学难点:

能根据实际情况正确地进行计算。

教学过程:

一、铺垫孕伏:

1.复习圆柱的特征。提问:圆柱有什么特征?

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

3.提问:圆柱的一个底面面积怎样计算?

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

二、自主研究:

1.认识表面积计算方法。

(1) 请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

5.组织练习。

(1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。

北师大六年级数学下册教案 篇7

教学内容:

北师大版小学数学六年级下册总复习中第78-79页的内容

教学目标:

知识与能力:

1、进一步认识图形的平移,旋转与轴对称。

2、能确定轴对称图形的对称轴,能在方格纸上画出一个图形的轴对称图形,能将简单的图形平移或旋转90°。

过程与方法:

整理已学过的平面图形的轴对称性,加深对这些图形的认识。

灵活运用平移,旋转和轴对称在方格纸上设计图案。

情感态度与价值观:

在观察、操作、想象、设计图案等活动中,发展空间观念。

教学重点:

进一步掌握对称、平移、旋转的特征。

教学难点:

综合运用平移、旋转与对称的特征进行图形的变换,进一步发展学生空间观念。

教学过程:

一、创设情境,引入课题

师:同学们,上周末咱们班的李坤和王明随爸爸、妈妈一起去了一个地方。想跟他们一起去看看吗?

(课件出现游乐场情景:摩天轮、穿梭机、旋转木马、滑滑梯、推车、小火车、速滑)

师:游乐园里各种游乐项目的运动变化相同吗?(学生说分类方法)

生1:在游乐园里像滑滑梯、推车、小火车、速滑这些物体都是沿直线移动,这样的现象叫做平移。生2:摩天轮、穿梭机、旋转木马这些物体都绕着一个点或一个轴移动,这样的现象叫做旋转。

师:平移和旋转是我们常见的物体的运动方式,数学上我们称为变换方式,除了这两种方式,还有哪种方式可以称为变换呢?

生:轴对称。

师:我们今天就一起来复习图形与变换的知识。(板书课题)

北师大六年级数学下册教案

作为一名优秀的教育工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?以下是小编收集整理的北师大六年级数学下册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

北师大六年级数学下册教案 篇8

教学过程:

一、引入变量的概念

师:老师买了10个苹果,吃了2个,还剩?个吃了4个,还剩?个吃了7个,还剩?个

问:在老师刚才叙述的吃苹果这件事中有几个量?其中哪些量是变化的?怎样变化?

(有三个量;吃的个数与剩下的个数是变化的;一个增加,一个减少。)

师:一个量变化,另一个量也随着发生变化,可以看出,这两个量是互相依赖的变量,也可以说是相关联的量。

二、新授

师:好,下面我们一起看书P18。

1. 看第一个例子,说说这个统计表的`内容是什么?

(是小明体重变化的情况)

问:表中的哪些量在发生变化?

年龄在变,体重也在发生变化:年龄增加,体重也在增加。

问:我们能不能用一个图象来表示这两个量之间的变化关系呢?用一个什么图表示合适呢?(折线统计图)

2. 看第二个例子。骆驼被称为沙漠之舟,这就是反映骆驼体温随时间的变化而变化的图象。请你认真观察图象,图象中反映了哪些变量之间的关系?

(时间、体温)

指导学生读懂图意:

(1) 一天中,骆驼体温最高是多少?(400C)最低是多少?(350C)

(2) 一天中,在什么时间范围内骆驼的体温在上升?(4时到16时)在什么时间范围内骆驼的体温在下降?(0时到4时,16时到24时)

师:骆驼的体温是随时间而呈周期性的变化。

(3) 第二天8时骆驼的体温与前一天8时的体温有什么关系?

师:次日8时指第2天8时,与第一天8时相比,增加了24小时,应是图中的32时。

3. 看第三个例子。是蟋蟀叫的次数与气温之间的近似关系。

问:你认为它们之间的这种关系能不能用一个含有字母的式子来表示呢?

h=t7+3

三、引导学生举出生活中一个量随另一个量变化的例子。

如:一天的气温随时间的变化而变化;汽车行使的路程随时间的变化而变化等。

问:你能举出生活中一个量随另一个量变化的例子吗?

(学生举例,只要合理,老师就要给予肯定。)

四、课堂小结。

同学们,在我们的生活中存在着大量互相依赖的变量,其中一个量变化,另一个量也会随着发生变化,我们就称这两个量是两个相关联的量。

北师大六年级数学下册教案

作为一位杰出的教职工,总归要编写教案,借助教案可以有效提升自己的教学能力。如何把教案做到重点突出呢?以下是小编收集整理的北师大六年级数学下册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

北师大六年级数学下册教案 篇9

【教学目标】

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

【教学重点】

圆锥体体积计算公式的推导过程.

【教学难点】

正确理解圆锥体积计算公式.

【教学步骤】

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的.沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

5、推导圆锥的体积公式:

圆锥的体积是和它等底等高圆柱体积的1/3

V=1/3Sh

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

(二)教学例1

1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

学生独立计算,集体订正.

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积.

(2)已知圆锥的底面直径和高,求体积.

(3)已知圆锥的底面周长和高,求体积.

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

四、随堂练习

1、求下面各圆锥的体积.

(1)底面面积是7.8平方米,高是1.8米.

(2)底面半径是4厘米,高是21厘米.

(3)底面直径是6分米,高是6分米.

【板书设计】

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

北师大六年级数学下册教案 篇10

教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法

教学过程:

一、导入

1、口算

2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

二、新授

1、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

2、教学求倒数的方法。

(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的`倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

3、教学特例,深入理解

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

4、巩固练习:课本24页“做一做”

(1)学生独立解答,教师巡视。

(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

三、练习

1、练习六第2题:同桌互说倒数。

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

()×()=()×()=()×()

四、总结

你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

教学追记:

倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

大家都在看