短文网整理的面积的教案(精选27篇),快来看看吧,希望对您有所帮助。
面积的教案 篇1
教学内容:
义务教育六年制小学《数学》第九册P64-P66
教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:
掌握平行四边形面积公式。
教学难点:
平行四边形面积公式的推导过程。
教具、学具准备:
1、多媒体计算机及课件;
2、投影仪;
3、硬纸板做成的可拉动的长方形框架;
4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程:
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的.多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高
所以:平行四边形的面积=底×高
(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:
⑴、(微机显示例一)求平行四边形的面积
⑵、判断题(微机显示,强调高是底边上的高)
⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
面积的教案 篇2
教学目标:
1、让学生经历猜想、操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,推导出三角形面积公式。
2、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,发展学生的空间观念,培养学生的创新精神与实践能力。
3、能运用三角形的面积计算公式解决简单的实际问题,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
教学重、难点:
探究三角形面积公式的推导过程。
教学准备:
课件,2个完全一样的钝角、锐角、直角三角形,剪刀。
教学方法:合作探究
教学过程:
一、谈话导入、揭示课题
同学们穿着统一的校服,戴着鲜艳的红领巾,真精神。做这样一条红领巾需要多少布料呢?需要我们计算红领巾的什么?
我们已经学过哪些图形的面积?
红领巾是什么形状的?
会求三角形的面积吗?这节课我们就学习三角形的面积。
二、合作探究、汇报交流
1、猜测:
你想用什么方法求三角形的面积?
平行四边形能转化成学过的图形求面积,三角形能转化成学过的图形求面积吗?
用桌子上的材料(每人一个钝角三角形、每组一把剪刀)试试吧。
转化成学过的图形了吗?有难度吧。我们能不能换个思路、换种方法用两个三角形来拼呢?
2、同桌合作动手操作。
用两个同样的钝角三角形拼一拼。展示作品。
3、小组合作。
锐角三角形、直角三角形能拼成学过的图形吗?
同学们想试试吗?根据提示板上的提示研究吧。
提示:
做一做:想办法把三角形转化成学过的图形。
找一找:转化成的图形和原来的图形有什么关系。
想一想:三角形的面积该怎么求呢?
4、学生汇报。
5、归纳小结。
转化后的图形用一个名字概括,哪个比较合适?
三、推导公式
1、回顾
课件演示:两个同样的三角形旋转、平移拼成了平行四边形。
每个三角形与拼成的平行四边形有什么关系?
三角形的底和高与拼成的平行四边形的底和高有什么关系?
2、得出结论
三角形的.面积该怎样计算?
为什么要除以2?
三角形的面积计算公式用字母该怎样计算?
3、小结方法
刚才我们的研究过程正好体现了数学上常用的一种方法——转化法。
4、拓展延伸
介绍刘徽用一个三角形推导出了面积公式。
四、运用公式解决问题
1、解决红领巾的问题。
2、解决底是8厘米、10厘米,高是6厘米的三角形的面积。
体会底和高的对应性。
3、三角形的面积是25平方厘米,底是10厘米,高是多少厘米?
五、全课总结
同学们,通过这节课的学习,你有收获吗?一起来分享吧!
追问:
三角形的面积为什么要除以2?
怎样推导出三角形的面积计算公式的?
只要大家勤动手、勤思考,就一定能学到更多的数学知识。
板书设计:
三角形的面积
三角形的面积=平行四边形的面积÷2
=底×高÷2
S=ah÷2
面积的教案 篇3
教学内容:课本第77页的例题,练习十八的第5-12题
教学要求:
1、使学生比较熟练地应用三角形面积的计算公式计算三角形的面积。
2、能应用公式解答有关的实际应用问题。
3、养成良好的审题,检验的习惯,提高正确率。
教学重点:能比较熟练地应用公式计算三角形的面积,解答有关的实际应用问题。
教学过程:
一、复习
1、三角形的面积计算公式是什么?为什么公式中有一个“÷2”?
2、有关计算的'错因分析:
下面的结答,问题出在哪里?
一个三角形,底是1.8米,高是1.2米,求它的面积。
解一:1.8×1.2=16(平方米)
解二:1.8×1.2÷2=2.16(平方米)
3、导入新课:掌握了计算公式,我们就可以着手解决许多有关的实际应用问题。(板书课题:三角形面积的计算)
二、新授
1、例题教学
(1)读题后,让学生尝试练习,并指定两名学生板演,再集体订正。
(2)注意“÷2”这一环节是否有人失误。
2、应用练习
完成课本第80页第8题的填表计算,把它化为4小题来处理,解答完成后填空。
教师简评:求图形的面积,首先应确定所求的是什么图形,其次考虑运用什么公式计算。
三、巩固练习
1、课本第80页的第7题。
先独立思考,再交流。
议一议:(1)这所有的以涂色三角形底边为底,顶点落在对面那条平行线上的两个三角形的面积与涂色三角形面积有什么关系?为什么存在这种关系?
(2)再画出一个与之等面积的三角形,只要怎么取顶点就可以了?
(3)你能联想到什么?
2、练习十八第5、6、9、10题(做在课作本上)
⑼一块三角形的玻璃,量得它的底是12.5分米,高是7.8分米。这块玻璃的面积是多少?如果每平方分米玻璃的价钱是0.9元,买这块玻璃要用多少钱?
⑽右图是人民医院包扎用的三角巾。现在有一块长18米,宽0.9米的白布,
可以做多少块三角巾?
(1)学生独立作业,教师巡视,作个别辅导,并及时反馈。
(2)提取典型错例,进行评讲。
(3)第10题有下列各种解法,哪些是对的,哪些有毛病?
解一、14×0.9÷(0.9×0.9)
解二、14×0.9÷(0.9×0.9÷2)
解三、14×0.9÷(0.9×0.9)÷2
解四、14×0.9÷(0.9×0.9)×2
学生充分议后,教师简评:(作全课)
板书设计:
三角形面积的计算
教后感:
4、实际测量在地面上测量距离第课时总第课时
面积的教案 篇4
教学内容:教科书70-74页
教学目标:
知识与技能:体会引进统一的面积单位的必要性,认识面积单位,平方厘米、平方分米、平方米,建立平方厘米、平方分米、平方米的表像。
过程与方法:通过观察、重迭、数格子的方法比较面积的大小,通过画一画、剪一剪、围一围、用一用、想一想,从实际生活中形成面积单位。
情感态度与价值观:体验到生活处处有数学,数学与生活密切相关养成严谨治学的态度。
教学重点:认识常用的面积单位
教学难点:理解面积的意义
教学流程:
一、激趣引入
1、游戏引入:同学们,老师这里有两张纸,如果咱们要在这两张纸的面
中进行涂色比赛,看谁先涂完,谁就是冠军。那你想选哪张纸?为什么?
2、师小结:纸的面有大有小。
二、探究新知
(一)揭示面积的概念
1、 出示实物,引导观察
(1)出示一本数学书和一个练习本,先用手摸一摸它们的封面,再比较一个它们的封面哪个大,哪个小。
(2)组织学生汇报比较的结果。
(3)你再摸一摸课桌的面和铅笔盒的面,它们的大小有什么不同吗?
2、师小结:刚才通过我们的摸和看,我们知道了物体的表面有大有小,我们就把物体表面的大小,叫做它们的面积。师板书
3、认识平面图形的大小:现在我们知道了物体的表面有大有小,那我们以前还认识过一些封闭图形,比方说:“长方形、正方形、圆形、三角形(出示课件)那这些图形有大小吗?(生汇报)
4、师小结:对,封闭图形也有大小,封闭图形的大小,就叫做它们的面积。
5、揭示面积的概念。
物休表面或封闭图形的`大小,叫做它们的面积。
(二)认识面积单位
1、引导比较两个长方形的大小:刚才,我们知道了什么是面积,现在,你们每人小组都有两张不同颜色的彩纸,这两张彩纸的面积谁大谁小呢?(生汇报)
2、师:对于这两个长方形的大小,刚才大家有三种猜测,那么到底哪种猜测是正确的?你有办法来验证自己的猜想吗?
3、组织交流
师:为什么要用同样大小的图形呢?不一样大的图形行吗?(生汇报)看来在比较两个图形的面积大小时,一定要用统一的面积单位进行测量。
4、引导动手操作,实际测量
下面请同学们用小正方形来摆一摆,这两张纸的面积到底谁大谁小?(生汇报)
5、 揭示面积单位:
(1)的确,为了方便,人们就统一用正方形做为面积单位,(板书:正方形)
可是,正方形有大有小,那究竟用边长是多长的正方形来做为面积单位呢?
(2)生汇报,师板书:
边长是1厘米的正方形,它的面积就是1平方厘米,边长是1分米的正方形,它的面积就是1 平方分米。边长是1米的正方形,它的面积就是1平方米。
(3)小结:同学们,这里的平方厘米、平方分米、平方米,就是我们生活中常用的面积单位。
6、 认识面积单位
(1)下面,我们就先认识平方厘米,好吗?
请同学们从学具袋中找到面积是1平方厘米的正方形,把你找到的1平方厘米都举起来看一看。
(2)同学们,看一看,再想一想,在我们身边哪些物体表面的面积大约是1平方厘米。
(3)认识平方分米:
你们能不能从学具袋中找出面积是1 平方分米的正方形呢?找找吧,把你的1平方分米的正方形和同桌互相交换交换,看看,边长1分米的正方形,它的面积就是1平方分米,再闭上眼睛想象一下,1平方分米有多在呢?好,睁开眼睛,你们能用手来比划比划吗?
(4)例举生活中面积接近1平方分米的实例。
(5)认识平方米
① 现在我们认识了平方厘米,平方分米,那1 平方米,也就是边长 1米的正方形会有多大呢?同学们,你们想看看吗?(老师出示1平方米的纸)它的面积就是1平方米。
② 找四名同学上台1平方米。
③ 例举我们的身边哪些物体的面积是1平方米。
7、 揭示课题,并板书
通过学习我们知道了什么是面积,还认识了面积单位,这就是我们这节课要学习的主要内容,板书课题
三、 巩固练习
1、 数学书76页第1题
2、 数学书76页3-4题
四、 全课总结
通过这节课的学习,你有什么收获?(生汇报)
通过今天的学习,同学们的收获可真多,只要同学们在今后的学习中,仔细观察,勤于思考,你会发现更多的数学奥妙!
板书设计
物体表面或封闭图形的大小,叫做它们的面积。
边长 面积
面积单位:正方形 1厘米 1平方厘米
1分米 1平方分米
1米1平方米
面积的教案 篇5
教学目标
1.培养学生养成及时已学过的内容、知识。
2.学会一个单元的知识,并知道一些解决问题的方法。
教学重点
简单图形的面积计算方法。
教学难点
知识的前后衔接和联系。
教具、学具
教师指导与教学过程
学生学习活动过程
设计意图
一、知识点
教师指导学生填写课本P28。帮助他们有条理的所学知识。
二、练一练
1.P29第1、2题。
指导学生找出28的因数和100以内的倍数。以及既是6的倍数又是72的因数的数。
2.Ρ29第3题。
教师组织学生讨论这4个图形之间的关系。
学生根据书上的提示进行知识的简单。
小组讨论你学习到的解决问题的策略,同学之间互相交流
学生运用举例的方法,根据题目中的要求,罗列符合条件的数,然后逐步进行筛选。
等底等高的平行四边形、三角形、梯形的面积有什么关系。
训练学生逻辑思维的能力。并学会,实际问题为知识体系。
复习因数和倍数的知识。
让学生深刻的体会等底等高的平行四边形、三角形、梯形的面积的关系。
教师指导与教学过程
学生学习活动过程
设计意图
3.第4题。
组织学生估一估这些图形的面积
4.第5题。
直角三角形的面积
引导学生用方程解答这道题。
5.第6、7、8、9题。
在教师的指导下学生尽可能的独立完成课本上的题目,
先估计这些图形的面积,在量出数据进行计算。
让学生理解要求直角三角形的面积只要知道直角三角形的两条直角边的长度就可以了。
学生练习。
帮助学生建立图形大小观念。
建立等量关系。
板书设计:
与复习
教学反思:
面积的教案 篇6
教材分析
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。
学情分析
由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。
教学目标
知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的`方法,并能解决实际问题。
情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。
教学重点和难点
重点:教师引导,动手操作得出求圆柱表面积的方法。
难点:计算方法在生活中的应用。
教学过程
一、复习导入:
1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?
2、圆面积怎样求?
3、长方形的面积呢?
二、创设情境,引起兴趣:
出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》
三、 自主探究,发现问题。
1、分组,讨论:
(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)
圆柱的侧面剪开发现侧面是一个长方形(正方形),
侧面积=长方形的面积=长×宽=地面周长×高。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
(2)、复习引导:(用旧解新)
上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)
(3)、小结:小组讨论,将公式延伸。
圆柱表面积 = 圆柱的侧面积+底面积×2
=Ch+2π r2
=πdh+2π r2
2、知识的运用:(回到情景创设)
(1)、出示例题:
例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)
(2)、独立试做:
(3)、集体讲评。
(4)、讲解进一法。
3.巩固练习:
四、课堂总结:
这一节课重点学习了圆柱表面积的计算方法及运用。
面积的教案 篇7
教学内容
24.4弧长和扇形面积(2).
教学目标
1.了解母线的概念.
2.掌握圆锥的侧面积计算公式,并会应用公式解决问题.
3.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.
教学重点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
教学难点
圆锥侧面积计算公式的推导过程.
教学过程
一、导入新课
出示漏斗、蒙古包的图片,让学生初步认识圆锥形图形,导入新课的'教学.
二、新课教学
1.探索圆锥的侧面公式.
圆锥是由一个底面和一个侧面围成的几何体,我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.
思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?
(1)如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.
(2)设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).
24.4弧长和扇形面积同步练习
1.若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )
A.60π B.65π C.78π D.120π
24.4《弧长和扇形面积》同步检测题
1.一个直角三角形纸板,其两条直角边长分别为6 cm和8 cm,小明以纸板的斜边为旋转轴旋转这个三角形纸板形成如图11所示的旋转体.请你帮小明推算出这个旋转体的全面积.(π取3.14)
面积的教案 篇8
【教学内容】
北师大版小学数学五年级上册P16-17“比较图形的面积”。
【教学目标】
1、借助方格纸,能直接判断图形面积的大小。
2、通过交流,知道比较图形面积大小的基本方法。
3、体验图形形状的变化与面积大小变化的关系。
【教学重点】
掌握比较图形面积大小的方法。会用不同的方法去比较图形的面积大小
【教具准备】
课件、方格纸、直尺、各种平面图形的硬纸板、七巧板等
【教学设计】
教学过程
教学过程说明
一、复习旧知,揭示新课。
1、课件播放已经学过的各种平面图形(长方形、正方形、三角形、梯形等),让学生说出图形的名称以及特征。
2、让学生拿出准备的长方形的硬纸板。跟同桌说说哪儿是它的周长,哪儿是它的面积。并且用手比划一下这个长方形的周长有多长?用手摸一摸它的面积有多大?
(注:明确图形的周长是指绕图形一周的长度;图形的面积是指所占平面的大小。)
3、师:任意拿出两个图形纸板,说说哪个面积大?哪个面积小?让学生进行直观判断。如果两个形状不同,大小很难区分时,你有什么办法?--揭示课题:我们今天来探讨图形面积的比较。
二、自主探究:比较图形面积的大小。
1、出示课本16页网格中的13个图形。
2、自主探究活动:这些图形的面积之间有什么关系呢?请同学们先仔细观观察、比较,看谁的发现最多多!
3、小组交流:在小组里交流你的发现。
①全班交流,归纳比较图形面积的方法:各组派代表说说你们组找到了哪些图形之间的面积大小关系?是怎么知道的?依据同学的回答,归纳学生所使用的比较方法如下:
②板书:
A、数方格的方法;(重点说明这个方法,为今后学习面积公式的推导作好铺垫。)
B、重叠法;(通过旋转、平移、翻转等操作方法,使两个图形重叠,再观察比较出图形面积的大小)
C、转化法;(通过割补、拼合转化为规则的图形后,再做比较)
三、实践活动:比较图形面积的大小。
1、活动一:课件出示课本17页1题:
师:同学们观察得很仔细,总结了这么多的比较图形面积大小的方法,那我要考考大家的眼力,下列图形中哪些与图1的面积一样?为什么?你用的是什么方法得到的?
(注:重点要引导学生怎样对图形进行平移和分割,让学生体会形状变化而面积不变的事实,培养学生图形的转化思想,为后续运用转化思想学习面积公式的推导打下基础。)
2、活动二:出示课本17页的2题。
(1)师:我们知道图形形状可能不一样,但是面积大小可能一样的道理,那大家能画出相同面积但形状不一样的图形吗?
(2)按题目要求在课本上画面积是12平方厘米的不同图形。看谁画得多。
⑶作业展示。表扬有创意的同学。
(注:重点要引导学生说出为什么面积是12平方厘米,培养学生在面积不变的情况下,形状可以是不同的辨证思想)
3、活动三:出示课本17页的3题:
(1)师:我们知道,把一个不规则的图形给它补上一块,就可以使它变成规则的图形,上面的这个图形应该补几号图形呢?为什么?
(2)课件演示。
(注:重点让学生说出自己的想法,培养学生把不规则图形可以补成规则图形的意识,为今后运用“补”的方法去求不规则图形的面积做好铺垫。)
4、活动四:出示课本17页的4题:
(1)师:我们知道用不同的图形可以拼出不同的有意思的图形来。那4题的两个图形可以拼成什么样的图形呢?先想想,再动手拼一拼进行验证。
(2)你还能拼成什么样的图形呢?动手试一试。
⑶作业展示,说自己拼成的什么图形?怎么想的.?
(注:要先让学生想象可以拼成什么样的图形?再让学生动手操作,为运用分割法求组合图形面积埋下伏笔。)
5、活动五:拼平行四边形
⑴让学生拿出七巧板,拼平行四边形,再在小组内进行交流。
⑵各小组派代表在全班进行交流。
(注:要让学生动手操作,在同学间进行交流,大胆说出自己的想法,培养学生动手和观察能力,为后续平行四边形的面积打好基础
四、全课总结。通过这节课的学习,有什么收获和启示?
通过对已经学习过的平面图形的再认识,以及图形周长和面积的再认识,为学习新知识做好了铺垫。在学生很难比较两个近似图形面积大小的时候,引入课题,为学生下一步的探究创设了情境,提高了学生探究的欲望。
教师在组织学生通过自主探究、交流等形式进行比较活动中,使学生掌握多种比较面积大小的方法。同时也让学生知道确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定的。也为学生自主探索基本图形的面积计算的方法打下了基础。在教学中真正体现了学生在学习中的主体地位,有利于培养学生学习的积极性和研究问题的方法,使学生在课堂上真正得到提升。学生在掌握知识的同时,能力也得到了培养。
教师通过组织学生画一画、试一试、拼一拼、想一想等活动,运用平移、旋转、割补等方法,使学生体会形状变化而面积不变的事实,体会把组合图形分解为基本图形的过程,培养图形切拼的意识和图形的转化思想,为后续运用转化思想学习面积公式的推导打下基础。
归纳知识要点和心得体会,突出学习重点,形成完整的知识框架。
面积的教案 篇9
教学目标:
1、结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体表面积的过程,能够准确的计算长方体和正方体的表面积。
2、能够认识长方体和正方体,具有初步的`立体空间想象能力。
3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
能够准确的计算长方体和正方体的表面积。
教学方法:
师生共同归纳和推理。
教学准备:
长方体纸盒
教学过程:
一、复习导入
教师让学生拿出长方体的盒子并沿着棱剪开,把长方体展开成6个面并观察这6个面有什么特点?
学生举手回答问题。(长方体的表面积由6个面来组成,每组相对的面的面积相等)
二、讲授新课
教师出示例题,一个知道长、宽、高的长方体纸盒,如何才能求出它的表面积?
学生利用手中的长方体纸盒为参照,探究如何才能求出长方体的表面积。学生同组之间相互讨论,教师巡视指导每个小组的讨论活动。
教师提问学生如何求长方体的表面积。
学生回答:(分别求出每个面的面积,再加起来。就是长方体的表面积。)
教师让学生把长方体的纸盒展开,看一看长、宽、高有什么关系?
组成长方体表面积的6个面,等于(长宽+长高+高宽)2=长方体的表面积
教师让学生自己求出长7厘米、宽5厘米、高3厘米的长方体的表面积是多少?
学生列式:(75+73+53)2
教师让学生思考正方体的表面积如何求?
学生同桌之间进行交流,教师提问学生。(正方体的表面积=边长边长6)
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
长方体的表面积
长方体的表面积=(长宽+长高+高宽)2
正方体的表面积=边长边长6
面积的教案 篇10
一、 创设情境,揭示课题
引入语:明年“六一”我们学校一年级有一批小朋友加入少先队,学校准备做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)同学们,红领巾是什么形状的?你会算三角形的面积吗?这节课我们就来一起研究、探索这个问题。(板书:三角形面积的计算)
二、探索交流、归纳新知
1.出示一个平行四边形
(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)
(2)观察:沿平行四边形对角线剪开成两个三角形。两个三角形的形状,大小有什么关系?(完全一样)三角形面积与原平行四边形的面积有什么关系?
(3)上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?
2.分组实验,合作学习。
(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?
②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
(3)展示学生的剪拼过程,交流汇报。
①各小组汇报实验情况。(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过实验,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形。每个三角形的面积与拼成的'平行四边形的面积有什么关系?
3.归纳公式
(1)讨论:
A、三角形的底和高与平行四边形的底和高有什么关系?
B、怎样求三角形的面积?
C、你能根据实验结果,写出三角形的面积计算公式吗?
(2)归纳交流推导过程,说出字母公式。
根据学生讨论、汇报,教师进行如下板书:
因为:三 角 形 面 积=拼成的平行四边形面积÷2
所以:三 角 形 面 积=底×高÷2
师:为什么要除以2?
生:……
师:如果用S表示三 角 形 面 积,用α和h分别表示三 角 形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书S=ah÷2
同学们真了不起,得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?
三、应用新知,解决问题
师:有了公式,下面我们可以帮学校解决问题了。(回应引入问题)
1、(屏幕显示)出示85页例1:
学生独立完成(一生板演),集体订正。
师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)
2、独立完成P85做一做。
完成后交流、讲评。
四、深化理解、应用拓展
1.课本86页的练习第1题。课件出示下图:
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
3.想一想,下面说法对不对?为什么 ?
(1)三角形面积是平行四边形面积的一半。( )
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。 ( )
(5)两个三角形一定可以拼成一个平行四边形。( )
4.求右图三角形面积的正确算式是( )
①3×2÷2 ②6×2÷2
③6×3÷2 ④6×4÷2
5.做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下图)上种草坪。1O草坪的价格是12元。种这片草坪需要多少元?
五、回顾总结,深化提高
1.这节课我们探究学习了什么?是怎样探究的呢?(渗透数学方法)
2.今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
面积的教案 篇11
教学内容:“想想做做”第3到8题。
教学目标:
1、让学生更形象地理解面积单位,能直接计量或估计面积大小,逐步提高对物体表面或平面图形大小的直观判断能力。
2、使学生产生对数学的亲切感,产生进一步学习的愿望。
教学准备:若干个1平方厘米的正方形。
教学过程:
一、复习
问:我们学习了哪几个常用的面积单位?
老师板书:平方厘米平方米平方分米
问:这三个单位用在用时要注意适宜,那你认为怎样算适宜?
二、巩固练习
1、做第3题
说清要求
集体校对。
2、完成第4题
说清楚要求
3、做第5题
理解题目意思
4、做第6题
让学生理解题目意思估计面积大约是多少平方厘米。
5、完成第7题
问:周长是指什么?
集体交流。
交流后对比周长和面积的`不同求法。
5、完成第8题
说清楚画的要求。
三、完成思考题
要求说明一下。
四、
今天你有什么收获?
面积的教案 篇12
教学内容:教科书第123—124页,“做一做”中的题目和练习二十八的第1—5题。
教学目的:使学生初步理解长方形面积的计算方法,会运用公式正确地计算长方形的面积,培养学生的抽象概括能力。
教具、学具准备:师准备卷尺,生准备一张长5厘米,宽3厘米的长方形,20个1平方厘米的正方形。
教学过程:
一、复习。
1、让学生说一说面积的含义,并举例说明。
2、让学生说一说学过的面积单位,并比划一下它们的大小。
二、新课。
1、教学长方形面积的计算。
让生拿出准备好的长5厘米,宽3厘米的长方形,用1平方厘米的正方形测量一下它的面积。生摆完后问:一共摆了多少个1平方厘米的正方形?这个长方形的面积是多少平方厘米?沿长边摆几个正方形?沿短边摆几个正方形?
根据生的回答,是在黑板上画出图形(画长方形时用1分米表示1厘米):
师问:这个长方形的长是几厘米?沿长边一排摆几个1平方厘米的'正方形?是几平方厘米?每排正方形的个数与长方形的长有什么关系?这个长方形的宽是几厘米?沿宽边摆里几个1平方厘米的正方形?排数与长方形的宽有什么关系?一共摆了多少个正方形?你是怎样计算的?
生答,师小结并板书:5times;3=15
长times;宽=面积
2、练习。“做一做”的题目,让生先量出它的长和宽,再计算它的面积。
二、课堂练习。
1、做练习二十八的第1题。
先让学生说一说长方形的长和宽是多少厘米,再计算。
2、做练习二十八的第2题。
生独立完成,集体订正。
3、做练习二十八的第3题。
先让一生与老师共同测量出黑板的长和宽,再让生计算。
三、作业
练习二十八的第4、5题。
正方形面积的计算
教学内容:教科书124页正方形的面积的计算,“做一做”中题目,练习二十八的6—11题。
教学目的:使学生立即和掌握正方形的面积计算公式,能够正确计算正方形的面积。而且,通过对正方形面积公式的推导,培养学生迁移,类推的能力。
教具、学具准备:正方形纸片和正方形手帕。
教学过程:
一、复习引入。
1、提问:长方形的面积怎样计算?
2、计算。出示:4分米
3分米
二、新授。
1、教学正方形面积的计算方法。
将复习2中图形改为:3分米
3分米
问:当长和宽都是3分米时,这个图形是什么图形?正方形的面积又应该怎样计算?
生答,师板书:3times;3=9(平方分米)
边长times;边长=面积
2、“做一做”的题目
让生拿出准备好的正方形和手帕,量一量它们的边长,再计算出它们的面积?
二、练习。
1、做练习二十八的第6、7题。
生独立完成,集体订正。
2、练习二十八的第8题
让生读题,问“要配上一块与桌面同样大的玻璃”说明什么?再让生计算。
3、练习二十八的第9题
先让生动手操作,再让生计算。
4、练习二十八的第10、11题
生独立完成,集体订正。
面积的教案 篇13
活动目标:
1、通过自由探索多种操作的方法,比较面积的大小,初步体验面积的守恒,发展观察力、创造力、解决问题的能力。
2、体验创造的乐趣,激发好奇心及求知欲。
3、发展幼儿思维的敏捷性、逻辑性。
4、引发幼儿学习图形的兴趣。
5、有兴趣参加数学活动。
活动准备:
洞洞板学具图形袋人手一份空白纸两大张
活动过程:
一、出示正方形与长方形,引导幼儿探讨两图形面积大小,初步感知面积守恒。
1.教师出示正方形与长方形,提问:小朋友,老师手里拿的什么?这两个图形一样大吗?为什么?
2.讨论:可用什么办法比较它们的大小?
3.幼儿第一次操作,探索比较大小的方法。
方法1:可以用拼一拼的方法,两个图形重叠,比较两个图形的大小。
方法2:可以用数格子的`方法
方法3:用洞洞板学具摆棋子的办法
4.师幼验证寻找的方法,尝试学习用摆棋子的方法比较大小。
1)幼儿讲述所找到的各种办法,师幼验证。
2)学习移动棋子的方法比较两图形大小
在图形上摆上棋子,根据棋子所占格子的数量得出结论。移动棋子位置,把两个图形变成不同图形,比较另一图形的所占棋子的多少。
3)小结:原来面积同样大小的图形,形状可以不一样。
二.为幼儿园设计“草坪”幼儿第二次动手操作,进一步面积守恒。
1.教师提出任务:幼儿园要修草坪,请小朋友来设计草坪的外形!
2.教师出示自己设计的草坪,请幼儿观察。
3.幼儿第二次操作,要求:和老师设计的草坪面积一样大,形状不一样。
4.教师展示所设计草坪,师幼验证面积是否一样。
三.幼儿分组操作作业单
1.师:在小朋友的作业纸上,有一些图形,请你们看一看,哪些图形是一样大小的。请你用一定的标记把它标出来。
2.幼儿分组操作作业单。
四.师幼讲评作业单,幼儿整理操作材料。
面积的教案 篇14
教学目标:
1、结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体表面积的过程,能够准确的计算长方体和正方体的表面积。
2、能够认识长方体和正方体,具有初步的立体空间想象能力。
3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
能够准确的计算长方体和正方体的表面积。
教学方法:
师生共同归纳和推理。
教学准备:
长方体纸盒
教学过程:
一、复习导入
教师让学生拿出长方体的盒子并沿着棱剪开,把长方体展开成6个面并观察这6个面有什么特点?
学生举手回答问题。(长方体的表面积由6个面来组成,每组相对的面的面积相等)
二、讲授新课
教师出示例题,一个知道长、宽、高的长方体纸盒,如何才能求出它的表面积?
学生利用手中的长方体纸盒为参照,探究如何才能求出长方体的表面积。学生同组之间相互讨论,教师巡视指导每个小组的讨论活动。
教师提问学生如何求长方体的表面积。
学生回答:(分别求出每个面的面积,再加起来。就是长方体的表面积。)
教师让学生把长方体的纸盒展开,看一看长、宽、高有什么关系?
组成长方体表面积的6个面,等于(长宽+长高+高宽)2=长方体的表面积
教师让学生自己求出长7厘米、宽5厘米、高3厘米的长方体的表面积是多少?
学生列式:(75+73+53)2
教师让学生思考正方体的表面积如何求?
学生同桌之间进行交流,教师提问学生。(正方体的表面积=边长边长6)
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
长方体的表面积
长方体的表面积=(长宽+长高+高宽)2
正方体的表面积=边长边长6
面积的教案 篇15
教学目标:
1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。
2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。
教学重难点:
重点:圆的面积计算公式的推导和应用。
难点:圆的面积推导过程中,极限思想(化曲为直)的理解。
教学准备:
教具:多媒体课件、面积转化教具。
学具:书、计算器、16等份教具、作业纸。
教学过程:
一、创设情境、揭示课题
1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?
(复习圆的相关特征)
师:那马最多能吃多大面积的草呢?
师:圆所围成的平面的大小就叫做圆的面积。
师:今天我们继续来研究圆的面积。(揭示课题)
2、师:你想研究它的哪些问题呢?(引导学生提出疑问)
?设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】
二、猜想验证、初步感知
1、实验验证
(1)师:猜一猜,圆的面积可能会和它的什么有关系?
师:你觉得圆的面积大约是正方形的几倍?
(2)师:对我们的估计需要进行?
生:验证。
师:用什么方法验证呢?
师:下面请大家先数数圆的面积是多少。
师:数起来感觉怎么样?有没有更简洁一点的方法?
(引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)
(让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)
圆的半径
(cm)
圆的面积
(cm2)圆的面积
(cm2)正方形的面积
(cm2)
圆的面积大约是正方形面积的几倍
(精确到十分位)
(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)
(学生完成后交流汇报。)
师:仔细观察表中的数据,你有什么发现?
生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。
3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?
生:圆的面积是它半径平方的3倍多一些。
小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。
设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。
三、实验操作、推导公式
1、感受转化,渗透方法
(课件再次出示马吃草图)
师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?
(引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)
2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?
(学生回忆后汇报,教师演示,激活转化思路)
3、第一轮探究——明确思路,体会转化
师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?
生:剪圆。
师:怎么剪呢?沿着什么剪?
生:沿着直径或半径剪开。
4、第二轮探究——明确方法,体验极限
师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?
生:想把圆形转化成平行四边形。
师:那还能更像吗?
生:可以将圆片平均分成16份。
(引导学生把16、32等份的圆拼成近似的长方形,上台展示)
师:从哪儿可以看出这两幅图更接行四边形了?
生:边更直了。
师:是什么方法使得边越来越直了?
生:平均分的份数越来越多。
(引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)
师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。
设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多
(2)师:我们把圆转化成了长方形,什么变了,什么没变?
生:形状变了,面积大小没有变。
师:这样就把圆的面积转化成了?
生:长方形的面积。
师:要求圆的面积,只要求出?
生:长方形的面积。
5、第3轮探究——深化思维,推导公式
师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。
(小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)
师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:c÷2=2πr÷2=πr)
(通过长方形面积计算方法,引出圆的面积计算方法)
师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?
生:π倍。
师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。
生:半径。
5、做“练一练”
完成作业纸第3题,交流反馈。
6、(课件再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的`长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
四、解决问题、拓展应用
1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(课件出示例9)
分析题意后学生独立完成书本第105页例9。
(组织交流,评价反馈)
2、完成作业纸第4题
师:接着看,默读题目,完成作业纸第3题。
(学生独立完成,交流反馈)
五、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。
圆的面积教学反思
本节课是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。
成功之处:
1.以数学思想为引领,探索圆的面积计算公式的推导。学生对于把圆的面积转化为已学过图形的面积并不陌生,通过以前相关知识的学习,学生很自然想到利用转化思想把圆的面积转化为长方形、平行四边形的面积来推导计算圆的面积。在教学中,我首先通过出示学过的图形长方形、正方形、三角形、平行四边形、梯形,让学生回顾这些图形的面积计算,从而为教学圆的面积做好铺垫。
2.利用多媒体的优势,与学生的实际操作相结合,使学生不仅知道圆的面积推导过程,还在学习中再一次温习转化思想,掌握解决问题的策略。在教学中,通过学生的操作,与多媒体的动态演示,使学生清楚的发现圆的面积与近似长方形面积之间的关系:近似长方形的长相当于圆周长的一半,宽相当于圆的半径,由此推导出圆的面积是:s=∏ 。
不足之处:
学生由于事先在课前已把课本中的附页圆等分剪下来,对于把圆的面积转化成长方形、平行四边形有了一定的思维限制,学生是不是只是单纯的操作,而忽略了思维的进一步深入,还有待研究。
再教设计:
尽量放手给予学生最大的思考时间和空间,让学生在思索、质疑中不断建构知识的来龙去脉,习题要精选,注意变化的形式。
面积的教案 篇16
设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。
本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。
教学目标:
知识目标 :
1、在自主探索的活动中,理解组合图形面积的计算方法。
2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的'解答。
能力目标 :
1、能运用所学的知识,解决生活中组合图形的实际问题。
2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。
情感与价值观目标:
1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。
2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点:选择有效的计算方法解决实际问题。
教学过程:一、复习旧知,引入新课
1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。
2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)
[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]
二、探索组合图形面积计算方法
1、割
那你能想办法用学过的方法来求正六边形的面积吗? 请上来画一画说一说。
这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。
[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习平面图形的兴趣。]
2、补、大面积-小面积
出示一个组合图形
(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)
师:谁来说说你是用哪种方法计算的。
生介绍,师根据学生的介绍演示不同的方法。
师:这几种方法你们最喜欢哪一种呢?
师:为什么?(引导学生选择分得最少的,计算又简洁的方法)
(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)
3、小结求组合图形面积常用的方法
割、补、大面积-小面积。
4、小试牛刀
课后第一题。
请说说你用了什么方法。你更喜欢哪种方法?
5、挑战
(1)独立思考
(2)讨论
(3)移、拼的方法
[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]
3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?
[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]
4、练习:课后2、3
板书:
长方形面积=长×宽 割
正方形面积=边长×边长 补
平行四边形面积=底×高 拼
三角形面积=底×高÷2写 大面积-小面积
梯形面积=(上底+下底)×高÷2
面积的教案 篇17
教学内容:练习十九的第11~15题。
教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。
教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。
教学过程:
一、复习平行四边形、三角形、梯形面积的计算公式。
出示下列图形:
问:这3个图形分别是什么形?(平行四边形、三角形和梯形)
平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)
平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)
三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)
为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)
梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)
梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)
量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)
二、做练习十九中的'题目。
1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。
2、第13题和第15题,让学生独立计算,做完后集体订正。
3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?
这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)
4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。
三、作业。
练习十九第11题和第14题。
课后小结:
面积的教案 篇18
教学目标
1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点利用数形结合的方法验证公式
教学方法动手操作,合作探究课型新授课教具投影仪
教师活动学生活动
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的.硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
作业第95页第3题
板书设计
复习例1板演
………………
………………
……例2……
………………
………………
教学后记
面积的教案 篇19
教材解读:
地毯上的图形面积是北师大版小学数学五年级上册第二单元的学习内容。是在方格纸上比较不规则图形面积的大小及轴对称平移旋转等图形知识的后续内容,和已经具备了初步的转化思想的基础上展开的学习内容。教材呈现地毯的一部分,通过观察探索出图形的特点,鼓励学生自主探索解决问题的方法,引导学生运用多种策略解决问题,在解决问题的过程中渗透面积计算的策略。重点引导学生对化整为零,和大面积减小面积两种解决问题方法的理解上。
学生分析:
学生会在方格纸上比较不规则图形面积的大小及学过轴对称平移旋转等图形知识,已初步体会转化思想在数学中的应用。大部分学生思维活跃,能够根据问题情境提出问题解决问题并进行简单的分析和整理,能够借助语言文字,算式,画图或表格等方式表达自己的想法。
教学目标:
1.能直接在方格纸上数出相关图形的面积。
2.能利用分割的方法将较复杂的图形转化为简单图形,并用较简单的方法计算面积。
3.在解决问题的过程中体会策略,方法的多样性。
教学重点:
将复杂图形转化为简单图形,体会解决问题方法的多样性和简便性。
教学难点:
如何将整体图形转化为部分的图形。
教具准备:
多媒体课件,作业纸。
教学过程:
一、复习旧知
不规则图形通过割补,平移可以转化为规则图形从而计算出它的面积,出示练习,提出问题:每个图形的面积是多少?你是怎么得知的? 对于图1 2 3学生的方法会有很多,要对学生进行充分的肯定。
(设计意图:这组练习复习了已学过的知识,学生在解决面积是多少的过程中打开了思路,如图1既可以利用轴对称图形的特征先算出左边图形的面积,再乘以2得到整个图形的面积。也可以根据组合图形是平移得到特点,先算出上面一个大三角形的面积再乘2求出整个图形的面积。还可以沿对称轴将图形分割为四个三角形,再旋转平移转化为长方形算出面积,即化不规则为规则图形来计算。孩子们灵活多样的解决问题方法是为后面地毯上图形面积计算方法的多样性做了很好的铺垫。)
二、新授
(一)对图形特征的观察
今天老师带来了一块漂亮的地毯,出示课件
请同学们用数学的眼光来观察,说说这幅图有什么特点。
生1:这块地毯是轴对称图形,是由许多小正方形组成的
师问:对称轴在哪里?有几条?
(学生到黑板前演示给全班学生看,目的是提醒孩子可以把整个图形平均分成两份或四份,为化整体到部分,知部分求整体的解题思想做准备。)
生2:这块地毯是蓝色和白色两种颜色。
师问:能找到这两种颜色的格子与总格子数之间的关系吗?
(学生能说到蓝色格子数加上白色格子数等于总格子数,或者是另外两种变式的数量关系也可以。为用大正方形面积减去空白面积等于蓝色部分的面积这一解决问题策略做准备)
生3:学生会说到在蓝色格子部分有的是拼成较大的长方形和正方形
师问:能到前面来指给大家看吗?
(设计意图:注重培养学生的观察能力,能用数学的眼光看待生活问题。这正体现学习内容应当是现实的,有意义的,和富有挑战性的,这更加激起学生主动的进行观察交流等学习活动。学生在指的时候会随着观察的深入发现那些长方形也是轴对称的。当学生把蓝色的格子部分看作是一个个正方形时却发现这些正方形又不是独立的,要想按正方形面积来算就要解决两个正方形之间的重叠部分。学生对以上这些内容的发现与关注激发起学生的探索欲望,同时也为学生解决问题更加多样化及方法的简洁性埋下了伏笔。)
(二)提出问题
1.独立探究
同学们对地毯图案有了充分的认识,老师想知道蓝色部分的面积,你认为该怎么算?
同学们手中都有一张和大屏幕上完全一样的图,先独立思考,再把自己的想法和思路写在作业纸上。
(教师巡视学生的活动情况,并留意不同的解决问题的情况)
2.合作交流
师:把你自己的想法和思路和小组内成员进行交流,比一比谁发现的方法最多?
(学生小组内进行交流)
师:大家都讨论得很充分了,谁愿意代表小组与大家分享?
3.展示提高
生1:数方格的方法,一个一个的数,一共有108个小格,所以蓝色部分面积是108平方米。
生2:我先数出一行有几个蓝色格子,分别是6,6,10,6,10,8,8,8,8,10,6,10,6,6.再把每行的数相加,也是108平方米。
生3:数的方法太麻烦了,这是个轴对称图形,我数出左边一半6+6+10+6+10+8+8是54,再乘2就是全部面积。
生4:我找到这个图案的横竖两条对称轴,这样就把整个图形平均分成四份,我数出它的左上角蓝色格子数是3+3+5+3+5+3+3+2=27个,27乘4也是108平方米。
师:请你上来指一指你所说的左上角
(学生上台活动)
师:大家认为这个同学的方法怎样,谁能说说这是一种怎样的方法?
教师引导学生总结出:分整体为部分,知道部分求整体。
师:谁还有不同的方法?
生5:蓝色部分可以看作4个长6宽2的长方形,面积是48平方米;还有4个3乘3的正方形,面积是36平方米;4个4乘1的长方形,面积是16平方米;中间蓝色面积是2×4=8平方米;总面积是48+36+16+8=108平方米。
师:你能把找到的长方形上来指给大家看吗?最好再写出每一步的算式。
(学生按要求重新说一遍)
生6:上下左右有4个6乘3的长方形,面积是72平方米;每个角还有7格,再乘4是28平方米;加上中间8个,蓝色部分面积也是108平方米。
生7:我是把整个图案均分成四份,每一份是边长为7的正方形,面积是7×7=49平方米,空白部分可以看作5个边长是2的正方形,面积是2×2×5等于20平方米。一份面积是用49-20-2=27平方米,再乘4得到蓝色部分面积是108平方米。
生8:如果把最中间的2个向上平移,空白部分就是2个4乘2的长方形,外加6个白色格子,用每一分面积27乘4得到蓝色面积是108平方米。
生9:用大正方形的面积减去空白部分的面积得出蓝色部分的面积,空白部分面积是每个角是12个格子,4个角面积是48平方米,中间部分是5个2乘4的长方形,面积是40平方米。用总面积14×14-12×4-5×2×4,剩下面积是108平方米。
师:谁听明白了,能结合图再具体说一说这种方法是怎样算的吗?
学生重新叙述一遍
师:这种方法和前面方法有什么不一样?
生10:用的是地毯总面积减去白色部分面积得到蓝色 部分面积。
生11:每个角有2乘2的正方形各3个,中间部分的空白可以看作5个4乘2的长方形,用14×14-2×2×3×4-4×2×5,求得蓝色部分面积是108平方米。
生12:把空白部分从上往下看,再把中间的平移,从左往右依次得到11个4乘2的长方形,用14×14-4×2×11
生13:我和前面同学不一样的是把空白部分看作是边长为2的正方形,共有22个正方形。算式是14×14-2×2×22。
生14:14×14-4×3×4-4×10,用总面积减四个角空白部分面积,再减中间空白部分面积。
生15:我没用总面积减空白面积,当我画出图形的两条对称轴时,我发现蓝色部分都可以看作是正方形。
师用手势示意学生利用大屏幕讲解教师出示课件,引导学生观察
生16:可这些正方形像拉环一样套在一起
(细心的学生发现每个正方形都不是各自独立的,而是有重叠部分。)
师:套在一起,也就是两个正方形之间有一格重叠,图中共有几处重叠?如何解决重叠部分的问题?
生17:先不管重叠部分,共有12个正方形,减去重叠的8格,加上中间8格,算式是3×3×12-8+8.
生18:先按每个正方形是3乘3是9,一共有(3×4)个正方形,用9乘12是108,9个正方形有8处重叠,而中间的8个小正方形正好和重叠的抵消,最后结果仍是108平方米。算式是3×3×(3×4)-8+8
生19:如果平均分成四份来看的话,每一份是3×3×3=27个蓝色面积是27×4=108
生20:我在计算过程中这几种方法都用到了,先把整体分做四个小部分,数出一部分蓝色面积是多少,再算出整体蓝色部分的面积。
(考虑到不同方法思维难度的大小与计算时间的长短和学生个体之间存在差异,允许学生有不同的选择)
(设计意图:学生探索计算方法和书写可能用到的时间较长,因此教师在巡视的同时要关注需要帮助的孩子,同时要留意不同的解决问题的方法并随时板书在黑板上,在学生讲述自己的方法与过程中努力帮助学生寻找简便的方法。学生在这么一场对话之后会从中受益很多,充分发挥班级学习的优势)
三、小结
师:是啊,同学们自己发现找到答案有很多种方法,对于不规则图形面积的计算你有什么好方法,和你的同桌交流一下
四、综合运用
课本第一题:选择自己喜欢的方法来解决问题
(学生汇报,重点让学生说一说运用的方法,谁的方法更简便?)
第二题:先独立解决,再小组内交流解决方案,并作简单记录,比一比哪组方法多。
(选择自认为最简便的方法汇报)
第三题 独立解决,并对比两组题,把你的发现写在练习本上
(学生之间进行交流)
面积的教案15篇
作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?下面是小编帮大家整理的面积的教案,希望对大家有所帮助。
面积的教案 篇20
教学目标:
1、理解面积的意义,认识常用的面积单位。
2、培养学生用面积单位直接测量长方形、正方形面积的能力。
3、培养学生分析、比较、概括和推理的能力。
教学重点:理解面积的意义,认识常用的面积单位
教学难点:初步建立1平方厘米、1平方分米、1平方米的面积概念
教学准备:学具袋、多媒体课件
教学过程:
一、导入新课 5
1.“涂颜色”比赛。
2.导入。
刚才老师画的是图形一周的长度,是平面图形的周长。而这两位同学涂的,是平面图形的大小,也就是平面图形的面积。今天这节课我们就学习有关面积的知识。
二、进行新课 20
(一)面积和面积单位
1.物体的表面。让学生闭起眼睛,把数学书和铅笔盒的表面看一看、摸一摸。比一比,哪个表面大。比课桌面和椅子面,再出示两张树页,进行比较。教师揭示:物体的表面有大有小。
2.平面图形。投影出示两个大小不等的正方形,让学生比较这两个正方形哪个比较大?哪个比较小?
第一组: 圆形
第二组:
提问:
(1)第一组两图相比,哪个面积大?(通过观察,学生看到三角形面积中可以包含这个圆的面积,因此三角形面积大于圆面积。)
(2)怎样比较第二组两图?(这两幅图可以用重叠的方法来比较。得出图1的面积比图2的面积大。)
3.揭示面积概念。物体的表面或围成的平面图形都是有大小的,物体的表面或围成的平面图形的大小,叫做它们的面积。
4.比较面积大小。物体表面或平面图形有各种形状和大小,有规则的也有不规则的。像刚才两位同学涂的平面图形就是不规则的,请你比较下面各组平面图形面积的大小。
第三组:
第三组两图的形状差别较大,不能用重叠的方法,怎样来比较它们的大小呢?大家可以拿出纸和笔,同桌两人合作,想个可行的方法。(教师巡视,指导)请一生投影演示方法,提问:你听懂了吗?(用划方格的方法。如下图所示。通过数方格,看哪个图形包含同样大小的方格数多,哪个面积就大。得出图1的面积小于图2的面积。)
比较下列图形的大小
5.导入面积单位。学生在比较前两组图形时,用数方格的方法很顺利的解决了问题。在比较第三组两个图形面积的大小时,会发现虽然两个图形包含的方格同样多,但是方格有大有小,但是由于方格大小不一样,所以它们的面积也不同。
提问:刚才这题,你学习后有什么启发?
对,用数方格的方法比较面积大小,方格的大小必须是一样的,这就是说面积的'大小要有统一的标准,这就是常用的面积单位。教科书上介绍了一些,请同学们自学教科书第136页。
6.认识面积单位。
你从书上学到了那些面积单位?
(1)、1平方厘米的教学
(1平方厘米),是怎么说的?(边长是1厘米的正方形面积是1平方厘米)把实物贴上黑板,请同学们在学具袋里找出面积是1平方厘米的小正方形,边找边想面积是1平方厘米的正方形边长是多少?
那同学们想一想你的身上或周围哪些物体的面大约是1平方厘米的?(出示:指甲面、图钉面、田字格、信封写邮政编码的地方……)
拿出6个面积是1平方厘米的小正方形,把它们拼成一个长方形,说一说它们的面积是多少?为什么?(摆在白纸上,上实物投影展示)为什么这两个图形的面积都是6平方厘米?(不管怎么摆,它们都是由6个1平方厘米的小正方形组成的)
(2)、1平方分米、1平方米的教学
同学们我们已知道了边长是1厘米的正方形面积是1平方厘米,那你能想一想怎样的正方形面积是1平方分米、1平方米呢?
同学们真聪明,请你在学具袋里找一个1平方分米的正方形,并想想在你的身边有哪些事物的面大约是1平方分米的?(出示部分实物:手掌面、方砖面、开关盖……)
下面就让我们来当回小小测量家,用1平方分米量出椅子面的面积,怎么样?(汇报测量结果3-4人)其他同学的意见呢?
我们已知道了边长1米的正方形面积是一平方米,想象一下,1平方米大概有多大,老师这儿就有一个1平方米,想不想看看。谁愿意帮个忙,把它展开。那么我们身边哪些事物的面大约是1平方米呢?(八仙桌的桌面、大方砖的砖面……)黑板一半的一半
下面我们再来做个小游戏,老师把这张1平方米的正方形的纸铺在地面上,让我们一起来体验一下这1平方米的纸上可以站多少个同学?
(二)区别长度单位和面积单位。
1.投影出示例题。
比较1厘米和1平方厘米的图形,有什么不同?
组织学生分组讨论,并说出1厘米和1平方厘米图形的不同点。
2.拿出1平方分米的正方形蓝纸,并出示1分米长的纸条,让学生比较1分米和1平方分米有什么不同。
3.让学生比较1米和1平方米有什么不同?
4.小结:1厘米、1分米、1米都是长度单位,可以用来度量物体的长度。1平方厘米、1平方分米、1平方米都是面积单位,可以用来度量物体的面积。长度单位和面积单位是不同的计量单位。
5.做一做。
根据下面的测量要求,说出用长度单位还是用面积单位?
火柴盒面的大小____________ 课桌面的宽______________
教室门的高______________ 黑板面的大小____________
(三)区别周长和面积。
1.提问:周长与面积有什么不同?使用的单位呢?
2.小结:周长是指图形一周的长短,面积是指物体表面或平面图形的大小。周长可以拉成一条线,面积却不可以。我们可以说:“周长一条线,面积一整片。”
三、巩固练习 12
用1平方厘米的正方形拼成下面的图形。(合作分组)
(1)面积是4平方厘米的正方形。
(2)面积是16平方厘米的长方形和正方形。
四、课堂小结 3
师:今天我们学习的平方米、平方分米、平方厘米与以前学过的米、分米、厘米有什么不同呢?谁能说一说1平方分米与1分米在什么地方?这是两种不同的计量单位,今后使用时要特别区别清楚。那么,学到这里,你们还有什么问题吗?
教后感:巩固反馈安排了摸桌面、手帕的周长、面积,突出了区别、对比。最后安排一道组合图形中周长与面积的区别对比,这样安排会有助于学生的认识规律。
面积的教案 篇21
活动目标:
1、能与同伴协商、分工,合作完成活动任务。
2、通过测量、比较面积的大小,初步体验面积守恒。
3、能积极尝试和比较主动地学习。
4、引发幼儿学习图形的兴趣。
5、发展幼儿逻辑思维能力。
活动准备:
场地布置:面积大小相同、形状不同底块场地。
物质准备:塑胶板70块记录单、笔若干
活动过程:
一、集体活动:
1、给每个幼儿人手5块塑胶板,让幼儿用塑胶板自主地拼图。然后,请幼儿根据拼出的场地的形状,想想它们分别像什么?再请幼儿比较这些场地的面积大小。
2、引导幼儿讨论:你们拼出的场地的面积大吗?让幼儿通过铺垫子去发现5块场地是否一样大。
二、操作活动:给5块场地铺垫子并记录用了多少块板。
1、引导幼儿讨论如何分工合作完成任务。
2、出示记录单,引导幼儿将操作结果记录下来。
3、通过给不同的场地铺垫子,比较结果发现5块场地面积的大小。
三、活动评价:初步体验面积守恒。
1、幼儿分组介绍操作过程和结果:你是和哪些小朋友合作的?怎样合作?分别给哪些场地铺垫子的?用了多少块垫子?
2、引导幼儿比较自己或别人的操作结果,并讨论:你认为着5块场地一样大吗?为什么?
小结:大家都用一样大小的垫子去铺场地,虽然场地的形状不一样,但每一块场地都是用了12块垫子,说明这5块场地一样大。
课后反思:
幼儿园的数学教育活动应密切联系幼儿的生活,在这个活动中教师选择了对大班幼儿比较难理解的面积守恒作为教学内容,旨在帮助初步理解面积守恒概念,教师能将这一知识点转化成一节操作性和探究性很强的`一节教学活动,同时培养幼儿动手操作能力和思维能力,让幼儿通过活动初步感知测量物体面积的大小可以转化成数单位格子的大小或移动棋子的面积与个数的方法。整个活动由浅入深,幼儿能积极参与,对活动充满兴趣。幼儿在解决问题时进行了充分的思考、探索、创造,较好的完成了预期的目标。
面积的教案 篇22
教学内容:人教版义务教育六年制小学数学第十二册第128面总复习内容
教学目的:
1、通过复习使同学熟练掌握已学过平面图形的周长和面积有关知识,并能应用这些知识解决生活中的实际问题。
2、加深对平面图形的周长、面积意义的理解,通过复习面积公式的渗透辩证唯物主义关于事物都是相互联系的观点。培养同学数学来源于生活,又运用于生活的数学意识。
3、教给同学用迁移和转化的思想,类比的思想和联系的思想去解决数学问题。
4、创设相互协作积极向上的学习情境,培养全员参与合作的意识。
重点难点:
1、区分平面图形的周长和面积的`不同点。
2、形成知识网络并能熟练运用有关知识解决实际问题
教具准备:课件一套,六个不同的平面图形。
学具准备:六个不同的平面图形。
教学过程:
(一)创设情境,引入课题
1、师:我们五通桥岷江花园二期工程已经动工了,这是岷江小区休闲空地的平面规划图,从这幅图上你看到了哪些图形?
生:长方形,正方形,平行四边形,三角形,梯形,圆。
师:这些图形都是我们学过的什么图形呢?
生:平面图形。(板书:平面图形)
2、师:看着这些图形你想到了哪些数学问题呢?
生1:我想到了花园,鱼池,小路,亭子,喷泉,草坪的面积该怎样计算?
生2:我想到了花园,鱼池,小路,亭子,喷泉,草坪的周长该怎样计算?
生3:我想到了用正方形的面积减去长方形,平行四边形,三角形,梯形,圆形的面积就可以得到草坪的面积。
3、师:今天我们就着重来复习和解决关于这些平面图形的周长和面积两方面的知识。(板书:周长和面积)
二、同学自主回忆与课题相关的知识内容。
面积的教案 篇23
教学目标:
1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。
2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。
3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。
4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
教学重点:
理解并掌握梯形面积公式,会计算梯形的面积。
教学难点:
自主探究梯形面积公式。
教具准备:
CAI、完全一样的梯形若干个。
学具准备:
每生准备两个完全一样的梯形。(有等腰、直角、一般)
课前预习:
梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。
课前准备:
谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。
我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。
教学过程:
一、创设情境,激发兴趣。
(出示情境图)。
谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?
生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。
师:根据发现,你能提出什么数学问题?
学生观察情境图,提出问题。
生:1号甲鱼池的面积有多大?
师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?
生:1号甲鱼池能放养多少甲鱼苗?
二、自主探究梯形的面积计算方法。
1.教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?
生:梯形。
师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。
教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。
2.小组讨论交流,教师巡视了解。
3.展示、汇报交流。
师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。
生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。
师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?
师:谁有不同的方法?
生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。
师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?
生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:这个同学说的太好了。大家认为这个方法好不好?
这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢
生:平行四边形的底,平行四边形的高。
师:平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?
师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。
师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?
生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。
师:这个方法是不是所有的两个完全一样的梯形都可以用。
生:是两个直角梯形。
师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)
第一种是把梯形分割成一个三角形和一个平行四边形;
第二种是把梯形分割成两个三角形;
第三种把两个完全一样的梯形拼成了一个平行四边形。
表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。
我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。
师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?
生:上底和下底,高
生:与腰有关。
师:梯形的面积到底与它们有什么关系呢?你们想不想研究?
三、探究操作,推导出梯形面积公式
(一)出示问题,明确目标
我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。
(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。
师板书:两个完全一样的梯形拼成平行四边形
梯形的面积=拼成平行四边形面积÷2 =底×高÷2。
拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?
师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。
(二)自主探究
合作学习
小组内讨论交流。
学生分组动手操作,教师巡视指导。
教师参与到每个小组中进行讨论和指导,以便发现和收集信息。
(三)成果交流,质疑解难
1.全班展示回报
师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的`纸片到前面跟同学说一下。
生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。
师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?
师:你们也是这样想的吗?哪个小组再来说说你们的做法?
2. 师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)
梯形面积=平行四边形面积÷2 梯形面积=底×高÷2 师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2
师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2
3.师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。
板书面积公式:梯形的面积=(上底+下底)×高÷2。
提问:(上底+下底)×高算的是什么?为何要除以2?。
4.学习字母表达式
谈话:谁能用字母表示?说说每个字母分别表示什么?
师:S=(a+ b )×h ÷2(板书)
四、运用知识,解决情景问题。
师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)
请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。
五、随堂检测,巩固目标。
师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。
挑战自我:
一、判断
1、两个梯形就可以拼成平行四边形。()
2、梯形的面积一定比平行四边形的面积小。()
3、在下图中平行四边形的面积是梯形面积的2倍。()
师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?
二、(挑战自我)
解决问题
1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,
这个梯形台的平面是多少平方米?
2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?
3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?
师:显示我们聪明才智的机会到了,请同学们大显身手。
4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。
学生独立练习,全班交流。
六、小结。
通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形面积公式。能灵活运用知识解决问题,通过这节课的学习你有哪些收获?
同学们收获这么多,你们认为学习快乐吗?希望同学们快乐地学习,快乐地成长,谢谢大家。向在座的老师说再见。
面积的教案 篇24
教材分析
1.这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。
2.本节课的核心内容是使学生运用转化成已学过图形的方法去推导梯形面积计算公式。只有学好本节课,才能真正使学生理解和掌握梯形的面积的计算方法,从而应用于生活实践中。
学情分析
1.本班学生喜欢动手操作、合作交流。
2.学生经过平行四边形和三角形面积公式的推导,已经知道要把梯形转化为学过的图形进行推导。前面平行四边形和三角形转化的方法不同,平行四边形主要是用割补的方法,而三角形主要用拼摆的方法。本课要求用学过的方法去推导,没有指明具体的方法。在学生操作实验前,可以先回忆一下前面运用过的.两种方法,在此基础上放手让学生自己去做。
3.梯形面积计算公式推导有多种方法,教材显示了三种方法。第一种方法比较容易推导和理解,第二和第三种方法因为涉及乘除法运算定律、性质和等式变形,学生的推导会有困难。
教学目标
1.知识与技能:
使学生在探索活动中深刻体验和感悟梯形面积计算公式的推导过程。
2.过程与方法:
通过动手操作,观察,比较,发展学生的空间观念,在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。
3.情感态度与价值观:
激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
教学重点和难点
教学重点:
理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。
教学难点:
运用不同的方法推导出梯形的面积公式。
面积的教案 篇25
教学内容:人教版实验教材六年级上册
教学目标:
1、通过题组练习,进一步掌握圆环面积的计算方法。
2、通过题组练习,进一步理解在计算圆环面积时的解题策略。
3、通过题组练习,培养分析、对比、概括能力。
教学重点:通过题组练习,培养分析、对比、概括能力。
教学难点:通过题组练习,进一步理解在计算圆环面积时的解题策略。
教学过程:
一、复习回顾,引入拓展练习。
1、师:上一节课,我们学习了有关圆环面积的计算,你还记得计算公式吗?
2、师:今天我们将在圆环面积计算的基础上,作进一步的学习。
二、拓展练习教学
(一)练习1的教学。
1、出示题目:在一个半径是4米的圆形花坛四周修一条宽1米的小路,小路的面积是多少平方米?
2、师:请你认真审题后思考以下3个问题:
(1)求小路的面积就是求什么图形的面积?
(2)题中给了我哪些相关的信息?
(3)我的解题策略是……?
3、师:你想好了吗?你的解题策略是否和老师的一样?现在就让我们一起按照我们共同制定的解题策略来求出这条小路的面积吧!
4、师:同学们,你们算出小路的面积了吗?
5、师:从这道练习题,我们知道了,当已知内圆半径和环宽,求圆环面积时,我们可以先用“内圆半径+环宽”求出外圆半径,然后根据圆环面积的'计算公式,求出圆环的面积。
但如果题目已知的是内圆直径和环宽,要求圆环面积,那又应该如何解答呢?我们一起看看练习2。
(二)练习2的教学。
1、出示题目:在一个直径是4米的圆形花坛四周修一条宽1米的小路,小路的面积是多少平方米?
2、师:根据题意,老师选择了3个同学的不同解法,请你仔细地观察他们的方法,看看谁对谁错。
3、呈现3种方法:
A. 外圆直径:4+1=5m
内圆半径:4÷2=2m
外圆半径:5÷2=2.5m
圆环面积:π×(2.5×2.5-2×2)
=π×2.25
=7.065m2
B. 外圆直径:4+1+1=6m
内圆半径:4÷2=2m
外圆半径:6÷2=3m
圆环面积:π×(3×3-2×2)
=π×5
=15.7m2
C. 内圆半径:4÷2=2m
外圆半径:2+1=3m
圆环面积:π×(3×3-2×2)
=π×5
=15.7m2
4、师:同学们都判断好了吗?其实B、C两位同学的方法都是正确的,在这两种方法中,你认为哪种更简洁呢?那以后解决这一类型的题目时,我们就按C同学的策略来解题吧!
(三)题组对比教学。
1、师:最后让我们观察和比较一下,今天我们完成的两道练习题,看看它们的题目有什么共同点?(出示:两道题目都是已知环宽,求圆环面积。)
那它们的解题策略又有什么相同点呢?(出示:都是先用“内圆半径+环宽”求出外圆半径,然后再根据圆环面积的计算公式,求出圆环的面积。)
2、师:看来,以后我们在已知环宽,求圆环面积时,还是得先求出内、外圆的半径,再作进一步的解答。
面积的教案 篇26
教学目标
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点
圆面积的计算公式推导和运用。
课前准备
一个大圆、剪刀、小正方形。
课时安排:1课时
授课人
授课时间
教学过程
一、复习引入,导入新课。
教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。
学生说出自己的见解。
教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎
样表示?
学生做出回答。
教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?
二、探索尝试,解释交流。
教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。
大家可利用昨晚把圆剪开后,拼成的`图形展示一下,看看发现了什么?
全班汇报交流:谁想先来展示一下?(学生回答)
教师引导交流:你能让平行四边形的底再直一点吗?
学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。
学生领悟:多分几份,平行四边形的底就会直一些。
教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?
教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?
教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。
教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?
师:这样就把求圆转化成了求长方形。
教师引导交流:你认为转化成的长方形与圆有什么关系?
生:他们的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
教师引导交流:你能根据它们的关系,推出圆的面积公式吗?
长方形的面积=长×宽
圆的面积=c÷2×r=πr×r=πr2
教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:
s=πr2
教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。
三、巩固练习
1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。
建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。
2、自主练习第1题。
3、 自主练习第2题。
给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。
4、 自主练习第3题。
总结:通过这节课的学习,你有什么收获?
课后札记:
面积的教案 篇27
教学目标:
1.通过教学活动,认识有些数据改写单位的必要性。
2.掌握数据改写的方法。
3.引导学生关注较大数据的实际意义。
教学重点:
体会某些数据改写单位的必要性,能用万、亿为单位表示大数。
教学准备:
在报刊杂志等媒体中收集一组有关国土面积、西部情况、海洋资源的大数的信息。
教学过程:
一、体会数据改写的必要性
教师出示从媒体收集来的一组数据改写的实例。让学生比较同样的数据为什么要用不同的方法表示,让学生体会到数据改写的必要性。
二、探索改写方法
1.出示中国地图,了解一些省、市、自治区的土地面积。
让学生读出这些面积,问:如果要记录方便,这些数据可以怎样进行改写?
2.学生先独立思考,再小组交流改写的.方法。
3.完成试一试第1、2题:进一步巩固改写的方法。
三、巩固与应用
练一练第1题:先请学生说一说我国西部各省、市、自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的基础上再请学生改写成以“万”为单位的数。
练一练第2题:先让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。
四、作业
收集有关森林面积方面的数据。
板书设计:
大数的改写:为了读数、写数方便,有时需要把整万、整亿数写成以“万”或“亿”为单位的数。
9600000 = 960万
10000000000 = 100亿
