短文网整理的《组合图形的面积》教案(精选21篇),快来看看吧,希望对您有所帮助。
《组合图形的面积》教案 篇1
《组合图形的面积》教案
作为一位优秀的人民教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。教案应该怎么写才好呢?以下是小编收集整理的《组合图形的面积》教案,仅供参考,希望能够帮助到大家。
《组合图形的面积》教案 篇2
教学要求:
1.使学生理解组合图形的含义,初步了解组合图形面积的计算方法;
2.会计算一些较简单的组合图形的面积,提高学生运用几何初步知识解决实际问题的能力。
教学重点:使学生初步掌握组合图形面积的计算方法,会计算简单的组合图形的面积。
教学难点:能正确地把组合图形分解成几个已学过的图形。
教具准备:投影片若干
教学过程:
一、激发
1.口答下列各图形面积的计算公式,并计算出它们的面积。
2米3分米
3米4米5分米
2厘米
1.2米10厘米
1.6米2.5厘米
2.揭题:在实际生活中,我们见到的物体表面,有很多图形是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的,我们把这些图形叫做组合图形。今天我们就学习组合图形面积的计算。板书课题:组合图形面积的计算。
二、尝试
1.投影出示例题:右图表示的是2米
一间房子侧面墙的形状。它的面积是
5米
多少平方米?
5米
2.引导学生看图思考并回答。
(1)这个组合图形能否分解成几个
我们学过的简单图形?
(2)怎样求这个组合图形的面积呢?
3.生计算出这个组合图形的面积。
(1)生在书上例题下面填空。
(2)集体订正时让学生说说怎样计算组合图形的面积?
(3)师强调指出:计算组合图形的面积,一般是先把它分成几个我们学过的简单图形,分别计算出各个简单图形的面积,然后再把它们加起来,就是整个组合图形的`面积。
4.尝试后练习:做一做
新丰小学有一块菜地,形状如
右图。算出这块菜地的面积多少平
方米。
生独立审题,观察菜地的形状,思考将它分成几个什么样的简单图形,再让学生讲一讲,最后计算出这块菜地的面积。集体订正。
三、应用
1.练习十九第3题:量一量少先队的中队旗,算出它的面积。(你能想出不同的解法吗?)
(1)生分组讨论:怎样分成几个我们学过的简单图形?
(2)对分解合理简单的做法在投影仪上显示出来。
(3)生选取一种方法,量出所需长度,再计算出它的面积。
2.练习十九第4题:下面是一种机器零件的横截面图,求出涂色部分的面积是多少平方毫米。
20毫米
10毫米
30毫米27毫米
54毫米
生独立计算出它的面积,集体订正时讲一讲自己是怎样想的。
四、体验
本节课,你有什么收获?
五、作业
练习十九第1、2题。
《组合图形的面积》教案
作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?下面是小编整理的《组合图形的面积》教案,欢迎大家分享。
《组合图形的面积》教案 篇3
一、教材分析
《组合图形面积》是冀教版九年义务数学教科书五年级上册的重要内容。学生在以前已经认识了面积与面积单位,知道长方形、正方形面积计算的方法,在本册又学习了平行四边形、三角形、梯形的面积的计算,在此基础上学习组合图形的面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生综合能力。学生还要在六年级学习圆面积的计算方法。
二、创新点
(1)让学生通过在掌握多种方法解决问题的基础上,分类整理,进行比较,优化出解决问题最简单的方法。
(2)练习题体现层次性,不仅发散了思维,还为后续的学习进行了渗透。
三、教学目标以及重难点
有了以上的思考,我制定了如下教学目标和教学的重难点。教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的'条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
过程与方法:
能根据各种组合图形的条件,初步有效地选择计算方法并进行正确的解答。情感态度与价值观:
能运用所学的知识,初步解决生活中组合图形的实际问题。教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点: 根据组合图形的条件,有效地选择计算方法。教学准备:
七巧板、ppt课件、简单图形学具、少先队中队旗实物
1、七巧板拼图游戏,初步感知组合图形。
用准备的七巧板,动手摆一个图案,并说说你的图案用了哪些简单图形?选取几个有创意的图案在实物投影仪上展示和让学生汇报。
2、自主探究,汇报交流。让学生在探索活动中寻找计算方法。这个环节的教学是整节课的重点。
设计意图:在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自去发现解决问题。
出示例题:出示几个图形让学生先商量出计算方法。目的:把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力。接着教师抛出问题:如何准确计算出这个客厅的面积呢?引导学生将组合图形转化成学过的基本图形。用你喜欢的方法求一求它的面积?看谁的方法多。
为了体现教学的实效性,我采取先让学生独立思考,在纸上分割这个组合图形,再动笔算一算它的面积。这时教师巡视,目的是对不同层次的学生的做法做到心中有数。接着在小组中交流你的做法,并选择你们最满意的方法说给大家听。
汇报时先汇报分的方法,追问:你们为什么要对图形进行分割呢?从而使学生理解分割成我们学过的图形就能计算面积了。
接着汇报补的方法:提问:为什么要补上一块?你是怎么想的?从而让每个学生都理解这一计算方法。
习惯培养:在汇报方法时,生生质疑、评价,适时对学生进行认真倾听别人发言的习惯的培养。
我没有仅仅停留在汇报多种方法上,而是进一步追问:根据不同的方法,请学生给这些方法分一分类。紧接着我又提出问题引发学生的思考:这么多的方法,你喜欢哪种?请说说你的理由。我抓住时机让学生自己进行归纳,并感受到在运用分割法解决问题时,分割图形越简洁,其解题的方法也将越简单。
这两种方法出来有一定的困难。对于这两种方法的处理,我想如果会有学生出现这个方法,就让他给大家讲一讲,生生质疑。如果没有孩子出现这种方法,我就会说:老师这里还有这样一个方法:你们来看一看。这样处理,就给不同的学生提供了不同的发展空间。
最后老师小结:其实不管是用分割法、添补法还是割补,都是为了一个共同的目的,那就是把这个组合图形转化为已学过的平面图形。
3、综合应用,巩固提高。
练习是学生掌握知识,形成技能,发展智力的有效手段。这里我设计了书中例题采取学生独立解决与合作交流的形式
A、可以任意分割
B、分割为最少的学过的图形
C、可以适当添上相关条件分割,要求分割的合理,能计算分割后的面积。
4、回顾反思,自我评价。
通过本节课的学习,你有什么收获?借助这个环节来引导学生在总结上有所提升,不管是知识方面,还是数学方法和数学思想方面都有收获。
《组合图形的面积》教案 篇4
教学内容:教材第68—69页含有圆的组合图形的面积。
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:组合图形的认识及面积计算、图形分析。
教具学具准备:多媒体课件、各种基本图形纸片。
教学设计:
⊙创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的'各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3。14×62
=3。14×36
=113。04(cm2)
内圆的面积:πr2=3。14×22
=3。14×4
=12。56(cm2)
圆环的面积:πR2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(R2-r2)=3。14×(62-22)=100。48(cm2)
答:圆环的面积是100。48cm2。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75cm2,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
⊙反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
⊙布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
《组合图形的面积》教案 篇5
教学目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
教学重难点
教学重点:探索组合图形面积的计算方法。
教学难点:根据组合图形的条件,有效地选择计算方法。
教学过程
一、复习:课件出示:
师:下面这些物体里有哪些图形?
说一说生活中哪些地方有组合图形。生畅所欲言。
师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?
师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。
二引入新课。
1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?
师:这个问题,能用你学过的知识想办法解决吗?
小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。
布置自主探索任务:
明确探索的要求;(把想法画在图上,并试着求出地板的面积)
交流要求:想好办法的同学,把你的`想法告诉你的同桌,比较两的想法有什么不同。
提示:实在有困难的同学,可以与同桌进行合作。
2、生独立尝试,师巡视,并发现典型。
3、反馈:
师:谁来展示你的解决办法?
(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)
补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。
可能出现的答案有:
将你的想法画在图形上,并试着求出图形的面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。
出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。
4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。
师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)
今天,我们学的是组合图形的面积。(板书:的面积)。
师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?
(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)
师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。
三、练习。
过渡:所以,我们在解决这类问题时,可以考虑要尽量的(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有
可能出现的其它问题有:请你来评价一下这两种方法。
(分成了不是已学过的图形)
(分得过细,数量上过多)
将下面图形分成我们已学过的图形
过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
做一面中队旗用多少布?
在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
有一块正方形空心地砖,它实际占地面积是多少?
学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?
请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。
师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。
四:总结。
1、学习了这一课,你学会了什么?
2、最后,我们来轻松一下。
《组合图形的面积》教案 篇6
1. 教学目标
1、运用适当的分割拼补的方法明 确图形的组合关系。
2、利用已经学过的基本图形面积计算公式正确计算出组合图形的面积。
2. 教学重点/难点
教学重点:
将组合图形分割、拼补成几个基本图形,而这些基本图形是能用图形中标出的长度计算出面积的。
教学难点:
合理 利用图形中标出的.长度找出简单合理 的分割拼补方法,以使组合图形面积计算便捷。
3. 教学用具
教学课件
4. 标签
教学过程
一、 复习引入
1、 我们已学过哪些平面图形?
2、 说出它们的面积计算公式 ?
3、 谁能用上面两个或三个拼成一个图形?
4、 揭题:组合图形的面 积
二、 探究新知
1、 出示:下面是一个组合图形,你会求它的面积吗?
1、 小组讨论
2、 小组汇报,集体交流
三、 巩固练习
1、求组合图形的面积
课堂小结
总结
这节课你有什么收获?
课后习题
作业设计
《组合图形的面积》教案 篇7
教学内容:
教材P99例4及练习二十二第1~6题。
教学目标:
知识与技能:
结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:
根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:
能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:
理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:
根据组合图形的条件,有效地选择汁算组合图形面积的方法。
教学方法:
动手实践、自主探索、合作交流。
教学准备:
师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程
课前预习案
1、判断
(1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )
(2)梯形的面积比平行四边形的面积小。 ( )
(3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )
一、谈话导入
师:我们一起来复习前面学过的图形的面积公式:
正方形的面积=边长×边长
长方形的面积=长×宽
平行四边形的面积=底×高
三角形的面积=底×高÷2
梯形的面积=(上底+下底)×高÷2
二、自主探究:
1.探究活动一:组合图形的分解:
(1)观察课本99页的四幅主题图,说说它们分别是由哪些简单图形组成的?
(2)一个组合图形我们可以把它分割成已学过的几个图形,试着把下面的图形分一分。
(3)同一个图形,我们从不同的'角度认识,也可以分成几个不同的基本图形。分一分,看看我们的队旗可以分成哪些不同的基本图形?
(4)找一找生活中的组合图形。
2.探究活动二:计算组合图形的面积。
(1)出示例题,讨论交流:怎样计算这面墙的面积?
(2)一个组合图形我们可以分成已经会计算面积的几个简单图形,分别计算出它们的面积,再求和。
(3)尝试解答:
方法一:这面墙的形状可以分成一个( )和一个( )。
把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5×2÷2
=25+5
=30( m2)
方法二:这面墙的形状可以分成两个相同的( )形。
把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(m2)
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、课堂达标
1.判断。
(1)任何一个平行四边形都可以分割成两个完全一样的梯形。( )
(2)等底等高的两个三角形可以拼成一个平行四边形。 ( )
2.一个三角形的面积是22.5平方分米,与它等底等高的平行四边形的面积是多少平方米?
3.练习十八的第1题,先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
4.练习十八的第2题
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
(1)由中队旗引入 (2)算出它的面积。(单位:厘米)--可能有下面几种情况
S总=S梯×2 S总=S长-S
5.练习二十二的第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
6.练习十八的第4、5题,生独立完成。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
作业布置:
板书设计:
组合图形的面积
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2
=25+5 =12×2.5÷2×2
=30(m2) =30 (m2)
《组合图形的面积》教案 篇8
教学内容:
北师大版教科书第九册第75~76页的内容
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
重点、难点
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:如何选择有效的计算方法解决问题。
教具准备:
多媒体课件和组合图形图片。
教学过程:
一.引出概念,揭示主题。
1.你能看出以下图形是由那些基本图形组成的吗?
2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。
二.新授。
这是我家的客厅平面图!(课件出示客厅的平面图。)
1、估计地板的面积
师:请同学们先估一估这个地板的面积有多大呢?
2、探索不同方法。
师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的'面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。
生动手画图。
教师有选择的展示方法。
3.师总结分割法和添补法。
其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。
4.计算:
现在你会计算这个组合图形的面积吗?
要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。
生独立计算。
5.汇报计算方法及结果。
6.辨析及总结。
(1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?
分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。
(2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三.巩固练习。
1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。
四.小结:谈谈你的收获!
五.板书:
组合图形面积
图11.转化
图22.找条件
图33.计算图
《组合图形的面积》教案 篇9
教材简析:
“组合图形的面积”是五年级上册的内容,是小学阶段平面几何直线型内容的最后章节。学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。教材在内容的呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点,让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。
学情分析:
学生已经学习了基本图形的计算方法,有了一定的经验基础,尤其是第二单元转化思想的渗透,所有这些知识储备都会使学生学习的难度相对减少。学生在探索组合图形面积的计算方法时,由于思考问题的角度不同,他们在解答问题的过程中会产生不同的思考方法,对于方法的交流、借鉴、反思需要教师的有效组织。五年级学生已经具有了独立思考、与人交流的习惯和能力,思维上也有了一定的深度,但如何让每个学生都积极地参与到探索的活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
教学目标:
1、认识组合图形,能在自主探索的活动中理解计算组合图形的多种方法,能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2、能利用所学的知识解决生活中组合图形的实际问题,培养学生独立思考与合作交流的习惯。
3、让学生感觉到数学与生活的密切联系,获得成功的学习体验。
4、进一步渗透转化的数学思想。
教学重点:
认识组合图形,能在自主探索的活动中理解计算组合图形的多种方法,能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
教学难点:
让学生感觉到数学与生活的密切联系,获得成功的学习体验。
教学过程:
一、复习铺垫,唤醒旧知
1、师:同学们,我们学过的平面图形有什么呢?它们的面积你们会计算吗?
2、计算各种基本图形的面积。
3、师:这些都是我们以前学过的一些基本图形(板书:基本图形)
师:看来这些基本图形的面积是难不倒你们了!
设计意图:复习学过的`五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作下铺垫。
二、自主探索,合作交流
1、情境引入、估算图形。
师:小华家新买了房子,这是装修效果图,他计划在客厅铺地板,客厅的形状是这样的。这是我们以前学过的图形吗?(它是一个不规则的图形)
师:请你们估一估它的面积大约是多少平方米?(估计值记录下来)
设计意图:在探索策略前,先安排估算的环节能起到培养学生估算意识的作用,同时又能让学生在估算的时候,潜移默化地运用添补和分割的转化思想。
2、独立探索、寻求方法。
师:到底它的面积是多少平方米呢?老师已经为大家准备了一张学习卡,请你们独立思考一下该怎么做,也可以和同学互相讨论,还不明白的话也可以举手请老师帮忙。
(学生活动,教师巡视,了解学生情况,指导帮助个别学生)
师:老师发现大家都很会思考,现在把你的方法说给你小组的同学听一听,看看你们小组有几种不同的方法。
设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。
3、赏析思路、分享方法。
学生可能出现以下几种方法。
(1)分割法。
①分成一个长方形和一个正方形。
师:谁来汇报你的想法?
师:这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线。
师:那你是怎么计算它的面积的?6-3求出的是哪一段?12 21表示什么?(把长方形的面积加上正方形的面积)
师:这位同学用一条辅助线把这个不规则图形分成了一个长方形和一个正方形,其他同学有类似的方法吗?
②分成两个长方形。
③分成两个梯形。
师:其他同学还有不同的方法吗?
(2)添补法。
师:你为什么要补上这一块呢?
师:那你是怎么计算的?刚才这几种方法,最后一步都是用加法,而你这里为什么用减法呢?(把补上的这一块的面积减掉)
(3)割补法。
师:老师在自己学校上课,发现有个孩子是这样画,你们看行得通吗?
师:割下来的这部分能正好拼上吗?
设计意图:帮助学生理解多样化的方法,使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。
4、明晰方法,渗透思想。
师:刚才我们用了这么多的方法来计算这个不规则图形的面积,如果让你把这些方法分一分,你打算怎么分?(学生分类)
师:第一类方法,用辅助线把不规则图形分割成我们学过的基本图形,在数学上我们称为分割法。(板书:分割法)用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:求和)
师:这类方法叫做添补法(板书),用添补法计算,记得把添上的这部分面积减去。(板书:求差)
师:这种方法,既有分割,又有添补,它就叫——割补法。(板书:割补法)
师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?(不论是分割或添补,目的都是——把不规则的图形——转化成——已学过的基本图形。板书:转化)
师:像这样由几个基本图形拼成的图形,我们把它叫做组合图形(板书:组合图形)现在你们会计算组合图形的面积了吗?(补充:面积)
师:其实在我们身边就有很多组合图形,一起来看看。(课件展示生活中的组合图形)
师:这是房子的平面图,它可以由哪些图形拼成呢?中队旗?
设计意图:让学生找方法的共同点,水到渠成地由学生揭示出转化思想,进而把转化思想根植于学生心中;欣赏组合图形的图案,给学生以美的享受,使学生感受到生活中组合图形的存在,加强数学与生活的密切联系。
三、应用练习,提升认识
出示田地平面图。
师:如果要把它转化成尽量少的基本图形,你能想出几种方法?
师:同学们想出的方法可真多,现在请你们选择自己的喜欢的方法,计算出它的面积,看谁算得又对又快。(重点交流缺少数据的方法)
师小结:看来,虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活选择合理、简便的方法进行计算。(板书:合理 简便)
设计意图:在尊重编者意图的基础上进行了改动,主要是进一步培养学生能根据组合图形的条件,有效地选择计算方法并进行正确的解答。
四、畅谈收获,总结提升
师:通过这节课的学习,大家有哪些新的收获?
师:转化是一种重要的数学思想,对于我们数学学习有很大的帮助,其实在我们前面的学习中,也经常运用转化来学习新知识,看,在学习这些图形的面积时,我们都是把它转化成了我们学过的图形,在学习除数是小数的除法时,也把它转化成了除数是整数的除法,在今后的学习中,我们也会经常利用它学习新知识!
设计意图:使每个学生在回顾中学会整理、归纳、反思,提高自我学习的能力,获得成功学习的体验。同时引导学生在总结中有所提升,不仅仅在知识方面,重要的还有数学方法和数学思想方面的交流。
《组合图形的面积》教案 篇10
教学目标:
1、在自由探索的活动中,理解计算组合图形面积的各种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并正确解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
教学重点:能根据各种组合图形的条件,有效地选择计算方法,并进行正确的解答。
教学难点:如何选择有效的计算方法解决问题。
教学准备:图形卡片、题卡
教学过程:
一、激趣导入。
1、师:老师这里有一个神秘宝盒,你们想知道这里面藏着什么吗?请同学们来摸一摸。
生摸出图形,老师贴在黑板上,指名说说怎样计算这些图形的面积。
2、师:老师也为你们准备了礼物,快拿出来拼一拼,粘在白纸上,看谁拼的图案最漂亮。
生拿基本图形拼。
指名展示所拼图案,说说拼的是什么,是由什么图形拼成的。
3、揭示课题。
这些图形都是由两个或两个以上基本图形拼成的图形,叫做组合图形,这节课我们一起来探索组合图形的面积(板书课题:组合图形的面积)。
4、屏幕出示图形,这些分别是什么图形,这里面有你认识这些图形吗,你是怎样看出来的?
二、探究新知。
1、出示例题。
老师最近正在装修房子,可是遇到了困难,你愿意帮忙吗?
你老师打算在客厅铺上地板,地面的平面图如图,请同学们帮老师做一下预算,估计至少要买多大面积的地板,再实际算一算,并与同学们交流。
生先说估计值,并说出依据,教师在黑板右上角板书。
2、小组探索。
刚才我们只是估计一下,但实际在买的时候,买多了浪费,买少了还要去买,太麻烦,以我们必须求出实际的面积。我们没有学过这种图形的面积,怎么办呢?
生:我们可以把它转化成我们学过的图形再求面积。
小组合作探索,组长拿出工作表,小组同学分别说一说自己的.想法,并在图中画出来,看看你们小组能想出几种简便易行的方法。
教师巡视指导。
3、全班汇报交流。
小组汇报,在投影上展示自己小组的做法,分别说说为什么这样分割,怎样求面积。其他小组长把和他一样的方法做上标记。
教师强调:为了和原线段区分开,后添加的线段要画虚线,这条虚线是为了辅助完成这道题的,所以叫做辅助线。
生共同探索所说的方法是否能求出面积,不合适的说出为什么。
把以上方法汇总,说说哪种方法最简单,为什么?
师:分割或添补的越简单,计算起来就会越简便。
4、教师贴出学生选出的
4种简便方法,用卡纸贴在黑板上。
生观察着几种方法,把它们分类。
师相应板书:分割法添补法
这两种方法在计算时有什么不同吗?
6、选择一种你最喜欢的方法,计算出图形的面积。
指名板演。检查订正,写出答语。
把实际结果与估计结果比较,看看谁估计的比较准。
师:只要选择了简便易行的方法,我们求组合图形的面积才会又快又准确。
三、实际应用。
1、这里有两个鱼缸,请你选择最简便的方法把它们转化成我们学过的图形。
2、学校要粉刷教室,粉刷一面墙每平方米需用
0.15千克涂料,一共需要用多少千克涂料?
生在题卡上答题,师巡视指导。指名展示自己的方法,生判断哪种方法最简便。
3、学校要油漆
60扇教室的门的外面,(单位:米)。
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要花费
5元,那么学校共要花费多少元?
指名读题,说说完成这道题要注意什么?
生独立完成。汇报。
四、全课总结。
你说说这节课你有什么收获。
师:在我们的生活中,数学无处不在,运用我们学过的数学知识来解决身边的难题,那是多么快乐的一件事呀!让我们一起学好数学吧!
五、课外练习。
在你身边找出一到两处组合图形,先估计一下它们的面积,再选择你认为最简便或最适合自己的方法,实际算一算。
《组合图形的面积》教案
在教学工作者开展教学活动前,时常需要用到教案,教案是备课向课堂教学转化的关节点。那么应当如何写教案呢?以下是小编为大家整理的《组合图形的面积》教案,欢迎大家借鉴与参考,希望对大家有所帮助。
《组合图形的面积》教案 篇11
【教学内容】
义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。
【教学目标】
1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。
2、能运用所学的知识解决生活中的组合图形的实际问题。
3、培养学生动手操作能力,合作交流能力和空间想象能力。
【教学重点】
初步掌握组合图形面积的计算方法。
【教学难点】
正确、灵活地把组合图形转化为所学过的基本图形。
【教学准备】
多媒体课件、学生准备各种图形的卡片。
一、
展示汇报,建立概念。
(一)拼图游戏,初步感知组合图形。
师:师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?
生:自由汇报。
师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图
说它们分别是由哪几个简单图形组合而成的。
结合学生拼出图形有针对性的展示几组组合图形,预设下图:
师:四人小组互相看一看、说一说,你们拼的`这个图形分别是由哪些图形拼成的?
师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)
(二)找一找,说一说。
师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?
同桌互相说一说。
师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?
生认真观察后并指名回答。
师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?
学生畅所欲言......
师:这节课我们重点学习组合图形的面积。(板书:面积)
(一)小组活动,自主探索。
师:请同学们观察下刚才拼得图形中哪个组合图形最像我们形产生感性的认识。
为下面学习求组合图形的面积打下基础。学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。
二、
在探索过程中,寻求计算方法。
主题图中房子的侧面墙的图?(课件出示例题)
师:如何求这个组合图形的面积呢?先独立想想再小组交流。
小组讨论:
①这个图形有哪些简单图形组合而成的?
②求这个组合图形的面积就是求哪几个图形的面积?
③怎样求?
小组讨论,教师巡视并指导。
小组汇报:
小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)
=S三+S正
小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)
=S梯×2
(二)引导学生总结方法。
师:想想我们刚才是怎么求这个组合图形的面积的?
学生自由回答。
师:你认为哪种方法简单呢?
学生说自己的想法。
对于例题的教学,由于学生有了新课伊始的拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。
引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。
三、
利用新知,解决生问题。
师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。
师:请同学们打开数学书把例题补充完整。
(三)质疑
师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?
学生根据自己的想法回答。
以“你想利用今天所学的知识,做个()学生。”为主线完成以下练习。
A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)
B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)
(先独立思考,再小组合作交流,最后师生共同分析,提升较简单的方法。)
C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)
D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。
鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。
以“你想利用今天所学的知识做个什么样的学生。”为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。
《组合图形的面积》教案 篇12
教学目标:
1,认识组合图形,会把组合图形分解成已经学过的平面图形。
2,通过找一找,分一分,拼一拼,培养学生识图能力和综合运用知识的能力,能合理运用“割”“补”方法来计算组合图形的面积。
3,培养学生的观察能力和动手操作能力。
教学重点:探索并掌握组合图形的面积计算方法。
教学难点:理解并掌握组合图形的面积计算方法。
一,复习引入
1,师:大家知道哪些简单的平面图形?
生:长方形,正方形,平行四边形,三角形-------
师:今天老师是也带来了一些简单的平面图形,请看.
(课间出示长,正,平,三,梯)
师:大家知道他们的面积计算公式马吗?
生说公式,同时师课间出示.
师:老师把这些简单的平面图形组合在一起,拼成了生活中的美丽图形,请看!
(课间出示;风筝房屋的侧面七巧板中队旗)
师:你能看到那些简单的平面图形?同桌之间说说看。
汇报:重点说中队旗分成两个梯形。
引出“组合图形”的定义,课件出示定义。
板书:组合图形
2,寻找身边的组合图形
师:其实我们身边还有很多这样的组合图形,大家找找看。
(教师窗户,防盗窗)
师:今天我们就来学习怎么计算组合图形的面积?
板书:的面积
二,探究新知
教学例4:房屋侧面
1,先出示没有数字的图形
师:可以直接利用我们学过的面积公式来计算吗?
生:不能
师:那可以怎样计算呢?同桌之间说说看?
汇报:可以分成两个梯形,可以分成一个三角形和一个长方形
师:同学们有这么多想法啊?作业纸上又提供的数据,大家在作业纸上分一分,画一画,算一算。
学生做,师巡视指导,搜集作品。,
2,投影展示学生作品:
方法一:转化成三角形+长方形
让学生说一说他的.做法,重点问转化成了什么图形?
问:大家看懂了吗?每一步表示什么意思呢?
掌声送回学生一
方法二:转化成两个相同的梯形
(多让其他学生说一说分发)
3,比较两种方法
课件同时出示两种做法
师:刚才这一种是把组合图形转化成(三角形和长方形)这种是把组合图形转化成了(两个梯形),虽然方法不一样,但他们有什么共同点吗?
生:都是把组合图形分成成了已经学过的简单的平面图形。
师:像这种分发在数学上叫分割法。板书:分割法
分割
板书:组合图形简单的平面图形
求和
小结:在求组合图形的面积时,我们可以把它利用分割法转化成已学过的简单平面图形的面积,再求和。
师:大家会求组合图形的面积了吗?那我们就去做一些练习吧。
三:练习
1,“做一做”
让学生独立完成,找一学生上黑板板演,找另一学生评价。
在图上加一条变成一个梯形和一个三角形能求出组合图形的面积吗?(发现条件不够)
教授:分割时不能随便分,要根据已知条件来分,这样才能求出组合图形的面积。
2,中队旗
先让同桌讨论方法,比一比谁找到的方法多,然后再作业纸上做一做。
先讲两种分割法,重点讲解“填补法”
师:刚才我们都是用的分割法来求得组合图形的面积,但这位同学的方法有的不一样了,你能说说你是怎么想的吗?
生:长方形的面积-三角形的面积=组合图形的面积
师:这位同学的想法真独特,想这种方法叫填补法。
板书:填补法
师:我们把组合图形通过填补法转化成简单的平面图形,然后再(求差),就求出了组合图形的面积。
板书:求和
小结:我们在怎么求出组合图形的面积的?
强调:转化优化
四:小结:这节课你有什么收获?
《组合图形的面积》教案
作为一位杰出的教职工,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!以下是小编精心整理的《组合图形的面积》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《组合图形的面积》教案 篇13
【教材简析】
本课是五年级上册第五单元内容,是在学生学习了长方形与正方形、平行四边形、三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【学情分析】
《组合图形的面积》是学生在已经学习了长方形、正方形、平行四边形、三角形与梯形面积计算的基础上进行教学的。学生已初步具备了一定的空间思维能力,但只局限于对单一图形进行简单分析。本节课可以巩固已有知识,提高学生综合实践能力,有利于进一步发展学生的空间观念,同时让学生在数学思想方法及解决问题的思考策略方面有所发展。本课让学生在自主观察思考的前提下,通过小组合作学习、汇报交流来进一步拓宽学生的思维空间,通过与他人的交流与合作,获取更多的方法,提升学生的学习能力。
【教学目标】
1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积
2、能运用所学知识解决生活中组合图形的实际问题。
3、自主探索,合作交流。培养学生认真思考,团结协作的能力。
4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法。
【教学难点】理解并掌握组合图形的组合及分解方法。
【学具准备】前置性作业
【教学设想】
在本课的学习中,我让学生小组合作学习、汇报交流创设一个广阔的学习空间,探索空间。通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。让学生在自主探索、合作交流的学习氛围中最大限度的参与到探索求组合图形的面积全过程,具体设计如下:
【教学过程】
一、创设情境,激趣导入。
1.同学们,我们已经学习了哪些多平面图形?(生回答)
2.请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
3.组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。(板书:组合图形的面积)
【设计意图】:根据学生已有经验,观察生活中的组合图形,让学生体会由几个简单的图形组合而成是组合图形,它们的面积怎么求。使学生逐步熟悉组合图形,调动学生的学习兴趣。
二、小组合作探究
1. 出示前置性作业小组交流
复习
1、说说你学过哪些平面图形 ?2、说说这些图形的面积计算公式?
1)分割法:
将整体分成几个基本图形,求出它们的面积和。
2)添补法:
用一个大图形减去一个小图形求出组合图形的面积。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?
【设计意图】:学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立尝试、合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。
5.学生举例并解答(前置作业 我的.例子)
结合学生自己举的例子解答讲解
【设计意图】:让学生举出自己能够解决的例子,增强他们解决问题的自信心。
6.练一练(前置作业我能行)。
⑴生独立计算。
⑵生展示思路。
【设计意图】:学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学来源于生活,应用于生活的教育理念。
三、应用新知,解决问题:
师: 同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。
师: 通过刚才的练习,你认为该怎样求组合图形的面积?(生自由发言)
师小结: 可见求组合图形的面积可以用相加的方法,也可以用相减的方法。
【设计意图】:练习的设计是加深学生对本节课知识的巩固,因此在设计上,我由浅入深,遵循学生的思维潜能。
四、总结:(前置作业我的收获)
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?
【设计意图】:通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。
《组合图形的面积》教案 篇14
【教学内容】
义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。
【教学目标】
1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。
2、能运用所学的知识解决生活中的组合图形的实际问题。
3、培养学生动手操作能力,合作交流能力和空间想象能力。
【教学重点】
初步掌握组合图形面积的计算方法。
【教学难点】
正确、灵活地把组合图形转化为所学过的基本图形。
【教学准备】
多媒体课件、学生准备各种图形的卡片。
一、
展示汇报,建立概念。
(一)拼图游戏,初步感知组合图形。
师:师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?
生:自由汇报。
师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图
说它们分别是由哪几个简单图形组合而成的。
结合学生拼出图形有针对性的展示几组组合图形,预设下图:
师:四人小组互相看一看、说一说,你们拼的这个图形分别是由哪些图形拼成的?
师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)
(二)找一找,说一说。
师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?
同桌互相说一说。
师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?
生认真观察后并指名回答。
师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?
学生畅所欲言......
师:这节课我们重点学习组合图形的面积。(板书:面积)
(一)小组活动,自主探索。
师:请同学们观察下刚才拼得图形中哪个组合图形最像我们形产生感性的认识。
为下面学习求组合图形的面积打下基础。学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。
二、
在探索过程中,寻求计算方法。
主题图中房子的侧面墙的图?(课件出示例题)
师:如何求这个组合图形的面积呢?先独立想想再小组交流。
小组讨论:
①这个图形有哪些简单图形组合而成的?
②求这个组合图形的面积就是求哪几个图形的面积?
③怎样求?
小组讨论,教师巡视并指导。
小组汇报:
小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)
=S三+S正
小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)
=S梯×2
(二)引导学生总结方法。
师:想想我们刚才是怎么求这个组合图形的面积的?
学生自由回答。
师:你认为哪种方法简单呢?
学生说自己的.想法。
对于例题的教学,由于学生有了新课伊始的拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。
引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。
三、
利用新知,解决生问题。
师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。
师:请同学们打开数学书把例题补充完整。
(三)质疑
师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?
学生根据自己的想法回答。
以“你想利用今天所学的知识,做个()学生。”为主线完成以下练习。
A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)
B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)
(先独立思考,再小组合作交流,最后师生共同分析,提升较简单的方法。)
C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)
D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。
鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。
以“你想利用今天所学的知识做个什么样的学生。”为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。
《组合图形的面积》教案 篇15
教学内容:
课本第92页到第93页的教学内容
教学目标:
1、认识组合图形、会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。
重、难点与关键
1.探索并掌握组合图形的面积计算方法。
2.理解并掌握组合图形的组合及分解方法。
教具准备
教学用三角尺或教学挂图、PPT课件。
教学过程
一、复习导入
1.复习。
你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?
长方形的面积=长×宽;正方形的面积=边长×边长
平行四边形的面积=底×高;三角形的面积=底×高÷2
梯形的面积=(上底+下底)×高÷2
2.导入。
3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?
二、新授课
1.认识组合图形。
出示课本第92页的四幅图。
认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?
(1)四人小组讨论。
(2)小组各自展示各种分法。
(3)让学生举例说说生活中的组合图形。
同学们,开动脑筋想象:生活中哪些地方还有组合图形
2.探索组合图形面积的计算方法。
教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。
板书课题:组合图形的面积
(1)出示例题4(电子教材)
(2)学生独立解答。
学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。
(3)学生汇报。
解法一:5×5+5×2÷2
解法二:(5+7)×2.5÷2×2
=25+5 =12×2.5÷2×2
=30(m2) = 30(m2)
学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)
三、巩固练习
完成课本第93页的“做一做”。
问:这块地是由哪些简单的`图形组成的?
1.学生独立计算。
2.学生汇报,展示思路。
四、课堂小结
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?
在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。
五、布置作业
这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?
《组合图形的面积》教案 篇16
教学内容:
教科书P75-76页的内容
教学目标:
1、知识与技能:
(1)明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算;
(2)能正确地分析图形,并能正确地求组合图形的面积。
2、能力目标:
(1)通过实践操作、练习,提高观察、分析能力和解题的灵活性;
(2)培养学生的自主探索、合作学习的能力。
3、情感与态度:
(1)培养学生积极参与数学学习活动的习惯;
(2)在学习过程中让学生体验到成功的乐趣,增强学习数学的信心。
教学重点:
学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。
教学难点:
理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。
教学过程:
一、创设情境,激趣导入
1、欣赏图片媒体出示:
师:数学真是无处不在呀!瞧!在很久很久以前,我国新疆地区有一座神秘的楼兰古国,那时人们安居乐业,看!(一座座美丽的房子)你们发现了什么?
师让学生说出有哪些基本图形组成并认识组合图形,感受“数学图形之美”
板书:组合图形
3、复习平面图形面积计算。
二、自主学习,探究新知
1、出示(一座房子的侧墙的图)
师:考古学家们在楼兰古国的遗址发现了其中的.一堵保存比较好的墙,想知道
它的面积有多大?你有办法计算吗?
2、师:考古学家们要计算组合图形的面积来解决问题。其实,我们的生活中也有很多需要计算组合图形的面积的问题呢!瞧!淘气的好朋友小华家买新房,计划在客厅铺地板(出示客厅图)
(1)师:请你估一估,小华家的客厅面积大约是多少?
想一想,找同学来回答
展示学生的做法,并请他说说思考过程。
(2)师请生小组合作,讨论:计算小华家的客厅的实际面积是多少?
方法有哪些?
师:如果要你求这个组合图形的面积,你可以怎样求?
(3)生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来……
师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)
师:还有其他方法吗?
(生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你启发吗?(得出用长方形面积减去三角形的面积)
板书:贴+写
师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)(依据学生回答,教师适时板书:合理割补、分块求积、加减组合)
2、基本练习
老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?
(汇报)
在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。
学生自学例题及补充题,然后交流各题的解题策略,并引导比较异同。
三、实践活动
师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?
出示队旗:其实,我们的中队旗就是一个组合图形。
(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答
(2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?
(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)
用你认为简单的方法进行计算。先做好的小组上来板书。
反馈:你们是怎么思考的?
师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!
四通过这节课的学习,你有什么收获?
希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。
五、巩固练习,深化理解
1、展示学生课前做的七巧板拼图作品。
2、你能计算你的作品的面积吗?
小组合作、测量所需条件并计算面积。
指名交流计算方法,媒体随机出示学生解题策略。
《组合图形的面积》教案 篇17
教学内容:
课本第21页。
教学目标:
1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积
2、能运用所学知识解决生活中组合图形的实际问题。
3、自主探索,合作交流。培养学生认真思考,团结协作的能力。
4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
教学重点:
探索并掌握组合图形的面积计算方法。
教学难点:
理解并掌握组合图形的组合及分解方法。
教学准备:
课件
教学过程:
一、创设情境,激趣导入。
1、同学们,我们已经学习了哪些多平面图形?
导学要点:
请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的'图形,我们就把它们叫做组合图形。
2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。
板书:组合图形的面积
二、小组合作探究
1、出示前置性作业小组交流
复习
(1)说说你学过哪些平面图形?
(2)说说这些图形的面积计算公式?
2、自学21页的例10
(1)导学单
1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?
2)尝试计算每个图形的面积。
3)思考:组合图形的面积是怎样计算出来的?
导学要点:
(1)分割法:将整体分成几个基本图形,求出它们的面积和。
(2)添补法:用一个大图形减去一个小图形求出组合图形的面积。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
(2)小组交流
1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?
2)由于方法不同,我们计算组合图形的方法有什么不同?
3)求组合图形面积时关键是做什么?
导学要点:
(1)要根据原来图形的特点进行思考。
(2)要便于利用已知条件计算简单图形的面积。
(3)可以用不同的方法进行割补。
(3)全班交流
1)学生举例并解答(前置作业我的例子)
2)结合学生自己举的例子解答讲解。
三、应用新知,解决问题
1、课本第21页练一练
(1)生独立计算。
(2)生展示思路。
点拨:
计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。
2、课本第23页练习四第1题前两题。
点拨:
(1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?
(2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?
3、课本第23页练习四第二题
点拨:
引导说说组合图形面积的计算方法。
四、课堂总结
通过这节课的学习,你学到了什么知识呢?
教学反思:
《组合图形的面积》教案 篇18
教学内容:教科书第6页
教学目标:
1、通过观察、分析,弄清图形的组合关系,利用割、补的方法,求组合图形的面积。
2、通过实践操作,培养学生观察、分析以及合理解决问题的能力。
3、在运用数学知识解决实际问题的过程中,让学生体验到成功的乐趣,体会数学的价值。
教学重难点:能正确合理地求组合图形的面积,弄清图形的组合关系,准确判断分割后图形的尺寸。
教学准备:简单图形的纸片、剪刀、多媒体课件
教学过程
一、复习引入
1、课件出示:长方形和正方形。
师:这是我们学过的长方形和正方形。
师:现在要求它们的面积必须知道什么呢?
生:要知道长方形的长和宽,以及正方形的边长。
2、标上相应尺寸。
师:求图形的'面积必须要有相应的尺寸,请看!课件出示:
师:现在能算了吗?左右同学各口算一题。
生汇报:长方形的面积=长×宽
=10×5
=50(dm2)
正方形的面积=边长×边长
=4×4
=16(dm2)
[复习长方形、正方形的面积的计算公式,为求组合图形的面积作铺垫,同时让学生体会求图形的面积必须知道相应的尺寸。]
二、新知探究
1、把引入部分的长方形和正方形合二为一
课件出示:
师:这个图形是由我们学过的图形组合而成的,这样的图形叫组合图形。(出示部分课题:组合图形)
2、课件出示一些组合图形。
让学生仔细观察图形的特点后,以小组为单位互相说说它们是由哪些图形组合而成的,然后汇报。
图①
图②
图③
学生可能有其它想法,教师根据学生汇报后小结。
3.小结:①组合图形的组合关系,可以是几个图形的“和”(一般用“割”的方法)。也可以是几个图形的“差”(一般用“补”的方法)。②图形的组合关系,由于观察、分析思考的方法不同,可以有不同的组合关系。
[这一层次设计,让学生弄清图形的组合关系,学会一般的“割”“补”方法,为后一层次找相应尺寸,计算面积作铺垫。]
4、组合图形的面积计算
(1)师:刚才,我们尝试着弄请组合图形的组合关系,下面我们来探究求组合
图形的面积。(将课题补充完整)组合图形的面积 课件出示:
瞧!这是小胖家小区游乐场的平面图,它有多大呢?我们和小胖一起来算一算。你们桌上都有一张按比例缩小的游乐场平面图,想一想该怎么算,小组里可以讨论讨论。
(2)小组合作、动手操作、并汇报
师:(学生若出现第三种割法教师应予以肯定。)如果分割出的简单图形个数越多,计算时的步骤就越多,反而显得麻烦。因此在进行分割的时候,分成两个简单图形就能解决的问题不要分成三个简单图形去解决。
*第五种
移:S=长×宽 用移的方法,移过去边和边拼合部分必须数据
=(8+2)×3 相等。也就是说通过“移”的方法能将原来的
=10×3 图形转化成我们学过的简单图形。
=30(m2)
* 第六种
分割成5块长为3cm,宽为2cm的长方形。
3×2×5
=6×5
=30(m2)
(第五、第六种可视班级情况进行教学。重在培养学生的数感。)
(3)小结:
①求组合图形面积的基本方法是通过“割”、“补”、转化成我们学过的图形
来计算,先割后加,先补后减。
②分割的图形尽量要少。
③我们无论用“割”或“补”的方法,关键必须找到相应的尺寸。
[通过学生动手操作,探究求组合图形面积的多种方法。此环节关键引导学生合理进行“割”或“补”,必须找到相应的尺寸,计算各个简单图形的面积。]
三、及时练习
1、课件出示小胖家的平面图:
小胖想在他家客厅铺木地板,需要买多少平方米的木料?(单位:米)选你喜欢的方法算。
2、课件出示花园放大图:小胖想把花园布置成一个阳光休闲区,请问需要铺多少面积的草地?(单位:米)
[除了常用的割、补方法,同时也可引导学生分割成3个同样的长为6m,宽为2m的小长方形。]
[让学生体会到虽然3个被挖去的图形所占的位置不同,但最后剩余面积是相同的,从中渗透“变”与“不变”的辨证关系。]
四、总结
师:通过今天的学习,你有什么收获呢?
五、作业设计
求下面组合图形的面积
六、教后反思
《组合图形的面积》教案 篇19
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”
教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学准备:
课件、图片等。
教学过程:
一、 创设情境,引导探索
师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)
生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。……
师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?
【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】
二、探索活动,寻求新知
师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?
图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。……
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。……
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积 = 三角形面积+长方形面积-正方形面积
图二:是由两个三角形组成的。
面积 = 三角形面积+ 三角形面积
图三:作辅助线使它分成一个大梯形和一个三角形。
方法一:是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计
(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?
方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。
方法三:作辅助线使它分成一个大梯形和一个三角形。
(课件分别演示这三种方法)
分割法 添补法
师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转
变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。
板书:分割法或添补法(转化):分解成简单图形。
师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)
师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。……
这节课我们重点学习组合图形的面积。
【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】
三、探讨例题,学习新知
师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)
例4:右图表示的是一间房子侧面墙的.形状。它的面积是多少平方米?
师:怎样才能计算出这个组合图形的面积呢?
先让学生思考,再动手计算。
交流汇报
方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。
指名学生找相应的条件。
在实物投影仪上展出示学生的答案
①5×5=25 (平方米)
②5×2÷2=5(平方米)
③25+5=30 (平方米)
答:房子侧面墙的面积是30平方米。
(注意检查做错的同学,找出错的原因。)
师:除了这种方法,还有同学用别的方法吗?
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。
师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案
长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2
=35-5 =30(平方米)
答:房子侧面墙的面积是30平方米。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。
展示学生的答案
(5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。
让学生发表意见。
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)
师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生
对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】
四、利用新知,解决生活中的问题。
做一做
刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。
方法一:把组合图形分割成两个 长方形。 4×3+3×7 =12+21 =33(cm2)
方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)
第三种方法:分割成两个梯形。 (3+7)×3÷2+(3+6)×4
7×6-3×3 =42-9 =33(cm2)
让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。
练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?
现在你能帮工人叔叔算算这
个指示路牌的面积吗?
【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】
五、课堂评价
师:这节课你学到了什么?
结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。
【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】
课堂检测A
1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?
现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要
2500元。如果让你决定,你会选择哪家公司?
2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!
课堂检测B
1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?
答案:课堂检测A
1、50×33+35×12÷2
=1650+210
=1860(厘米)
2、33×26-26×13÷2
=758+169
=927(厘米)
课堂检测B
1、(40+70)×30÷2-30×15
=1650-450
=1200(厘米)
2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)
《组合图形的面积》教案 篇20
第6单元 多边形的面积
第7课时 组合图形的面积
【教学内容】:教材P99例4及练习二十二第1~6题。
【教学目标】:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
【教学重、难点】
重 点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的
条件。
难 点:根据组合图形的条件,有效地选择计算组合图形面积的方法。
【教学方法】:动手实践、自主探索、合作交流。
【教学准备】:
师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
【教学过程】
一、情境导入
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)
二、互动新授
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。
学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。风筝的面是由四个小三角形组成的,2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
学生可能想到研究它的周长,也可能想到研究它的面积。
适时点拨:它们的`周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。
4.出示教材第99页例4:一间房子侧面墙的形状图。
引导学生观察图并思考:怎样计算出这个组合图形的面积?
组织学生小组合作学习,说一说是怎样分的,然后再算一算。
集体汇报,学生可能会想到两种方法:
(1)把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5×2÷2
=25+5
=30( m2)
(2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(m2)
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、巩固拓展
1.完成教材第101页“练习二十二”第1题。
先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
2.完成教材第101页“练习二十二”第2题。
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
3.完成教材第101页“练习二十二”第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
五、作业:教材第101页练习二十二第4、5、6题。
【板书设计】:
组合图形的面积
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2
=25+5 =12×2.5÷2×2
=30(m2) =30 (m2)
《组合图形的面积》教案 篇21
第六课时:
组合图形的面积计算
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的'面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
