短文网整理的平行四边形的面积的教学设计(精选21篇),快来看看吧,希望对您有所帮助。
平行四边形的面积的教学设计 篇1
教学内容:
北师大版五年级数学上册第四单元(P53——P55)
教材分析:
本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。
学情分析:
二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。
教学目标:
经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。
掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。
能运用平形四边形的面积计算公式解决相关的问题。
教学重点:
通过操作活动掌握平行四边形的面积的计算方法。
教学难点:
经历推导平行四边形面积公式的过程。
教法学法:
实验探究、推理验证、小组合作学习
教具准备:
课件、剪刀、准备平行四边形若干。
教学过程:
一、开门见山,导入新课
今天我们一起来探索平形四边形的面积。(板书课题)
二、新知探究
1.分析平行四边形给定的3个数据所表示的意义。
2.如何求这个平行四边形的.面积,说一说你的想法和理由。
猜想:
(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。
(2)提出来数方格的方法来试一试。看选择哪两个数来计算比较好。
3.借助方格纸数一数,比一比
学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。
要求:
(1)独立完成
(2)小组内交流一下你的想法。
(3)方法展示。
(4)猜想结果:平行四边形的面积等于底乘高。
这只是我们的猜想,那如何来验证我们的猜想是否成立呢?
4.平形四边形如何转化为长方形,验证猜想。
(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)
(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。
(2)是不是沿任意一条高剪开都可以拼成长方形呢?
动手操作,验证猜想。
(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?
生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。
(4)再仔细观察,你还有什么发现?
生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
5.怎样求平形四边形的面积?想一想,与同伴交流
(1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?
(2)你会填吗?
A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的面积=( )。
B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。
6.计算主题图中的平形四边形的面积。
三、实践应用,巩固与提高。
1.计算下列图形的面积(抢答)
(1)底为4厘米,高为2厘米。
(2)底为5分米,高为9分米
(3)底为3米,高为7米
2.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
3.计算下列图形的面积。(单位:厘米)
四、课堂小结。
1.你今天学习了什么?有何收获?
2.在计算平行四边形的面积时,应注意什么?
板书设计:
探索活动:平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
平行四边形的面积的教学设计 篇2
教学内容:
试验教材小学数学五年级上册内容。
教学目标:
1、用转化的方法探究并把握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经受探究平行四边形面积计算方法的过程,培育初步的观看力量、抽象力量,进一步进展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的亲密联系,培育初步的数学应用意识和解决简洁实际问题的力量。
教学预备:
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺
教师:课件、投影仪
教学过程:
一、谈话引入,提出问题
师:同学们,你们喜爱吃水产品吗?比方:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)认真观看图中的信息,你能提出什么数学问题?
(1:虾池的面积是多少?2:虾池是什么外形的?……)
师:虾池是什么外形的?(平行四边形)
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)
二、合作探究,解决问题
1、猜测
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)
师:希不盼望通过自己的探究找到这个公式?
师:信任你们肯定能行!在探究之前,先请同学们猜测一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思索)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是依据长方形的面积计算公式猜的。)
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发觉沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)
师:现在消失两种猜测,各有各的理由,而真正的计算公式确定只有1个。我们怎么办?(验证)
师:对!我们要逐个进展验证,看看正确的公式毕竟是什么。
为了便利大家探究,教师为每个小组都预备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮忙。在动手验证之前,教师有几点小提示,请看屏幕:(课件出示,指名读)
1.小组同学先争论验证的方法,再动手验证。
2.小组成员要团结合作,合理分工。
3.每组推选1名代表进展汇报,其他组员可以补充
4.使用学具时留意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜测对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开头。
(学生合作,教师巡察)
3、沟通
师:经过大家的动手操作,信任都有答案了。哪个小组情愿先来沟通?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜测公式算出的面积是35平方厘米。所以“底×邻边”的猜测是错误的。)
师:听明白他们小组的做法了吗?(找两人共享)感谢你们的介绍。还有不一样的小组吗?(没有)
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,依据“底×邻边”的猜测公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜测是错误的。虽然这个猜测是错误的,但我们要感谢提出这个猜测的同学,由于你的猜测很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地熟悉。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用其次个信封的'帮忙再来验证“底×高”这个猜测对不对。肯定要沟通好验证方法再动手操作,开头。
4、验证“底×高”
(学生活动,教师参加)
5、沟通
师:信任大家又有了新的发觉和收获。哪组先来共享你们的讨论成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜测是正确的。
师评价:他们小组的这种方法怎么样?我发觉他们小组很会利用资源。刚刚知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?留意听,看看他们采纳的毕竟是什么方法。)
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发觉长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展现。)
师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。依据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简洁问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)
师:我还有其次个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?
(平行四边形没有“长”和“宽”。)
师:说的真好,我们可不能混淆了。
三.应用公式,稳固训练
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)
师:假如教师再给你供应这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162023(尾))
师:听说你们很顺当的猎取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信念迎接挑战吗?
(出示课件:四个挑战)
1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?
为什么?(单位:厘米图略)
2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)
3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?
4、聪慧小屋:下列图中正方形的周长是24厘米,平行四边形的面积是多少?
师:真不错,挑战胜利。
四.收获平台,课外延长
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)
师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进展的?
(猜测--验证--结论。这是数学上常用的探究方法,信任你们在以后的学习中会常常使用它。这节课,同学们不仅仅学到了学问,而且把握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简洁的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间相互沟通一下。)
平行四边形的面积的教学设计 篇3
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=ah或S=ah
课后记:
第二课时
教学内容:
平行四边形面积计算的练习(P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的.面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
平行四边形的面积的教学设计范例(15篇)
作为一位不辞辛劳的人民教师,就有可能用到教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写才好呢?以下是小编收集整理的平行四边形的面积的教学设计,仅供参考,大家一起来看看吧。
平行四边形的面积的教学设计 篇4
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的.事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点和难点
教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。
教学过程
一、情感交流
二、探究新知
1、旧知铺垫
(1)、说出平面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究平行四边形面积计算方法。
(1)、在方子格中数出长方形的面积。
(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。
(3)、通过观察表格,试着猜测平行四边形的面积计算方法。
(4)、共同探讨如何计算平行四边形的面积。
①出示平行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习
四、小结本课
五、课堂作业
板书设计
平行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示平行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
平行四边形的面积的教学设计 篇5
教学重点:
平行四边形面积的推导过程.
本课采用的教法:
自学法、转化方法、小组合作法、实验法。
学法:
1、自主学习法
2、小组合作探究学习法。
教学程序:
一、创设问题情景,为新课作铺垫。
请同学们帮李师傅的一个忙,
求出下面的面积,你是怎样想的?3厘米
5厘米
二突出学生主体地位,发展学生的创新思维。
首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?
有的同学说:长方形面积与平行四边形面积相等(数出来的).有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想
三小组合作,培养学生的合作精神.
小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高
学生乙(与前边的内容大概相同复述一遍,就是平行四边形的.高作在中间)
学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.
四例题独立完成,体现学生自己解决问题的能力.
例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.
板书设计:
长方形面积==长乘宽
平行四边形面积=底乘高
平行四边形的面积的教学设计 篇6
一、教学目标
1.结合具体情境,通过操作活动,经历推导平行四边形的面积计算公式并交流方法的过程。
2.理解和掌握平行四边形面积计算公式,会运用计算相关图形的面积并解决一切实际问题。
3.通过观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
二、教学重、难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。教学难点:平行四边形面积计算公式的推导。
三、教具学具:
自制长方形框架,平行四边形,小黑板四.教学过程
(一)情境导入
1.师:请同学们看老师手上的框架,这是什么图形?(长方形)长方形有什么特点呢?哪条是长?哪条是宽?
它的长是5厘米,宽是3厘米,它所围成的长方形面积是多少?
(板书:长方形的面积=长×宽)用字母表示S=ab
2.师:注意看,接下去老师要变魔术了哦!如果捏住这个长方形的一组对角,像这样往外拉(教师演示学生看),变成什么图形了?生:平行四边形。
师:平行四边形有什么特点?哪条是底?哪条是高?高有几条(无数条)
3.让学生拿出学具,感受一下长方形变成平行四边形的过程。 (板书:)
4.(学生观察主题图)提问:你们看到了哪些图形?
(长方形、三角形、平行四边形、圆形、梯形、正方形)
提问:在这么多的图形里,有哪些图形出现在了老师的小魔术里?
(长方形、平行四边形)提问:那这两个图形分别在哪里呢?
(两个大花坛)
5.(出示两个花坛)我们已经学会计算长方形的面积,如果要比较这两个花坛的大小,怎么办,谁有办法?(引导学生说可以计算平行四边形的面积)引导学生说出可以用数格子的方法。(板书:计算平行四边形面积的.方法)
师:好,这节课我们就来学习一下平行四边形的面积要怎么计算?(板书课题:平行四边形的面积)
(二)合作探索
1.用数方格的方法计算平行四边形面积。
⑴将课本翻到87页,不足一格的按半格算,数一数,这个长方形和平行四边形的面积由几个小格组成?(板书:数格子)(都是24格)
⑵同桌对子讨论,观察比较两个图形的关系,并完成表格,一个方格代表1㎡。提问:你发现了什么?平行四边形的底和长方形的长、平行四边形的高和长方形的宽它们有什么关系呢?
(生可能回答)生1:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等。
生2:它们的面积也相等。
生3:平行四边形的面积可以用底乘高来计算。
师:非常好。接下来我们就来验证一下平行四边形的面积计算公式是不是底乘高。
(板书:平行四边形的面积=底×高)
2.操作验证
⑴提问:不数方格,能用其它方法来证明它们面积相等吗?(一张平行四边形的纸,一把三角尺和一把剪刀)
⑵提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。(板书:割补法)
⑶对子两人一小组,商议如何通过画一画、剪一剪等方法来进行操作研究;两人合作操作。有困难的对子可以请老师帮忙;比一比哪一对同学能快速解决问题。
2
思考:a、什么改变了?
b、什么没有发生改变?
c、原平行四边形和拼出的长方形有什么联系?(出示关系图)⑷展示学生作品:不同的方法将平行四边形变成长方形。提问:观察拼出的长方形和原来的平行四边形,你发现了什么?(平行四边形的面积=底×高)
引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S=ah(边说边板书)
(三)巩固练习
1.出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。(板书:S=ah=6×4=24㎡)利用例题推出:h=S÷a a=S÷h
2.已知平行四边形的面积是16.8平方米,高是4米,底是多少米?16.8÷4=4.2(米)
一块平行四边形钢板,底是15米,高是底的1.2倍。这块钢板的面积是多少平方米?
15×1.2=18(米)15×18=270(平方米)
四、课堂小结
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?
老师魔术中长方形和平行四边形的面积相等吗?请同学们看课本90页第八题,回去思考,我们下节课来进行讨论。
五、板书设计
平行四边形的面积计算平行四边形面积的方法:长方形的面积=长×宽1、数格子平行四边形的面积=底×高2、将平行四边变成长方形——割补法S:面积a:底h:高字母表示:S=ah例一:a=6m h=4m S?ah?6?4?24(m2)
平行四边形的面积的教学设计(通用)
作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家整理的平行四边形的面积的教学设计,希望能够帮助到大家。
平行四边形的面积的教学设计 篇7
教学内容分析:
平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。
设计的理念:
学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。
3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。
教学重点:
使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。
教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。
教学过程:
一、创设情境、导入新课。
多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。
师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
生:会计算长方形面积,不会计算平行四边形的面积。
师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)
[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]
二、探究平行四边形的面积。
1.用数方格的方法探索计算面积。
师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?
生1:我想把平行四边形拉成一个长方形。
生2:我想用数方格子的方法来计算。
……
师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。
(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。
说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一起来交流一下是是怎样数的,请把数出的结果填在表格中。
同桌合作完成:
4.汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?
平行四边形
底
高
面积
长方形
长
宽
面积
通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?
生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。
师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。
(3)分组合作动手操作,探索图形的转化。
各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。
生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。
引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。
用多媒体演示平移和拼的过程。剪——平移——拼。
[设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]
(4)小组讨论,合作交流,探索平行四边形的面积计算公式。
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论后,根据学生回答情况出示讨论题目给学生。
拼出的长方形和原来的平行四边形相比,面积变了没有?
拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的`面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]
(5)小组交流汇报,归纳叙述出自己的推导过程。
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?
因为:长方形的面积=长×宽,
所以:平行四边形的面积=底×高
如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah
学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)
3、平行四边形面积计算公式的应用。
既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。
(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?
生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。
(2)运用平行四边形面积计算公式让学生自学例1。
师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。
学生板书例1的结果;s=ah=6×4=24(平方米)
[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]
三、巩固拓展。
1、给下面各题目填空。
(1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。
(2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。
(3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。
[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]
2、你能想办法求出下面两个平行四边形的面积吗?
3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。
[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]
四、课堂总结
通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。
请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?
板书设计:
长方形的面积=长×宽
平行四边形的面积=底×高
用字母表示是:S=a×h=a·h=ah
平行四边形的面积的教学设计 篇8
教学内容
教材第79~81页,平行四边形的面积。
教学目标
1、知识与技能:
理解并掌握平行四边形面积的计算公式,能正确计算。
2、过程与方法:
通过操作、观察和比较,使学生运用转化的方法经历计算公式的推导过程,进一步发展学生思维。
3、情感态度与价值观:
引导学生运用转化的思想探索知识的变化规律,培养学生分析和解决问题的能力;通过动手操作,使学生感悟数学知识的内在联系,激发学习兴趣。
教学重难点
重点:掌握平行四边形的面积计算公式,并能正确运用。
难点:平行四边形面积计算公式的推导。
教具、学具准备
多媒体课件,展台,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、导出课题
课件出示图形,怎样求面积呢?生回答。数格子的方法比较麻烦,可以用割补法,通过剪、拼,转化成长方形,来求出面积。导出课题。
二、探究新知
1、动手操作,探究新知
展示学习目标,课件出示图形,怎样求这个平行四边形的面积呢?
小组合作,动手操作,寻找平行四边形面积的计算方法。
①生用平行四边形纸片和剪刀进行剪拼。
②师巡视,个别指导。
③生拼好后,指名上黑板实物投影拼得方法和过程。
④师课件演示剪拼过程.
得知平行四边形的面积和拼成的长方形的.面积相等。
2、引导推导平行四边形面积计算公式。
师:给你一个平行四边形水池,求面积,还能去剪么?
生:不能。
师:那想一个什么方法来求平行四边形的面积呢?
小组讨论。观察拼出的长方形和原来的平行四边形,你能根据它们的面积相等和长方形的面积公式推导出平行四边形面积计算公式么?
多媒体课件演示整个推导过程。
①拼成的长方形的面积与原来平行四边形面积相等,
②拼成的长方形的长与原来平行四边形的底相等,
③拼成的长方形的长与原来平行四边形的高相等,
因为长方形的面积 =长×宽,所以平行四边形的面积=底×高
用字母表示平行四边形的面积公式S=ah
师强调:高必须是和底对应的高。
[设计意图:让学生参与学习新知的全过程,充分发挥学生的主体作用,让学生通过自主探索,合作交流,“创造”出新知,发展学生的能力,让学生体验到成功的喜悦]
三、应用公式,解决问题
1、独立完计算,课件出示图形。
S=8×5=40平方厘米 S=12×7=84平方米
2、提高练习
一个停车位是平行四边形,它的面积是15㎡,底是6m。它的高是多少?
h=S÷a=15÷6=2.5m
答:它的高是2.5m。
3、拓展延伸
用木条做成一个长方形框,把它拉成一个平行四边形,周长和面积有变化吗?
(周长不变;底不变,高变小,所以面积变小。)
[设计意图:通过多种形式的练习,巩固所学的知识,解决生活中的数学问题,加强数学与生活的联系。]
4、全课总结
师:说一说这节课,你学会了什么?
板书设计
长方形的面积 = 长 × 宽
↓ ↓ ↓
平行四边形的面积=底 × 高
S表示面积,a表示底,h表 示 高 。那 么 面 积 公 式 就 是S = ah
(热)平行四边形的面积的教学设计
作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那要怎么写好教学设计呢?下面是小编为大家整理的平行四边形的面积的教学设计,欢迎阅读与收藏。
平行四边形的面积的教学设计 篇9
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.培养学生的合作意识,初步渗透平移和转化的思想。
教学重点:
探索并掌握平行四边形的面积计算方法。
教学难点:
理解平行四边形面积计算公式的推导过程。
教具准备:
一个长方形、一个平行四边形,PPT课件一套。
学具准备:
平行四边形、剪刀、三角板。
一、以旧引新,激起质疑
1.同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?
2.老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)
二、动手操作,探究方法
(一)利用方格,初步探究
1.下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!
2.学生独立数出平行四边形和长方形的面积。
3.谁来说说你数的结果?学生汇报
4.你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现?
你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。
我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的`平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢?
(二)动手操作,推导公式
1.动手操作
a.下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的图形呢?怎么变?
b.静静地想,想好了吗?
c.动手操作,把这个平行四边形变成以前学过的图形。
d.谁来说说,你把平行四边形变成了什么图形,怎么变的?
2.合作探究
a.我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么?
b. 小组讨论
c. 汇报。
3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式用字母怎么表示呢?
(三)指导点拨,总结方法
刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?
我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。
孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!
例1.读题后独立解答一生板演
师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗?
三、解决问题,拓展延伸
1、练习十五1题。
2、练习十五3题。
3、下面两个平行四边形,它们的面积一样大吗?
4、你能算出芸芸家这块菜地的面积吗?
四、全课小结,完善新知
这节课你有什么收获?
这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!
平行四边形的面积的教学设计 篇10
教学目标:
1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、使学生通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概推导能力,发展学生的空间观念。
3、培养学生的合作意识和探究精神。
教学重点:
理解公式并会计算平行四边形的面积。
教学难点:
推导平行四边形的面积计算公式。
教具准备:
每人准备一个平行四边形纸片和一把剪刀,多媒体课件。
教学过程:
一、导入(媒体出示:)
1、认识图形。
2、口算长方形的面积。
3、回顾平行四边形的特征。
4、观察主题情景图:明明和芳芳争论场景:一块长方形花坛,一块平行四边形花坛。哪一块大呢?板书课题:平行四边形的面积
二、自主学习
1、学生用数方格的方法数一数,并把结果记载到80页的表格中。
2、思考:从表格中的数据,你发现了什么?(它们的面积相等)为什么会出现这样的结果?(因为通过数出的数据显示:长方形的长和宽分别和平行四边形的底和高相等。)
3、思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的图形来求面积?(学生交流找寻方法:可以用剪、拼、的方法把平行四边形转化成别的图形)
4、动手操作:学生可以独立操作,也可以同桌相互合作,自主探究平行四边形面积公式的由来,教师巡视。
5、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,所以平行四边形的面积也就等于拼得的长方形的面积。(教师根据学生回答媒体演示过程)
板书:
长方形的面积=长×宽
平行四边形的面积=底×高
6、学习用字母表示公式:我们用S表示平行四边形的面积,a表示它的.底,h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S=a×h)
7、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)
教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。
三、巩固提高
1、反馈:(媒体展示)口算平行四边形的面积,点学生回答。集体订正时强调:书写格式和单位。重点提醒:不对应底和高平行四边形面积。
2、作业:练习十五第1题,第2题。
3、拓展:(媒体展示)
(1)下面哪个平行四边形的面积大呢?为什么?
(2)一个长方形拉成一个平行四边形后,有哪些变化?
四、课堂小结
本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?
平行四边形的面积的教学设计 篇11
教学重点:
平行四边形面积的推导过程.
本课采用的教法:
自学法、转化方法、小组合作法、实验法。
学法:
1、自主学习法
2、小组合作探究学习法。
教学程序:
一、创设问题情景,为新课作铺垫。
请同学们帮李师傅的一个忙,
求出下面的面积,你是怎样想的?3厘米
5厘米
二突出学生主体地位,发展学生的创新思维。
首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?
有的.同学说:长方形面积与平行四边形面积相等(数出来的).有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想
三小组合作,培养学生的合作精神.
小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高
学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)
学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.
四例题独立完成,体现学生自己解决问题的能力.
例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.
板书设计:
长方形面积==长乘宽
平行四边形面积=底乘高
平行四边形的面积的教学设计 篇12
教学目标:
1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思想方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点和难点:
教学重点掌握平行四边形面积计算的公式,能正确计算平行四边形的面积。
教学难点平行四边形面积计算公式的推导过程。
教学重难点:面积公式的推导。
教具、学具准备:
1. 教学课件。
2.剪两个底40厘米,高30厘米的平行四边形,供演示用。
3.每个学生准备一个平行四边形(可以用教科书第137页的图剪下来贴在厚纸上)和一把剪刀。
教学过程:
一、复习
1.幻灯出示各种图形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?
2.让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
教师:今天我们就来学习平行四边形面积的计算方法。
板书课题:平行四边形的面积
二、新课
1.用数方格的方法求平行四边形的面积。
(l)指导学生数方格。
(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。
(3)比较平行四边形和长方形。
提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?
启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?
2.用实验的方法推导平行四边形面积公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?(教师先要求学生要沿着哪条哪条高剪,再让学生动手.)
(2)教师示范把平行四边形转化成长方形的过程。
刚才我发现有的同学把平行四边形转化成长方形时,把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的'规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右平行移动。
③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合.(教师巡视指导。)
(3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的长、宽分别和原来的平行四边形的底、高相等。它的面积和原来的平行四边形的面积也相等。
(4)引导学生总结平行四边形面积的计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高)
(5)教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
教师说明:在含有字母的式子里,字母和字母中间的乘号可以记作“.”,写成ah,代表乘号的“.”也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah。
(6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。
3.应用总结出的面积公式计算平行四边形的面积。
(1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。
(2)完成教科书第66页“做一做”中的第l题和第2题。做完后共同订正。
(3)让学生拿出自己准备的平行四边形,量一量它的底和高是多少厘米,再求出它的面积。
三、巩固练习
做练习十六的第1题。
四、小结
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?
五、作业;练习十六
第2题和第3题。
平行四边形的面积的教学设计 篇13
教学内容:
人教版五年级上册第87——88页内容及练习十九相关练习。
教材分析:
本单元学习的内容主要包括:平行四边形、三角形、梯形和组合图形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。这是进一步学习圆的面积和立体图形的表面积的基础。学习组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特征的认识及面积计算,发展了学生的空间观念。
教学目标:
1、掌握平行四边形的面积公式,能准确计算平行四边形的面积。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
教学重点:
掌握平行四边形的面积计算公式,能准确解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
裁剪的平行四边形、学习单等。
教学过程:
上课的前一天,布置预习第87——88页内容,开展以下自学实践:
1、长方形的面积计算公式是什么?
2、长方形和平行四边形之间有什么联系?
3、平行四边形的面积计算公式是什么?
课堂过程:
一、情境导入
1.谈话:为了创建省级文明城市,美化我们的生活环境,高新居尚小区要修建两个大花坛,(课件出示86页情境图)。这两个花坛分别是什么形状?
(一个长方形,一个平行四边形)
2.学生猜测:你觉得哪一个花坛大一些?
通过猜测,引导学生总结出:要想比较那个花坛大,需要计算它们的面积。
3.提问:你会计算它们的面积吗?
学生只会计算长方形的面积,不会计算平行四边形的面积。
揭示课题:今天我们就来学习和研究平行四边形面积的计算。
4.(板书课题:平行四边形的面积)
【设计意图:】数学课应源于生活,由学生熟悉的情境导入,自然激发了学生学习数学知识的兴趣。本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,进一步体现数学与生活的紧密联系。
二、探究新知
1.数格子,比较大小。
师:根据我们已有的经验,我们并反馈答案可以用什么方法得出平行四边形的面积呢?(引出数格子的方法)
(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。
(2)学生用数方格的方法得出两个图形的面积,并填写课本89页的表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格
(6)引导学生交流自己的发现。(同桌讨论)
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底x高是否适合所有的平行四边形面积呢?
【设计意图:】数格子的方法是探究图形面积的一种简单方法,学生轻松地理解,重在让学生对这两种图形相对应的量进行分析,在学生的脑海里初步得出:长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,这个时候他们的面积就相等,平行四边形的面积可能等于底乘高。让学生猜想平行四边形的面积公式,激起学生的探究欲望。
2.动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生汇报、展示:平行四边形变成长方形的'方法。(沿着平行四边形的高剪开,把三角形向右平移,拼成一个长方形。或沿着平行四边形的高剪开,把直角梯形向右平移,拼成一个长方形)
3.问题质疑,完成报告单。
提出问题:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①平行四边形与拼成的长方形的面积有什么关系?
②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④平行四边形的面积公式怎样表示?
(1)小组讨论
(2)抽生汇报
(3)师展示,验证。
(4)观察并思考,小组合作完成报告单。
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)引导学生根据长方形的面积公式得出平行四边形面积公式并用字母表示。
平行四边形的面积=底x高
用字母表示:s=ah
(7)观察面积公式,要求平行四边形的面积必须知道哪两个条件?
(平行四边形的底和高)
(8)小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
4.运用公式,解决问题。
(1)出示例1
例1:平行四边形花坛的底是6米,高是4米,它的的面积是多少平方米?
(2)学生独立完成。
(3)抽生汇报,师板书。
【设计意图:】探究的过程是学生掌握数学思想方法的关键环节,通过学生动手操作和合作交流,使学生主动地去探索和发现平行四边形面积的计算方法,最后让学生验证公式,学生在课堂上充分调动自己的数学思维,在动手、动脑、动口的过程中碰撞出了数学思维的火花。
三、巩固运用
1.计算出下面每个平行四边形的面积。
2.选择题。
四、全课小结:今天你有什么收获?
五、作业:选用课时作业设计
六、板书设计:
平行四边形的面积
长方形的面积=长x宽
平行四边形的面积=底x高
长方形的面积=长x宽
平行四边形的面积=底x高
课后记:
第二课时
教学内容:
平行四边形面积计算的练习(P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250x780÷10000=1.95公顷,
再求共收小麦多少千克:7000x1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250x78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底x高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
平行四边形的面积的教学设计 篇14
教学内容:
人教版数学五年级上册第6单元第87-88页。
教材分析:
《平行四边形的面积》的教学是在学生初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转的基础上进行的。这部分内容的知识,不仅有利于发展学生的分析能力及转换划归思想,促进学生的空间观念发展,而且也为学习三角形面积、梯形面积等打下良好的基础。
学情分析:
在学习《平行四边形的面积》之前,学生已初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转,学生具备了一定的动手操作能力。五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。针对难点因地制宜,结合学生自身的实际情况,动手实践、直观演示法、合作交流;引导学生进行问题探索,通过教学环境的情感渲染,利用情境引出问题,并通过猜想、验证、推导出平行四边形的面积计算公式,使学生在理解的过程中主动的学习,重结果的同时更重过程性的学习,在学习过程中渗透转化的思想,激发学生的创新意识。
教学目标:
1.知识与技能:在具体情境中,理解并掌握平行四边形的面积计算公式,能正确计算,并能解决简单的实际问题。
2.过程与方法:经历数一数,剪一剪,拼一拼的探索过程,培养观察,分析能力,发展空间观念,感悟转化(划归)的数学思想,积累相关活动经验。
3.情感态度与价值观:感受数学与生活的联系,体会数学的应用价值。
教学重点,难点:
教学重点:理解并掌握平行四边形的面积计算公式
教学难点:理解并掌握平行四边形的面积计算公式,推导出平行四边形的面积计算公式。
教具准备:
(1)一些平行四边形卡片
(2)磁铁
(3)剪刀
(4)课件
教学过程:
提前将洋葱微课发至家长群,让孩子提前学习,明确学习内容。
一、创设情境,导入新知
创设情景:(出示多边形面积主图)从图中你发现了哪些图形?
提出问题:你会计算它们的面积吗?正方形面积?长方形面积?
追问:在生活中什么时候要用到计算面积呢?
预设:比较面积大小、贴瓷砖……
师:老师也遇到了同样的比大小的问题,请看,老师把花坛请到了这里(出示87页主图)这两个花坛哪一个大呢?
【设计意图】由一张生活中常见的多边形面积主图来展开,从学生已有知识生活经验来引导学生发现问题,提出问题、分析问题,最后解决问题,感受数学与生活的密切联系,知道生活中什么时候需要计算面积等,引导学生体会数学的.应用价值。最后通过比较哪个花坛大来引出今天要学习探索的平行四边形的面积。
二、探索新知
(一)借助方格,初步探究。
猜想:
预设1:长方形花坛面积大
预设2:平行四边形花坛大。
预设3:不确定,要比两个花坛的面积,可是我们不会求平行四边形的面积
引入课题:我们今天一起来研究——平行四边形的面积(板书)
1、回忆一下,我们是用什么方法得出长方形的面积计算公式的?
预设:数方格
验证:
2、在方格上数一数,然后填写下表(一个方格代表1m^2,不满一格的都按半格计算。)拿出练习本,写在练习本上,不用画表格。
3、提问:谁来数一数,告诉大家你是怎么数的?
4、追问:有没有什么方法能帮助我们数的快一点呢?
预设:沿平行四边形的高剪一块,拼到另一边。
5、这种“一剪,一拼”的方法,数学上称为“割补法”。
(二)渗透转化,进一步探究。
1、不数方格,能不能计算平行四边形的面积?
预设:转化成学过的长方形。
2、渗透思想:他提到了一个数学学习过程中常用到的一种思想方法“转化”思想。把新知识转化成旧知识。
3小结:刚才我们是用数格子的方法知道的,如果没有方格……(引导学生)
(三)观察、猜想、验证深入探究
1、回忆一下,长方形的面积计算公式是?(板书:长方形面积=长×宽)
长方形面积和谁有关?
2、提问:长、宽中任意一个变化会导致面积变化吗?
由此,你们猜测一下平行四边形的面积可能会和谁有关?
预设1:邻边(如果很多学生说与邻边有关就分组讨论)
预设2:底和高
3、演示:拉动它会有什么变化?什么变?什么不变?(拿着一个可以变动的平行四边形)面积变小了,邻边___?底___?高___?周长___?
4、小结:可见平行四边形的面积和……有关,那么我们能不能用转化的的方法推导出平行四边形的面积?
推理:
光说没有说服力,拿出练习本和事先准备好的平行四边形卡片,把推导过程体现出来。把平行四边形转化成学过的图形。
学生动手(教师巡视)
(投影展示)
提问:你是怎么把平行四边形转化成长方形的?(学生上台展示)
预设:沿高剪开,把三角形向右平移,再拼成长方形。
师:条理清晰,通过“一剪,一拼”把平行四边形转化成长方形,这种方法叫?
对了,割补法,利用割补法转化成长方形就能计算面积了。
5、(课件动画演示)看看如何将平行四边形转化成长方形。
(四)合作交流,推导出平行四边形面积
1、原来的平行四边形和转化后的长方形,它们之间有什么关系?平行四边形的面积怎么求?
预设:
2、汇报
平行四边形的底和长方形的()相等。(板书)底→长
平行四边形的()和长方形的()相等。(板书)高→宽
这两个图形的面积()。(板书)平行四边形面积=长方形面积
3、怎样计算平行四边形的面积?
预设:平行四边形面积=底×高(板书×)
(五)渗透符号意识,公式符号化
1、a表示什么?h呢?
如果用大写字母S表示面积,用字母a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成?
预设:S=ah(板书)
2、要求平行四边形的面积要知道什么?
3小结:到这里的学习,你们知道了什么?
【设计意图】本环节充分体现了新知识转化成旧知识的“转化”思想。第一通过引导学生回忆推导长方形面积的方法来计算平行四边形的面积,即借助方格,初步探索平行四边形的面积。,经历剪一剪、拼一拼的探索过程,渗透“割补法”。第二进一步探索,在没有方格的情况下,引导学生“转化”,将平行四边形转化成长方形,新知转化成旧知。第三循序渐进,引导学生观察、猜想、验证,借助可以拉动的平行四边形可以直观的让学生感受到什么变了,什么没变,让学生在理解的基础上学习,递进的学习,逐步推导。第四建立在上一步的基础上发展,通过新课程提倡的合作交流的学习方式进行,找出平行四边形与转化后的长方形的关系,并推导出平行四边形的面积计算公式。最后,公式符号化,发展学生的符号思想。
三、巩固练习
1、抛出洋葱微课里的题
2、平行四边形花坛的底是6m,高是4m,它的面积是多少?
3、89页第2题(注重底与高对应)计算下面每个平行四边形的面积。
4、90页第6题
【设计意图】根据学生掌握知识的规律,针对本课的教学目标,我设计的练习题由浅入深,循序渐进。通过这些练习是为了让学生会运用平行四边形的知识去解决简单的数学问题。在第2题练习中发展创新意识,让学生明白“对应关系”即“底”和“高”对应,引导学生在理解的基础上牢固的掌握知识,能根据具体需要迅速再现出来。
四、课堂总结
通过今天的学习你有什么收获?你还有什么疑问?
【设计意图】课堂总结,让学生说一说收获,还有什么疑问,实现知识的系统小结,是为了学生更好的学习和改善教师教学的重要部分。可以系统的知道学生学到了什么,哪方面还需要巩固。为后续教学提供方向。
五、作业布置
六、板书设计
平行四边形的面积的教学设计 篇15
设计说明
在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:
1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。
2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。
3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的思维能力。
课前准备
教师准备PPT课件平行四边形纸片方格纸剪刀
学生准备硬纸板做的平行四边形三角尺剪刀
教学过程
⊙创设情境,提出问题
1.出示公园里的一块长方形空地的示意图:长10米,宽6米。
提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?
生:10×6=60(平方米)
师:除了用计算的方法,我们还有其他的方法得到图形的面积吗?
生:数方格。
2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。
提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?
3.学生回答后引入新课:这节课我们就来学平行四边形的面积。
设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的兴趣及积极性。
⊙猜想尝试,获取新知
1.出示教材53页问题一。
师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?
学生讨论,猜想求这块空地面积的方法。
预设
生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。
生2:把平行四边形的相邻的两边相乘。
过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?
2.借助方格纸数一数,比一比。
师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?
(1)请大家仔细观察方格纸上的两个图形,数一数。
(2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的方法来求平行四边形的面积。
(3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的'底和高有什么关系?
引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。
提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?
设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的联系,为下面的探究做了很好的铺垫。
3.推导平行四边形的面积计算公式。
师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。
(1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?
释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。
(2)师生共同总结。
①通过剪一剪、拼一拼,把平行四边形变成了长方形。
②剪拼后的长方形与原来的平行四边形相比,面积不变。
③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。
(3)推导平行四边形的面积计算公式。
长方形的面积=长×宽,得出:平行四边形的面积=底×高。
字母公式:S=ah。
(4)梳理平行四边形面积计算公式的推导方法。
师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?
(学生汇报)
师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。
设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。
平行四边形的面积的教学设计 篇16
一、在引入中体现
通过课本中的情境图和老师的引导,使学生感受到数学源于生活,寓于生活,用于生活。让学生领悟到数学的价值,从而体现《课标》的人人学有价值的数学的基本理念和数学与生活实际相结合的要求。
二、在联系中感知
通过数方格求平行四边形和长方形的面积并完成书上的表格,让学生观察发现它们之间的联系:即面积相等、平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等。由长方形的'面积=长×宽,让学生初步感知平行四边形的面积=底×高的方法。
三、在比较中掌握
通过学生剪拼、平移的动手操作,将平行四边形转化成已学过的长方形后,引导学生观察思考。比较转化前后的平行四边形的底和高与长方形的长和宽之间的关系,面积之间的关系。利用联想和可逆性思维推导出平行四边形的面积计算公式。从而理解掌握平行四边形面积的计算方法。
四、在过程中渗透
在整个教学过程中渗透数学思想和方法。如在面积公式的推导中渗透平移、转化和化归的数学思想和方法。在习题中设计要计算平行四边形的面积必须将对应的底和高相乘,以及单位不同的底和高直接相乘得面积的判断题,从而渗透对应的数学思想。在推导公式时引导学生观察平行四边形转化成长方形后形状发生了改变而面积未发生变化来渗透“变与不变”的辩证思想。
五、在习题中训练
通过出现不同层次、形式多样的习题。如只出现平行四边形的图形要学生求面积,单位不同的底和高直接相乘得面积的判断题和出现不相对应的底和高求面积的题目等。从而训练学生思维的有序性,深刻性和批判性,避免思维的随意性。
六、在交流中培养
平行四边形的面积的教学设计 篇17
教学目标:
1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)
教学重点:
掌握平行四边形的面积计算公式,能准确解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
两张格子纸,一张白纸,可变形的平行四边形
教学过程:
一、揭示课题:平行四边形(展示课件课本情景图)
师:同学们在校门口进进出出,有没有发现在这里就有许多我们学过的图形。说说你都发现了那些图形?
生:平行四边形、长方形、圆形......
师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)
生:面积(学生回答面积后,马上追问,什么是面积?)
师:什么是面积?
生:面积就是一个图形所占平面的大小。
师:那么我们学过那些图形的面积?
生:长方形和正方形。
师:它们的面积怎么求?
生1:长方形的面积=长×宽
生2:正方形的面积=边长×边长
师板书:长方形的面积=长×宽
师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?
(设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)
师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)
二、新授
师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)
生:能
师:怎么看出来?
生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。
生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。
师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!
生操作。(拿出1号方格纸,不满一格的都按照半格计算)
师:看看同学们都是怎么数的?
生:20个满格,8个半格,一共24个格,面积是24平方米。
师:平行四边形的面积利用数方格的方法是不是很麻烦?还不是很精确。我们能不能找出一个更好的方法呢?
(引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)
猜测一下:平行四边形的面积可能与什么有关?
生:平行四边形的面积=底×高(猜测一下,平行四边的.面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)
师:平行四边形的面积真的是底×高吗?验证一下。(拿出1号方格纸)找到平行四边形的底是多少?高是是多少?
生1:底是6米。
生2:高是4米。
生3:6×4=24,所以平行四边形的面积是底×高。
师:那么所有的平行四边形的面积都是底×高?数方格的面积是估算出来的,那么我们可以可以精确的算出平行四边形的面积?
(拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。
生操作
出示学生的作品,介绍一下是怎么想的。
生1:用拼的方法,拼成一个长方形,再数出面积。
生2:也是拼,剪掉上面的拼下面,剪下面拼上面。
师:刚才他们都用到了一个动词,是什么?(生:拼)
师板书:拼
生4:整块简拼,移到右边。
师:拼的过程其实也是我们数学当中的平移的过程。
师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。
3、出示3号白纸,学生自己画一个平行四边形
学生操作,小组讨论。
(此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)
展示学生作品
师:这样的平行四边形要怎样计算面积呢?还能数方格吗?
小组讨论,学生操作剪一剪,拼一拼。
生1:不沿高剪得
生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。
师板书:长方形的面积=长×宽。
师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?
师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?
学生讨论
生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。
生2:这两个图形的面积是相等的。
师总结:验证成功,平行四边形的面积=底×高
(汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)
师板书:平行四边形的面积=底×高
3、如果用字母S表示面积,a表示底,h表示高
你会用字母表示平行四边形的面积吗?
生:S=a×h
利用公式来计算
出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。
拓展练习:
(1)选择题:平行四边形的底是5米,高是4米,它的面积是()
A 20米B 20平方米C 18米D 18平方米
(2)出示图形(强调高和底是相对的)
(3)画出一个底是3cm,高的5cm的平行四边形。
师总结:等底等高的平行四边形面积相等,但是形状不一样。
三、拓展探究
1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程
师:那么这个平行四边形在拉成长方形时面积发生改变了吗?
学生讨论
学生1:没有改变
学生2:改变
学生辩论
师:周长一样长的平行四边形和长方形,面积不一定也一样。
四、总结
这节课我们学习了什么,回顾整堂课的过程。
用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。
预知后事,自己分晓。
板书设计
新面积不变平行四边形的面积=底×高
拼数
已学(转化)长方形的面积=长×宽
S=a×h
平行四边形的面积的教学设计 篇18
教学目标:
1、知识与技能:
(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。
(2)能运用平行四边形的面积公式解决相应的实际问题。
2、过程与方法:
使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。
3、情感、态度与价值观:
(1)渗透转化的数学思想方法。
(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
教学重点:
探索并掌握平行四边形面积的计算公式。
教学难点:
1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。
2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。
教具、学具准备:
1、多媒体课件、自制教具。
2、每个学生准备1把剪刀、一张平行四边形纸片。
教学流程:
一、创设情境,引入课题:
师:同学们,今天老师将要和大家一块儿探讨怎样的数学问题呢?首先老师给大家讲一个有趣的故事,大家想听这个故事吗?从前有一个老财主,他感觉自己的年龄越来越大了,身体也一天不如一天了,就决定把自己最好的两块儿地分给他最疼爱的两个儿子。(课件)于是他把左边的这块儿地分给了第一个儿子,把右边的这块儿地分给了另一个儿子,可两个儿子分到地后都不满意。都说我那个老爹呀,真偏心把大的地分给了他,小的留给了我,老财主伤心的落泪了。谁能帮帮他呢?你们有什么好的办法吗?
生:
现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)
师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。
(通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)
师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)
二、探究新知,导出公式:
1、猜想:
师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)
生:
师:我们发现长方形的.长和平行四边形的底都是6米,长方形的宽和平行四边形的高也都是4米,而且它们的面积也相等。那么根据这些数据,我们能不能大胆的猜想一下平行四边形面积公式呢?
生:
师:你们是怎么推导出这个公式的呢?
师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)
2、验证:
(1)学生动手操作
(2)小组演示
(3)师课件演示
边演示边说:我们沿着平行四边形的一条高剪开,把它平移到右边,就拼成了一个长方形。我们发现了什么?
生:
板书:长方形的面积=长×宽
平行四边形的面积=底×高
师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?
(4)推导过程:(课件显示)
我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。
(5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。
师:下边请同学们想一想如果用字母S表示面积,用字母a和h分别表示底和高,那么平行四边形的面积用字母怎么表示呢?
师板书:S=ah
3、面积公式的运用
课件出示例题:有一块平行四边形的麦田,底是85。8米,高是75米,这块麦田的面积是多少平方米?
三、巩固发展、实际运用:
1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)
2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件)
四、课后延伸:
师拿出活动的长方形木架,沿对角一拉,变成一个平行四边形,请同学们想想这两个图形的面积还相等吗?它们的周长呢?请同学课后来讨论这个问题好吗?
五、反思与体会:
同学们,想一想,这节课你有哪些收获呢?(生)
师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!
平行四边形的面积的教学设计 篇19
[课程标准]
探索并掌握平行四边形的面积公式,并能解决简单的实际问题。
[学情分析]
学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。
[学习目标]
1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)
2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)
[评价任务]
评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。
评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。
[资源与建议]
1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。
2、相关的资源:(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。
3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。
4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。
[教学过程]
一、情境导入
出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?
师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]
二、探究新知
1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。
(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的.都按半格计算。
(2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)
(3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)
生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。
生:我发现平行四边形的面积=底×高
师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。
[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]
2、合作交流探究新知
(1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?
(2)、活动4:动手操作
以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)
(3)、活动5:学生汇报、交流。
师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,
(边演示边说剪拼过程,并贴剪拼图于黑板。)
师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?
你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?
哪个小组和他剪的不一样?
师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。
(4)、大屏幕演示不同的拼法。
(5)、活动6:小组讨论
师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)
小组讨论:
a、拼成的长方形的面积和原来平行四边形的面积—————。
b、拼成的长方形的长与原来平行四边形的底———————。
c、拼成的长方形的宽与原来平行四边形的高———————。
(6)学生汇报,教师总结板书:
师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
教师板书平行四边形的面积=底×高,
(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)
(8)介绍板书字母式。
师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。
观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?
[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]
三、实践应用
活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)
[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]
四、课堂检测
1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)
2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)
3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)
[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]
五、全课小结。
想一想你这节课学到了什么?
板书设计:平行四边形的面积
长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
平行四边形的面积的教学设计 篇20
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.培养学生的合作意识,初步渗透平移和转化的思想。
教学重点:
探索并掌握平行四边形的面积计算方法。
教学难点:
理解平行四边形面积计算公式的推导过程。
教具准备:
一个长方形、一个平行四边形,PPT课件一套。
学具准备:
平行四边形、剪刀、三角板。
一、以旧引新,激起质疑
1.同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?
2.老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)
二、动手操作,探究方法
(一)利用方格,初步探究
1.下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!
2.学生独立数出平行四边形和长方形的面积。
3.谁来说说你数的结果?学生汇报
4.你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现?
你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。
我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢?
(二)动手操作,推导公式
1.动手操作
a.下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的图形呢?怎么变?
b.静静地想,想好了吗?
c.动手操作,把这个平行四边形变成以前学过的图形。
d.谁来说说,你把平行四边形变成了什么图形,怎么变的?
2.合作探究
a.我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么?
b. 小组讨论
c. 汇报。
3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的.底,h表示平行四边形的高,那么,平行四边形的面积公式用字母怎么表示呢?
(三)指导点拨,总结方法
刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?
我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。
孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!
例1.读题后独立解答一生板演
师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗?
三、解决问题,拓展延伸
1、练习十五1题。
2、练习十五3题。
3、下面两个平行四边形,它们的面积一样大吗?
4、你能算出芸芸家这块菜地的面积吗?
四、全课小结,完善新知
这节课你有什么收获?
这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!
平行四边形的面积的教学设计 篇21
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=ah或S=ah
课后记:
第二课时
教学内容:
平行四边形面积计算的练习(P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的`计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
