短文网整理的有理数的加法教案(精选38篇),快来看看吧,希望对您有所帮助。
有理数的加法教案 篇1
教学目标:
知识与技能:
1.进一步熟练掌握有理数加法的法则。
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。
过程与方法:
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
情感、态度与价值观:
1.培养学生的分类与归纳能力。
2.强化学生的数形结合思想。
3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。
教学重点:
加法运算律的灵活运用,解决实际问题。
教学难点:
能运用加法运算律简化运算,加法在实际中的应用。
教学方法:
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的'实例让学生得出规律。
教学准备:
1.复习有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8
教学过程:
(一)情境引入,提出问题:
鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。
1.叙述有理数的加法法则.
2.小学学过的加法的运算律是不是也可以扩充到有理数范围?
3.计算下列各组数的值,并观察寻找规律。
(1) (-7)+(-5) (-5)+(-7)
(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]
(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]
结论:在有理数运算中,加法交换律、结合律仍然成立。
(二)活动探究,猜想结论:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示:a+b=b+a
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.
在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示:(a+b)+c=a+(b+c)
这里a、b、c表示任意三个有理数.
(三)验证结论:
例1计算16+(-25)+24+(-32)
(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)
解:16+(-25)+24+(-32)
=[16+24]+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则)
=-17 (异号相加法则)
例2计算:31+(-28)+28+69
(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)
解:31+(-28)+28+69
=31+69+[(-28)+28]
=100+0
=100
《2.4.1有理数的加法法则》同步练习
3.若两个有理数的和为负数,那么这两个有理数()
A.一定都是负数B.一正一负,且负数的绝对值大
C.一个为零,另一个为负数D.至少有一个是负数
4.两个有理数的和()
A.一定大于其中的一个加数
B.一定小于其中的一个加数
C.和的大小由两个加数的符号而定
D.和的大小由两个加数的符号与绝对值而定
5.如果a,b是有理数,那么下列各式中成立的是()
A.如果a<0,b0
B.如果a>0,b0
C.如果a>0,b<0,那么a+b<0
D.如果a>0,b|b|,那么a+b>0
《2.4.2有理数的加法运算律》测试
7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比()
A.增产20 kg B.减产20 kg C.增长120 kg D.持平
8.一口井水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.2米;第五次往上爬了0.55米,没有下滑;第六次往上爬了0.48米,此时蜗牛有没有爬出井口?请通过列式计算加以说明
有理数的加法教案 篇2
一、教学目标
1.知识与技能
(1)使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2.数学思考
通过观察,比较,归纳得出有理数加法法则。
3.情感与态度
认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重点
会用有理数加法法则进行运算。
三、教学难点异号两数相加的法则。
四、教学过程
(一)、创设问题情境,探索新知
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。
把学生的分类抽象成数学问题,有以下几种思路。
(二)、讲授新课
1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,想走的方向为负方向。
(1)若两次都是向右走,很明显,一共向右走了5米。记作:(+2)+(+3)=+5
(2)若两次都是向左走,很明显,一共向左走了5米。记作:(-2)+(-3)=-5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。记作:(+2)+(-3)=-1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。记作:(-2)+(+3)= +1
2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。(1)(-4)+(-1)(2)(+5)+(-3)(3)(-4)+(+7)(4)(-6)+3
3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700+(-1800),+(-)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?只有找出规律。师生讨论、归纳出有理数的加法法则:
①同号两数相加,取相同的符号,并把绝对值相加;
②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;除此之外,有理数相加,还有其他情况
(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。记作:(-3)+(+3)=0
(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。记作:(+3)+(-3)=0
(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。记作:(+3)+0=+3或(-3)+0=0归纳为:
③互为相反数的两个数相加得0;
④一个数同0相加,仍得这个数。
(三)、运用举例教科书例1,例2
(四)、巩固训练
(-5)+(-7)
(-10)+6
+12+(-4)
+6+(-9)67+(-73)
(-56)+37
(-84)+20
(-30)+(-20)(五)、课堂小结
1、这节课你学到了什么?
2、对于这节课你有什么困惑?
(六)布置作业教科书练习1题,2题
五、教学反思
“有理数的加法”是人教版七年级数学上册第一章有理数的内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课时教材是通过球赛中净胜球的实例来明确有理数加法的意义,引入有理数加法的法则。不过我们学校学生都来自农村,学生基础比较差,根据实践,很多学生根本弄不清净胜球数是怎么回事,非但没有帮助其明确有理数加法的意义,还给部分学生造成了阻碍。因此在设计情境时放弃了净胜球数,而改用了学生较熟悉的情境,并且与数轴联系起来,切实帮助学生理解。有理数加法的教学,可以有多种不同的.设计方案。如温度变化,盈利亏损等。过去处理这节内容是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则。这种设计的教学重点偏重于让学生通过练习,熟悉法则的应用,近期效果较好。本设计则是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,所以学生掌握法则的熟练程度稍微差些,但我想磨刀不误砍柴工,如果注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识,学生不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。而且在后续的教学中学生将千万次应用有理数加法法则进行计算,相信能够让学生熟悉掌握法则的。
有理数的加法教案 篇3
教学目标
1,在现实背景中理解有理数加法的意义。
2,经历探索有理数加法法则的过程,理解有理数的加法法则。
3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。
4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。
5,在教学中适当渗透分类讨论思想
教学难点
异号两数相加
知识重点
和的符号的确定
教学过程
(师生活动)设计理念
设置情境
引入课题回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。
(出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。
分析问题
探究新知如果是球队在某场比赛中上半场失了两个球,下
半场失了3个球,那么它的得胜球是几个呢?算式应该
怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可
能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。
2,借助数轴来讨论有理数的加法。I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的'方向表示出来,并求出结果,解释它的意义。
(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则。
有理数加法法则:
1,同号两数相加,取相同的符号,并把绝对值相加。
2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。
估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。
①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律
解决问题解决问题
例1计算:
(1)(—3)+(—9);(2)(—5)+13;
(3)0十(—7);(4)(—4。7)+3。9。
教师板演,让学生说出每一步运算所依据的法则。
请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)
例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。
(让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)
学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过
程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。
拓宽学生视野,让学
生体会到数学与生活的密切联系。
课堂练习教科书第23页练习
小结与作业
课堂小结通过这节课的学习,你有哪些收获,学生自己总结。
本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。
2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。
3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听
别人的意见和建议。
附板书:1。3。1有理数的加法(一)
有理数的加法教案 篇4
教学目标:
1. 理解有理数加法的意义和运算规则。
2. 掌握同号两数相加、异号两数相加以及一个数与零相加的法则。
3. 能够熟练进行有理数的加法运算,并能解释运算过程。
教学重点:
1. 有理数加法的运算法则。
2. 异号两数相加的运算。
教学难点:
异号两数相加时绝对值不等的情况。
教学准备:
多媒体课件、黑板、粉笔、练习题。
教学过程:
一、导入新课
1. 复习有理数的概念及分类。
2. 提问:在日常生活中,我们有哪些需要进行加法运算的情境?
3. 引出课题:有理数的加法。
二、新课讲解
1. 有理数加法的意义
讲述有理数加法的实际意义,如温度的升降、海拔的升降等。
引导学生理解有理数加法的数学定义。
2. 同号两数相加
讲解同号两数相加的法则:取相同的`符号,并把绝对值相加。
举例说明,并让学生尝试练习。
3. 异号两数相加
讲解异号两数相加的法则:取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
特别注意绝对值相等的情况,此时和为0。
举例说明,并让学生尝试练习。
4. 一个数与零相加
讲解一个数与零相加的法则:任何数与零相加都等于它本身。
举例说明,并让学生尝试练习。
三、巩固练习
1. 布置练习题,让学生独立完成。
2. 巡视指导,纠正学生错误。
3. 集体订正,强调易错点。
四、课堂小结
1. 总结有理数加法的运算法则。
2. 强调异号两数相加时的注意事项。
五、布置作业
1. 完成课后练习题。
2. 预习下一节内容。
有理数的加法教案 篇5
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
重点、难点分析
重点:是依据有理数的加法法则熟练进行有理数的加法运算。
难点:是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
知识结构
教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律a+b=b+a中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似两数之和必大于任何一个加数的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
有理数的加法教案 篇6
教学目标
1. 会把有理数的加减法混合运算统一为加法运算;
2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想.
教学重点
把有理数的加减法混合运算统一为加法运算.
教学难点
省略负数前面的`加号的有理数加法,运用运算律交换加数位置时,符号不变.
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.
1.完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________.
展示交流
1.把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .
【经典】有理数的加法教案
作为一名专为他人授业解惑的人民教师,就有可能用到教案,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?下面是小编为大家收集的有理数的加法教案,欢迎阅读,希望大家能够喜欢。
有理数的加法教案 篇7
学习目标:
1.理解有理数加法意义
2.掌握有 理数加法法则,会正确进行有理数加法运算
3.经历探究有理数有理数加法法则过程,学会与他人交流合作
学习重点:和 的符号的确定
学习难点:异号两数相加的法则
学法指导:
在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。
学习过程
(一)课前学习导引:
1.如果向东走5米记作+5米,那么向西走3米记作
2.比较 大小:2 -3,-5 - 7,4
3.已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=
(二)课堂学习导引
正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是
(1)红队的净胜球数为 4+(-2) ,
(2)蓝队的净胜球数为 1+(-1) 。
这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?
现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示
①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为
②先向西走了5米,再向西走了3米,结果如何?可以表示为:
③先向东走了5米,再向西走了3米,结果呢?可以表示为:
④先向西走了5米,再向东走了3米,结果呢?可以表示为:
⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:
⑥先向西走5米,再向东走5米,结果呢?可以表示为:
从以上几个算式中总结有理数加法法则:
(1)、同号的两数相加,取 的符号,并把 相加.
(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值. 互为相反数的` 两个数相加得 .
(3)、一个数同0相加,仍得 。
例1 计算(能完成吗,先自己动动手吧!)
(-3)+( -9) (2)(-4.7)+3.9
例2 足球循环赛中,
红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。
解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。
三场比赛中,
红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;
黄队共进2球,失4球,净胜球数为(+2)+(4)= (4
蓝队共进( )球,失( )球, 净胜球数为 = 。
(三)课堂检测导引:
(1)(-3)+(-5)= ; (2)3+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
(四)课堂学习小结
1.本节课中你学到了什么知识?
2.你觉得有理数加法比较难掌握的是哪里?
(五)学后拓延导引
1.计算:
(1)(-13)+(-18); (2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5) (- )+(- ); (6)1 +(-1.5 );
(7)(-3.04)+ 6 ; (8) +(- ).
2.判断题:
(1)两个负数的和一定是负数; ( )
(2)绝对值相等的两个数的和等于零; ( )
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数. ( )
3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.
有理数的加法教案 篇8
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的`符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b|b|,那么a+b____0;
(4) 如果a0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)
(4) 如果a0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数的加法教案 篇9
今天我说课的题目是“有理数的加法(一)"。本节课选自华东师范大学出版社出版的〈义务教育课程标准实验教科书〉七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、 有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、 就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)
教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程当中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计帘具体体现。而且在做练习的过程当中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计
1, 引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的'成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程当中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3, 巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程当中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、 就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。
教学大纲是我们确定教学目标,重点和难点的依据。教学大纲规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是有理数加法法则的理解。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
有理数的加法教案 篇10
教学目标:
1、会进行有理数加法运算,理解有理数加法法则。
2、初步的分类思想。
3、使学生主动的参与特定数学活动,通过实验猜测,自主探索,灵活选取适当的算法。
4、通过实验,猜测,互相合作,自主探索获取知识。
教学重点:
理解有理数加法法则及运用
教学难点:
有理数的加法法则
教学过程:
一、情境创设:
甲、乙两队进行足球比赛,如果甲队在主场以4∶1赢了3球,在客场以1∶3输了2球,那么两场累计甲队净胜多少球? 如果把赢球记为+,输球记为-,可得算式:
填写表中净胜球数和相应的算式:
赢球数
净胜球数
算 式
主 场 客 场
+3 +2 5 (+3)+(+2)=5
-3 -2 -5 (-3)+(-2)=-5
+3 -2 1 (+3)+(-2)=1
-3 +2 -1 (-3)+(+2)=-1
-3 +3 0 (-3)+(+3)=0
0 -3 -3 0+(-3)=-3
你还能举出一些关于有理数加法的例子吗?
二、数学实验室:
1.如图,把笔尖放在数轴的原点先向正方向移动3个长度单位,再向负方向移动2个长度单位,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。
2.把笔尖放在原点,先向负方向移动1个长度单位,再向负方向移动2个长度单位,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。
3.仿照上面的做法,请在数轴上呈现下面的`算式所表示的笔尖运动的过程和结果。
1、任意两个有理数相加,和是多少?
2、两个有理数相加时,和的符号及绝对值怎样确定?
3、你能找到有理数相加的一般方法吗?
三、讨论、交流尝试得出有理数加法法则:
(+3)+(+2)=5 同号相加和的符号与两个加数的
(-3)+(-2)=-5 符号一致, 和的绝对值等于两个加数绝对值之和。
(+3)+(-2)=1 异号相加当两个加数绝对值不等时,和的符号与绝
(-3)+(+2)=-1 对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去加数较小的绝对值。
(-3)+(+3)=0 当两个加数绝对值相等时,两个加数互为相反数,和为零。
0+(-3)=-3 一个数同零相加,仍得这个数。
这样我们就得到有理数加法的法则:
有理数加法法则 同号两数相加,取相同的符号,并把绝对值相加。异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。一个数与0相加,仍得这个数。
四、例题教学:
计算: (1)(-180)+(+20) (2)(-15)+(-3)
(3)5+(-5) (4)0+(-2)
小结:
有理数加法运算的一般步骤:
(1)分类型;
(2)确定和的符号;
(3)确定和的绝对值。
五、练习题:
1.计算: (1)100+(-20) (2)(-20)+(-15) (3)(-65)+(+15)
(4)(-8)+8 (5)(-2)+0 (6)(-24)+(+32)
2、计算:
(1)(- )+(- ); (2)(2 )+(+3 ); (3)(+19 )+(-11 );
3、解答题:
(1) 已知 ⑴ 求 ⑵ 若又有 ,求 。
(2) 某出租车沿公路左右行驶,向左为正,向右为负,某天从农工商出发后到收工回家所走的路线如下:(单位:千米)-8 , +3 , -9 , +7 , +2,⑴ 问收工时在农工商的哪边?距离农工商有多少千米?
⑵ 若该出租车每千米耗油0.5升,问从农工商出发到收工共耗油多少升?
有理数的加法教案 篇11
【教学目标】
1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。
2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。
3.掌握有理数加法法则,并能准确地进行有理数加法运算。
【学习重点、难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;
难点:异号两数如何相加的法则。
【学习过程】
一、 预习自学:
1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?
2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?
3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?
4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?
5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?
6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?
请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)
二、 教师点拨
知识点一:引导学生对前面的七个加法运算进行合理的分类
同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______
异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
三.例题精讲;例1(学生自学,教师示范。注意解题步骤)
四、课堂练习;36页随堂练习与习题(小组展示交流)
五、当堂检测;
1.用生活中的事例说明下列算是的意义,并计算出结果:
(-2)+(-3);(-3)+2
2.有理数加法法则:
绝对值不相等的两数相加,取绝对值的加数的`符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.
3.计算:(+15)+(-7);(-39)+(-21);
(-37)+22;(-3)+(+3)
有理数的加法教案 篇12
(一)知识与技能目标
1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标
1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想
(三)情感态度与价值观目标
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:
重点:
理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则 三、教学组织与教材处理:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
四、教学流程
(一)引入新知---新师播放一段世界杯的音乐,让学生感受激情,再问“大家知道今年世界杯的冠军得主是谁?”学生回答后师给与评价,然后出示“净胜球”问题:凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球。该队这两场比赛的净胜球数是多少?学生回答后教师引导学生用数学式子表示:把赢1个球记为“+1”,输1个球记为“-1” ,净胜球数应是(+1)+(-1) =0。师再问:如果该队第一场比赛输1个球,第二场比赛赢1个球.那么该队这两场比赛的净胜球数为多少?师引导学生用(-1) + (+1) =0的式子说明。
(二)探究新知---行
1、师:同学们今天我们借助这两个式子来探讨有理数的加法。为了更形象的说明问题,我们用 1个 表示 +1,用 1个 表示 -1,那么就表示0。
2、师:首先我们一起来计算(+2)+(+3)。教师演示:先出现两个带正号的球,再出现三个带正号的球,用方框框住总共有五个带正号的球,也就是说(+2)+(+3)= +5。师问:聪明的同学们能告诉我(-2)+(-3)等于多少吗?教师先让学生思考再回答,教师演示过程,并给与积极评价。在前两例的基础上再启发学生思考:(-3)+2,3+(-2),(-4) + 4三种情形。(注:此三例关键是“正负抵消”,教师教学时引导学生观察并运用这个思想)。
3、师:同学们,其实我们还可以用数轴来表示刚才这几道题的运算过程。出示数轴,并规定正负方向。师先举例说明:先向西移动2个单位,再向西移动3个单位,则一共向西移动了5个单位。所以:(-2)+(-3)=-5。师然后让学生用数轴的.方法运算(-3)+2,3+(-2),(-4) + 4三个式子。(注:学生在表示(-3)+2的移动过程时对于+2可能不能正确表示。师应强调加法是“相继”活动的合并,教学时可让学生先想想再决定到底是从原点出发还是从-3这个点出发。对于非常正确的见解,师给与积极评价。)
(三)发现新知---省
1、教师引导学生观察刚才的五个例子:
问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?师先让学生独立思考,再小组讨论。在学生发表见解时应肯定他们朴素的语言,同时教师引导学生先把他们分成三类:同号类、异号类、相反数类,再去观察他们加数与和的符号和绝对值特征。
2、师生共同得出有理数加法法则
同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并把较大的绝对值减去较小的绝对值;相反数相加,和为零。师问:一个数同0相加?师生得出仍得这个数。师引导学生记一记。
有理数的加法教案 篇13
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的'信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b|b|,那么a+b____0;
(4) 如果a0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)
(4) 如果a0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数的加法教案 篇14
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
重点、难点分析
重点:是依据有理数的加法法则熟练进行有理数的加法运算。
难点:是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的`大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
知识结构
教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律a+b=b+a中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似两数之和必大于任何一个加数的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
有理数的加法教案范文(精选10篇)
作为一位不辞辛劳的人民教师,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。那要怎么写好教案呢?以下是小编为大家收集的有理数的加法教案范文,仅供参考,欢迎大家阅读。
有理数的加法教案 篇15
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:
1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:
①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?
②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回"研究生"共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的'兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:"同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑"。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力。
七、设计说明
1.通过"问题串"的设置,激发兴趣,引起学生深层次的思考;
2.通过"互举例子"、"小组竞赛"两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数的加法教案(通用16篇)
作为一名优秀的教育工作者,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。写教案需要注意哪些格式呢?以下是小编收集整理的有理数的加法教案,希望能够帮助到大家。
有理数的加法教案 篇16
一、教学目标
1.知识与技能
(1)使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2.数学思考
通过观察,比较,归纳得出有理数加法法则。
3.情感与态度
认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重点
会用有理数加法法则进行运算。
三、教学难点异号两数相加的法则。
四、教学过程
(一)、创设问题情境,探索新知
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。
把学生的分类抽象成数学问题,有以下几种思路。
(二)、讲授新课
1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,想走的方向为负方向。
(1)若两次都是向右走,很明显,一共向右走了5米。记作:(+2)+(+3)=+5
(2)若两次都是向左走,很明显,一共向左走了5米。记作:(-2)+(-3)=-5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。记作:(+2)+(-3)=-1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。记作:(-2)+(+3)= +1
2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。(1)(-4)+(-1)(2)(+5)+(-3)(3)(-4)+(+7)(4)(-6)+3
3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700+(-1800),+(-)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?只有找出规律。师生讨论、归纳出有理数的加法法则:
①同号两数相加,取相同的符号,并把绝对值相加;
②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;除此之外,有理数相加,还有其他情况
(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。记作:(-3)+(+3)=0
(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。记作:(+3)+(-3)=0
(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。记作:(+3)+0=+3或(-3)+0=0归纳为:
③互为相反数的两个数相加得0;
④一个数同0相加,仍得这个数。
(三)、运用举例教科书例1,例2
(四)、巩固训练
(-5)+(-7)
(-10)+6
+12+(-4)
+6+(-9)67+(-73)
(-56)+37
(-84)+20
(-30)+(-20)(五)、课堂小结
1、这节课你学到了什么?
2、对于这节课你有什么困惑?
(六)布置作业教科书练习1题,2题
五、教学反思
“有理数的加法”是人教版七年级数学上册第一章有理数的内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课时教材是通过球赛中净胜球的实例来明确有理数加法的意义,引入有理数加法的.法则。不过我们学校学生都来自农村,学生基础比较差,根据实践,很多学生根本弄不清净胜球数是怎么回事,非但没有帮助其明确有理数加法的意义,还给部分学生造成了阻碍。因此在设计情境时放弃了净胜球数,而改用了学生较熟悉的情境,并且与数轴联系起来,切实帮助学生理解。有理数加法的教学,可以有多种不同的设计方案。如温度变化,盈利亏损等。过去处理这节内容是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则。这种设计的教学重点偏重于让学生通过练习,熟悉法则的应用,近期效果较好。本设计则是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,所以学生掌握法则的熟练程度稍微差些,但我想磨刀不误砍柴工,如果注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识,学生不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。而且在后续的教学中学生将千万次应用有理数加法法则进行计算,相信能够让学生熟悉掌握法则的。
有理数的加法教案 篇17
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b|b|,那么a+b____0;
(4) 如果a0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的`思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)
(4) 如果a0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数的加法教案 篇18
教学目标:
1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。
重点难点:
重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加
教学过程
一激情引趣,导入新课
1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想
2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。
,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。
二合作交流,探究新知
以原点为起点,规定向东的方向为正方向,向西的.方向为负方向,一个单位代表1千米
1同号两数相加
小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.
从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。
同号两数相加,取__________的符号,并把它们的_____________相加。
2异号两数相加
(1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.
(2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了
_____千米。用式子表达为_______________________.
从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。
异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值
减去_______________的绝对值。
3一个数和零相加,以及互为相反数相加
(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?
(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?
从上问题,你发现了什么?把你的结论写在下框中,
互为相反数的两个相加得_______,一个数和零相加,任得____________________.
三应用迁移,拓展提高
例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2计算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四课堂练习,巩固提高
P21
五反思小结巩固提高
有理数的加法法则有哪些?请你把它们写在下面:
1
2
3
4
六作业p24-25A组1-4B1
有理数的加法教案 篇19
教学目标:
1、知识与技能: 理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。
2、过程与方法: 经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。
重点、难点:
1、重点:运算律的理解及合理、灵活的运用。
2、难点:合理运用运算律。
教学过程:
一、创设情景,导入新课
1、叙述有理数的加法法则。
2、有理数加法与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算和的绝对值,用的'是小学里学过的加法或减法运算。
二、合作交流,解读探究
1、计算下列各题,并说明是根据哪一条运算法则?
(1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)
2、计算下列各题:
(1) +(-4); (2) 8+;
(3) +(-11); (4) (-7)+;
(5) +(+27); (6) (-22)+.
通过上面练习,引导学生得出:
交换律两个有理数相加,交换加数的位置,和不变。
用代数式表示上面一段话:
a+b=b+a
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数。
结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示上面一段话:
(a+b)+c=a+(b+c)
这里a,b,c表示任意三个有理数。
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。
三、应用迁移,巩固提高
例(P22例3) 计算:
(1) 33+(-2)+7+(-8)
(2) 4.375+(-82)+( -4.375)
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。
本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。
例2(P23例4)
教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。
练习 课本P.23练习:1、2
四、总结反思
本节课你有哪些收获?
五、作业
1、课本P27习题1.4A组第3、4题
2、课本P28习题1.4B组第12题
有理数的加法教案 篇20
教学目标:
1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。
2、培养学生观察、比较、归纳及运算能力。
重点:有理数加法运算律及其运用。
重点:灵活运用运算律
教学过程:
一、创设情境,引入新课
1、小学时已学过的加法运算律有哪几条?
2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、讲授新课
教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?
(学生回答省略)
师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
讲解例3
教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)
三、巩固知识
教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?
师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。
四、总结
本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。
五、布置作业
有理数的加法教案 篇21
教学目的:
经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。
教学重点:
有理数的加法法则
教学难点:
异号两数相加的法则
教学教程:
一、复习提问:
1、如果向东走5米记作+5米,那么向
西走3米记作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新课
小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的'方向为正方向
提问:这题有几种情况?
小结:有以下四种情况
(1)两次都向东走,
(2)两次都向西走
(3)先向东走,再向西走
(4)先向西走,再向东走
根据小结,我们再分析每一种情况:
(1)向东走5米,再向东走3米,一共向东走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向东走了多少米?
-5-3(-3)+(-5)=-8
(3)先向东走5米,再向西走3米,两次一共向东走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向东走3米,两次一共向东走了多少米?
-5+3(-5)+(+3)=-2
下面再看两种特殊情况:
(5)向东走5米,再向西走5米,两次一共向东走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
-5(-5)+0=-5
小结:总结前的六种情况:
同号两数相加:(+5)+(+3)=+8
(-5)+(-3)=-8
异号两数相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一数与零相加:(-5)+0=-5
得出结论:有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零
3、一个数与零相加,仍得这个数
例如:
(-4)+(-5)(同号两数相加)
解:=-()(取相同的符号)
=-9(并把绝对值相加)
(-2)+(+6)(绝对值不等的异号两数相加)
解:=+()(取绝对值较大的符号)
=+4(用较大的绝对值减去较小的绝对值)
练习:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
计算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
练习:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
练习三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“”号填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b|b|,那么a+b0;
(4)如果a0,|a|>|b|,那么a+b0
小结:
1、掌握有理数的加法法则,正确地进
行加法运算。
2、两个有理数相加,首先判断加法类
型,再确定和的符号,最后确定和的绝对值。
作业:课本第38页2、3
第40页1、2
有理数的加法教案 篇22
教学目标:
1.知识与技能
掌握加法法则,体会加法法则的意义。
2.过程与方法
通过经历有理数加法运算的发生过程,体验数的运算探索过程,感悟有理数加法运算的技巧及运算规律。
通过运算归纳出技巧,感悟绝对值不相等的异号两数相加的'技巧,突破本节内容中的难点问题。
3.情感、态度与价值观:
养成积极探索、不断追求真知的品格。
教学重点和难点:
重点:有理数加法法则;
难点:异号两数相加的法则。
教学安排:
第1课时。
教学过程:
一、师生共同研究有理数加法法则
我们已经熟悉正数的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。掌前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4+(-2),黄队的净胜球数为1+(-1)。
这里用到正数与负数的加法。学生考虑一下,怎么计算 4+(-2)?
师:下面我们可以借助数轴来讨论有理数的加法。
一个物体作左右方向运动,我们规定向左为负,向右为正。
① 两次运动后物体从起点向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
有理数的加法教案 篇23
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的`意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b|b|,那么a+b____0;
(4) 如果a0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)
(4) 如果a0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数的加法教案 篇24
教学目标
1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数. 2、能力目标:能应用正负数表示生活中具有相反意义的量. 3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点
重点:
理解有理数的意义.
难点:
能用正负数表示生活中具有相反意义的量.教学过程
一、创设情境、提出问题
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.
二、分析探索、问题解决
分组讨论扣的分怎样表示?
用前面学的数能表示吗?
数怎么不够用了?
引出课题.
讲授正数、负数、有理数的定义.
用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习
1、用正数或负数表示下列各题中的数量:
(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;
(2)球赛时,如果胜2局记作+2,那么-2表示______;
(3)若-4万表示亏损4万元,那么盈余3万元记作______;
(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的'高度用正数表示,低于海平面的高度用负数表示;
完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.
2、下面说法中正确的是().
a.“向东5米”与“向西10米”不是相反意义的量;
b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;
d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.
三、小结回顾、纳入体系
学生交流回顾、讨论总结,教师补充如下:
概念:正数、负数、有理数.
分类:有理数的分类:两种分法.
应用:有理数可以用来表示具有相反意义的量.
有理数的加法教案 篇25
教学目标
1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。
3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。
重点难点重点:
了解有理数加法的意义,会根据有理数加法进行运算。
难点:
有理数加法中的异号两数的加法运算。
教学过程
一、问题情境
小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?
5+3=8
如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?
(-5)+(-3)=-8
如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?
5+(-3)=2
足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。
图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的'净胜球数如何表示?
二、知识点拔:
有理数加法法则:
1.同号两数相加,取相同符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数。
三、例题指导
例1 计算
(1) (-3)+(-9)
(2) (-4.7)+3.9
解:(1)(-3)+(-9)=-(3+9)
=-12
(2)(-4.7)+3.9=-(4.7-3.9)
=-0.8
四、练习巩固:P22 1、2。
五、小结:
这节课我们学习了哪些知识?
六、作业:
习题1.3 1、8、12题
有理数的加法教案 篇26
教学目标
1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
教学建议
(一)重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。
(二)知识结构
(三)教法建议
1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。
4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
教学设计示例:
有理数的减法
一、素质教育目标
(一)知识教学点
1、掌握有理数的减法法则。
2、进行有理数的减法运算。
(二)能力训练点
1、通过把减法运算转化为加法运算,向学生渗透转化思想。
2、通过有理数减法法则的推导,发展学生的逻辑思维能力。
3、通过有理数的减法运算,培养学生的运算能力。
(三)德育渗透点
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。
二、学法引导
1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2、学生学法:探索新知→归纳结论→练习巩固。
三、重点、难点、疑点及解决办法
1、重点:有理数减法法则和运算。
2、难点:有理数减法法则的推导。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片。
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
七、教学步骤
(一)创设情境,引入新课
1、计算(口答)(1);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3)。
2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的'一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃。
师:能不能列出算式计算呢?
生:10-(-5)。
师:如何计算呢?
教师总结:这就是我们今天要学的内容。(引入新课,板书课题)
【教法说明】
1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。
(二)探索新知,讲授新课
师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7。
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7。
师:让学生观察两式结果,由此得到:
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3)。
【教法说明】
教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。
2、再看一题,计算(-10)-(-3)。
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。
生:(-10)+(+3)=-7。
教师引导、学生观察上述两题结果,由此得到:
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3)。
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。
有理数的加法教案 篇27
教学目标
1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
教学建议
(一)重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的`减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。
(二)知识结构
(三)教法建议
1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。
4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
教学设计示例:
有理数的减法
一、素质教育目标
(一)知识教学点
1、掌握有理数的减法法则。
2、进行有理数的减法运算。
(二)能力训练点
1、通过把减法运算转化为加法运算,向学生渗透转化思想。
2、通过有理数减法法则的推导,发展学生的逻辑思维能力。
3、通过有理数的减法运算,培养学生的运算能力。
(三)德育渗透点
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。
二、学法引导
1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2、学生学法:探索新知→归纳结论→练习巩固。
三、重点、难点、疑点及解决办法
1、重点:有理数减法法则和运算。
2、难点:有理数减法法则的推导。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片。
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
七、教学步骤
(一)创设情境,引入新课
1、计算(口答)(1);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3)。
2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃。
师:能不能列出算式计算呢?
生:10-(-5)。
师:如何计算呢?
教师总结:这就是我们今天要学的内容。(引入新课,板书课题)
【教法说明】
1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。
(二)探索新知,讲授新课
师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7。
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7。
师:让学生观察两式结果,由此得到:
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3)。
【教法说明】
教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。
2、再看一题,计算(-10)-(-3)。
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。
生:(-10)+(+3)=-7。
教师引导、学生观察上述两题结果,由此得到:
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3)。
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。
有理数的加法教案 篇28
教学目标
1. 会把有理数的加减法混合运算统一为加法运算;
2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想.
教学重点
把有理数的加减法混合运算统一为加法运算.
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.
1.完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________.
展示交流
1.把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .
有理数的加法教案 篇29
教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
非常高兴,能有机会和同学们共同学习
昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)
我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。
同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。
希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!
我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)
以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。
刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)
对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。
前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)
同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。
(1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?
(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)
(3) 一个数同0相加,其和有什么规律呢?(易得出结论)
同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。
同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的'机会,看哪一组能[出题制胜]!(出示)
(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)
同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)
看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。
通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!
同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。
有理数的加法教案 篇30
教学目标:
1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。
重点难点:
重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加
教学过程
一激情引趣,导入新课
1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想
2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。
,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。
二合作交流,探究新知
以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米
1同号两数相加
小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.
从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。
同号两数相加,取__________的符号,并把它们的_____________相加。
2异号两数相加
(1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.
(2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了
_____千米。用式子表达为_______________________.
从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。
异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值
减去_______________的绝对值。
3一个数和零相加,以及互为相反数相加
(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?
(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?
从上问题,你发现了什么?把你的结论写在下框中,
互为相反数的两个相加得_______,一个数和零相加,任得____________________.
三应用迁移,拓展提高
例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2计算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四课堂练习,巩固提高
P21
五反思小结巩固提高
有理数的加法法则有哪些?请你把它们写在下面:
1
2
3
4
六作业p24-25A组1-4B1
有理数的加法教案 篇31
【目标预览】
知识技能:
1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。
数学思考:
1、正确地进行有理数的加法运算;
2、用数形结合的思想方法得出有理数加法法则。
解决问题:能运用有理数加法解决实际问题。
情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。
【教学重点和难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;难点:异号两数如何相加的法则。
【情景设计】
我们来看一个大家熟悉的实际问题:
足球比赛中进球个数与失球个数是相反意义的量、若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:—2,它们的和为净胜球数:(+3)+(—2)学校足球队在一场比赛中的'胜负情况如下:
(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(—2)
(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(—1)
这里,就需要用到正数与负数的加法。
下面,我们利用数轴一起来讨论有理数的加法规律。
【探求新知】
一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?利用数轴演示(如图1),把原点假设为运动起点。
两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①
利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:
(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?
(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?
(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?
(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?
总结:依次可得
(1)(—5)+(—3)=—8②
(2)5+(—3)=2③
(3)3+(—5)=—2④
(4)5+(—5)=0⑤
(5)(—5)+5=0⑥
(6)5+0=5或(—5)+0=—5⑦
观察上述7个算式,自己归纳出有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3、一个数同0相加,仍得这个数。
【范例精析】
例1计算下列算式的结果,并说明理由:
(1)(+4)+(+7);
(2)(—4)+(—7);
(3)(+4)+(—7);
(4)(+9)+(—4);
(5)(+4)+(—4);
(6)(+9)+(—2);
(7)(—9)+(+2);
(8)(—9)+0;
(9)0+(+2);
(10)0+0、
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则、进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值、
解:(1)(—3)+(—9)(两个加数同号,用加法法则的第2条计算)
=—(3+9)(和取负号,把绝对值相加)
=—12、
例3足球循环比赛中,红队胜黄队4s1,黄队胜蓝队1s0,蓝队胜红队1s0,计算各队的净胜球数。
解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(—4)= —2;
蓝队共进1球,失1球,净胜球数为(+1)+(—1)=0;
【一试身手】
下面请同学们计算下列各题:
(1)(—0.9)+(+1.5);(2)(+2.7)+(—3);(3)(—1.1)+(—2.9);
全班学生书面练习,四位学生板演,教师对学生板演进行讲评、
【总结陈词】
1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则、今后我们经常要用类似的思想方法研究其他问题。
2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。
【实战操练】
1、计算:
(1)(—10)+(+6);
(2)(+12)+(—4);
(3)(—5)+(—7);
(4)(+6)+(+9);
(5)67+(—73);
(6)(—84)+(—59);
(7)33+48;
(8)(—56)+37、
2、计算:
(1)(—0.9)+(—2.7);
(2)3.8+(—8.4);
(3)(—0.5)+3;
(4)3.29+1.78;
(5)7+(—3.04);
(6)(—2.9)+(—0.31);
(7)(—9.18)+6.18;
(8)4.23+(—6.77);
(9)(—0.78)+0、
3、计算:
4、用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0|a|>|b|,那么a+b ______0、
5、分别根据下列条件,利用|a|与|b|表示a与b的和:
(1)a>0,b>0;(2)a<0,b<0;
(3)a>0,b<0|a|>|b|;(4)a>0,b<0|a|<|b|。
有理数的加法教案 篇32
一.教学目标
1.知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。
3.情感态度与价值观
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
关键:通过实例引入,循序渐进,加强法则的应用.
三、教学方法
发现法、归纳法、与师生轰动紧密结合.
四、教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
(三)应用举例 变式练习&&</p>
例1 口答下列算式的结果
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.
学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的'具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
例2(教科书的例1)
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)
=-(3+9) (和取负号,把绝对值相加)
=-12.
(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)
=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)
=-0.8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)作业设计
1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.
3.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
(六)板书设计
1.3.1有理数加法
一、加法法则二、例1例2例3
有理数的加法教案 篇33
教学目的:
经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。
教学重点:
有理数的加法法则
教学难点:
异号两数相加的法则
教学教程:
一、复习提问:
1、如果向东走5米记作+5米,那么向
西走3米记作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新课
小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的'方向为正方向
提问:这题有几种情况?
小结:有以下四种情况
(1)两次都向东走,
(2)两次都向西走
(3)先向东走,再向西走
(4)先向西走,再向东走
根据小结,我们再分析每一种情况:
(1)向东走5米,再向东走3米,一共向东走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向东走了多少米?
-5-3(-3)+(-5)=-8
(3)先向东走5米,再向西走3米,两次一共向东走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向东走3米,两次一共向东走了多少米?
-5+3(-5)+(+3)=-2
下面再看两种特殊情况:
(5)向东走5米,再向西走5米,两次一共向东走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
-5(-5)+0=-5
小结:总结前的六种情况:
同号两数相加:(+5)+(+3)=+8
(-5)+(-3)=-8
异号两数相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一数与零相加:(-5)+0=-5
得出结论:有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零
3、一个数与零相加,仍得这个数
例如:
(-4)+(-5)(同号两数相加)
解:=-()(取相同的符号)
=-9(并把绝对值相加)
(-2)+(+6)(绝对值不等的异号两数相加)
解:=+()(取绝对值较大的符号)
=+4(用较大的绝对值减去较小的绝对值)
练习:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
计算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
练习:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
练习三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“”号填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b|b|,那么a+b0;
(4)如果a0,|a|>|b|,那么a+b0
小结:
1、掌握有理数的加法法则,正确地进
行加法运算。
2、两个有理数相加,首先判断加法类
型,再确定和的符号,最后确定和的绝对值。
作业:课本第38页2、3
第40页1、2
有理数的加法教案 篇34
教学目标:
1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,
2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的`应用
3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算
教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,
教学难点:准确、熟练地进行加减混合运算
教学过程
一、课前预习
1、有理数的加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12
二、自主探索
根据有理数减法法则,有理数的加减混合运算可以统一为加法运算
例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)
算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)
=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。
例2.计算:
(1) -3-5+4 (2)-26+43-24+13-46
解:(1) (2)
例4、若a=-2,b=3,c=-4,求值
(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c
解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]
(2) (3)(4)
例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km)
+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?
(2)这小组这一天共走了多少千米
三、学习小结
这节课你学会了哪几种运算?
四、随堂练习
A类
1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)
(3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48
(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12
2 计算
(1) 1+2-3-4+5+6-7-8++97+98-99-100
(2) 66-12+11.3-7.4+8.1-2.5
(6)-2.7-[3-(-0.6+1.3)]
B类
3. 计算 (1) + + ++ (2) + + ++
有理数的加法教案 篇35
【教学目标】
1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。
2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。
3.掌握有理数加法法则,并能准确地进行有理数加法运算。
【学习重点、难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;
难点:异号两数如何相加的法则。
【学习过程】
一、 预习自学:
1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?
2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?
3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?
4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?
5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?
6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?
请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)
二、 教师点拨
知识点一:引导学生对前面的七个加法运算进行合理的分类
同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______
异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
(+5)+(-5)=______
一数与零相加: (-5)+0=______;
知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?
结论:有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的'绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
三.例题精讲;例1(学生自学,教师示范。注意解题步骤)
四、课堂练习;36页随堂练习与习题(小组展示交流)
五、当堂检测;
1.用生活中的事例说明下列算是的意义,并计算出结果:
(-2)+(-3);(-3)+2
2.有理数加法法则:
绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.
3.计算:(+15)+(-7);(-39)+(-21);
(-37)+22;(-3)+(+3)
有理数的加法教案 篇36
一、教学目标
1. 深入理解有理数加法的运算法则,掌握其运算规律。
2. 能灵活运用有理数加法的运算法则解决实际问题。
3. 培养学生的数学应用能力和创新思维。
二、教学重难点
1. 重点:深入理解有理数加法的运算规律,并能灵活运用。
2. 难点:将有理数加法的运算法则应用到实际问题中去。
三、教学过程
1. 复习旧知
回顾有理数加法的运算法则,并让学生进行一些简单的运算练习。
2. 深入探究
分析有理数加法的运算规律,引导学生发现其中的规律性和对称性。
举例说明异号有理数相加时绝对值不等和相等两种情况下的运算过程,让学生深入理解。
3. 拓展应用
结合生活实际,给出一些与有理数加法相关的实际问题,让学生尝试用有理数加法的运算法则解决。
引导学生将数学问题与现实生活联系起来,提高数学应用能力。
4. 小组讨论
将学生分成若干小组,让他们围绕一个与有理数加法相关的问题展开讨论。
鼓励学生在小组内互相交流想法和解题思路,培养合作精神。
5. 展示交流
每个小组选出一名代表,向全班展示他们的讨论成果和解题思路。
其他学生可以提出问题和建议,共同完善解题思路和方法。
6. 课堂小结
总结本节课的学习内容,强调有理数加法的运算规律和实际应用。
鼓励学生在日常生活中多关注数学问题,提高数学素养。
7. 作业布置
布置一些与有理数加法相关的.实际问题作为课后作业,让学生进一步巩固和应用所学知识。
四、教学反思
反思本节课的教学效果,评估学生对有理数加法运算规律的掌握情况和实际应用能力。
总结教学中的优点和不足,为下一节课的教学提供参考和改进方向。
有理数的加法教案 篇37
一、教学内容分析
本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。
二、学习者分析
七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。
三、教学目标
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
四、信息技术应用分析
由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。
五、教学过程
1、复习提问,引入新知
通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。
2、出示问题情境、解决新知
在解决新知的.过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。
3、探索发现,归纳新知
利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。
学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。
4、展示例题、应用新知
此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。
5、达标训练,巩固新知
本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。
6、规律总结,升华新知
本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。
7、作业和运用,拓展新知
通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。
有理数的加法教案 篇38
【教学目标】
1.进一步理解有理数加法的实际意义;
2.经历探索有理数加法法则的过程,理解有理数加法法则;
3.感受数学模型的思想;
4.养成认真计算的习惯.
【对话探索设计】
〖探索1
1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?
2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?
3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动5m,再向左运动3m, 那么两次运动后总的结果是什么?
假设原点为运动起点,用数轴检验你的答案.
〖法则理解
有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.
这条法则包括两种情况:
(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;
(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得.
〖练习
1.上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃, 下午5时的气温是多少?
2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?
3.第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?
4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:
(1)-10+(-30)=
(2)(-100)+(-200) =
(3)(-188)+(-309)=
〖探索2
1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?
2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?
3.正数和负数相加,结果是正数还是负数?
〖法则理解
有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.
例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.
又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的'过程可以写成(-8)+(+3) = -(8-3) = -5.
〖议一议
有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算.他说的对不对?
〖练习
1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?
2.如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的结果是什么?
3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:
-3.5,+1.2,-2.7.
这3包洗衣粉的重量一共超过标准重量多少?
4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:
(1)(-3)+(+8)=
(2)-5+(+4)=
(3)(-100)+(+30)=
(4)(-100)+(+109)=
〖法则理解
有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.
例如(+3)+(-3) = ______,(-108)+(+108) = ______.
〖例题学习
P21.例1,例2
P22.练习2(按例1格式算.)
〖作业
P29.习题 1, P32.习题 8,9,10
【备选素材】
用一个□表示+1,用一个■表示-1.显然□+■=0,
(1)■■+□□□=(■+□)+(■+□)+ □=_____.
这表明-2+3=+(3-2)=1.
想一想:答案为什么是正的?为什么转化为减法运算?
(2)计算■■■■■+□□□□□=_____.
(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.
这说明-5+(+2)=-(___-___)=_______.
(4)计算■■■+□□□□□=?
