短文网整理的比的性质教学反思(精选15篇),快来看看吧,希望对您有所帮助。
比的性质教学反思 篇1
《比的基本性质》一课是小学数学六年级上册的一节内容,本课的教学目标是让学生理解比的基本性质,正确应用比的性质化简比,培养学生的抽象概括能力,渗透转化的数学思想。
在以前的教学中,我基本上是在旧知铺垫的基础上,让学生合理猜测、自主验证,最后实践运用、提高能力,也取得了很好的效果。在实践“先学后教”的模式以来,我感觉这样的设计在一定的程度上确实实现了学生的自主,但实质仍然是教师的思想主导了学生的思维,学生是在教师的引导下之实现知识的认知的。因此,我作了以下的尝试。
首先是大胆探索。让学生根据比与分数的性质来研究在比中有什么性质,通过实例以填空的形式,让学生感受比与分数、除法的联系,从而初步感知比的基本性质;然后尝试化简。出示三组检测题,让学生把下面的各比化成最简单的整数比,包括一组整数比,一组小数比,一组分数比。学生独立尝试,小组交流方法。接着反馈总结。议一议:比的.基本性质是什么?化简比的一般方法(整数比、小数比、分数比如何化简),及结果的表现形式。最后巩固应用。必做题和选做题分别考查学生的基本知识技能和提高训练。
四大块内容的设计,从“导——探——总——用”四方面,让学生充分的自主参与知识的形成过程,实现了“先学后教”。
比的性质教学反思 篇2
比的基本性质是学生在已经掌握了商不变的性质和分数基本性质的基础上来学习的,所以我根据比与分数、比与除法的关系,是学生推导出比的基本性质。
我先组织学生复习了分数的基本性质和商不变的性质后,让学生回国比与分数、比与除法的关系,猜想比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?学生根据分数与比的关系、比与除法的关系就自然而然的猜想出比的`基本性质——比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。这叫做比的基本性质。
随后我出了三道较有代表性的化简比的练习,让学生在做练习的过程中归纳和整理出化简比的方法。教学化简比我让学生自己尝试来解决,通过板演,学生加深了对于比的基本性质的理解。
不足之处是在练习中没有充分引导学生比较求比值和化简比的区别,致使学生无法区分化简比和求比值。
比的性质教学反思 篇3
前天,上完“比的基本性质”后,我反复地在思考一个问题:实际上我们的学生学习数学知识有一个最重要的基础:已有的知识。尤其对六年级学生而言,他们在以前学习的过程中,积累了丰富的数学知识。我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。
在学生大胆猜想得出比的'基本性质是比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变时,我给予学生充分的肯定,但没有在学生的验证时让学生比较同时乘以或除以相同的数(0除外)和同时扩大或缩小相同的倍数的微小区别,造成学生一定的概念上的混淆。总之,教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。
比的性质教学反思15篇
身为一位优秀的教师,教学是重要的工作之一,在写教学反思的时候可以反思自己的教学失误,那么教学反思应该怎么写才合适呢?下面是小编收集整理的比的性质教学反思,希望能够帮助到大家。
比的性质教学反思 篇4
《探索平行四边形的性质》是在学生具备“三角形全等”的知识、学习了“轴对称、平移、旋转”之后,进而学习“四边形”一章的起始课。本节课的探索方法与思想将导引学生进行后续学习“菱形、矩形、正方形和等腰梯形、多边形”的相关知识。因此,在本节课中,大量的“学生实验操作——细心观察——学生发现——进行推理验证”这种模式导引、渗透是否到位将直接影响本章的学习效果。故在教学中,着重使学生在学习过程中体会“实验——观察——猜想发现——验证” 这一探究问题的方法。使学生在合作交流的愉悦中得到知识,获取科学的学习方法。
本节课开始时学生有些紧张,经过两个“互动平台”和“想一想”、“议一议”等环节促使学生探索交流的积极性高涨。体现在对“平行四边形性质”探索时的推理论证,学生思维活跃,发言积极;在“新知应用2”证明线段DE=BF时,讨论时的积极热烈,让我感动和欣慰;在达标测评环节中,学生能独立冷静思考,有理有据地讲明理由;在“做一做”的活动中,学生思维深刻,灵活性强。可见,前面的交流与探索已水到渠成。课堂中一个学生的“双语”使用,给我们的课堂又加了点“糖”,同时也提醒我要不断提高自己,才能使学生更加信服你,爱戴你;从学生随堂练习展示中,部分学生忘记辅助线作法,提示我在教学中对此的强调可能还欠火候。本节课我为学生创设了大量的数学活动和交流的空间,使他们在合作交流中进步。
《数学课程标准》中指出“学生学习的数学内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动进行观察、实验、猜测、验证、推理、交流等数学活动”,在探索平行四边形的`性质中,我设计了“我的发现、想一想、议一议、做一做”等环节,使学生深刻感受到探索的价值,体验成功的喜悦,感受数学中的“转化、化归”思想。本节教学过程中,我为学生创设了数学活动和交流的空间。 通过“实验—观察—猜想—发现—探究—推理验证—模仿体验”完成本节知识的学习,学生讨论积极热烈,合作学习愉悦,他们在合作交流中增长了知识,积累了经验,发展了思维,提高了能力。
数学学习的核心之一就是要发展学生的思维能力。在教学中,我通过教学内容的设计,尽力帮助学生将所学的知识“理解”、“迁移”与“旁通”。
比的性质教学反思 篇5
在疫情没停的特殊的今天教学了分数基本性质,整节课我根据学生已掌握的分数与除法的关系设计了根据除法商不变的规律猜想——动手操作——验证等数学步骤,培养学生探究新知识的能力。
《分数的基本性质》是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,利用"猜想和验证"方法,留给学生足够的探索时间和广阔的思维空间,学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。
课堂上,我首先出示有关商不变的规律的复习题,引导学生回忆商不变的规律,然后又复习了分数与除法的关系,让学生从这些已掌握的旧知识出发,思考“分数中的分子分母会有什么规律呢?”。新课伊始创设了一个唐僧师徒四人在西天取经路上分西瓜的情境,从中引出问题,促使学生思考,为后续的自主学习打开了一道思维的闸门。激发了学生探索问题的数学兴趣。在学生独立思考的基础上进行探究,因为有原有知识的基础进行迁移,学生很快猜想出“分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。”接着,我引导学生进行验证,分别拿出三张同样大小的正方形纸,折出并用阴影表示二分之一,四分之二,八分之四。预想学生折的方法比较多,使每个同学都能够有个性的学习,然后,让学生观察组织语言证明这三个分数相等,因为折法不一样,通过平移的方法,学生猜想出的分数的基本性质得到了验证。在本节课中,由于情况特殊对一些学困生的学情缺少关注,分数的`基本性质应用的过程中经常出错。这些都应该是以后教学中注意的问题。
本次教学中,讲学例2时通过应用拓展,使学生加深对分数的基本性质的理解,还有游戏:老师写一个分数,你能写出和老师相等的分数?你能写几个?设计不同形式的练习题来加深孩子对性质的理解和灵活运用。
整个教学过程中,我始终激励着学生的智力探究,努力把“冰冷而美丽的数学恢复为火热的思考”,学生是鲜活的个体,他们与生俱来的主体能动性和创造性潜能在学习上展现出创造的活力。
存在不足
在实施“自主合作探究问题解决”的教学模式时,还无法兼顾全体学生,一部分后进生缺乏主动探究的精神,参与积极性不高。因此,教学方法还需要进一步探讨,能创造性的利用教材,多阅读有关数学方面的书籍,探讨学生喜欢学习数学的方法。还有要提高灵活操控电脑的能力。
比的性质教学反思 篇6
教材分析
1、本节内容在全书及章节的地位:《比的基本性质》是在学生理解掌握了比的意义,比和除法、分数的关系的基础上组织教学的。这一内容也为化简比打下基础,为过渡到本节的学习起着铺垫作用。本节内容是比的基本性质部分,因此,在比和比例这章中承上启下的作用。
2、本节核心内容价值和功能:比这部分知识来源于生活,而数学作为一门实践性应用性很强的科学,它源于生活最终还要回归生活,用来指导生活,所以这章把这部分内容交给学生就是要让学生体会数学的生活性。作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。
学情分析
1、由于这个班是我从五年级就开始带的,所以我对学生学习基础很了解,学生在学习分数的基本性质时基础比较扎实,而该部分内容和分数的.基本性质联系比较紧密。
2.学生认知发展分析:人教版小学数学知识的教授具有“螺旋上升”的特点,即每学年都会学习一些内容,但是这些内容又不是简单的重复,而是在前一基础上的深化和加深,越来越复杂,越来越抽象的。五年级时候本班学生在分数的基本性质这部分内容上,有比较好的基础和理论准备,所以我认为学生在学习这部分内容时候没问题的,可以轻松掌握。
3.学生认知障碍点:学生的最大障碍应该在于应用比的基本性质进行的比的化简和求比值,两者容易混淆,在此要给学生认真详细分析两者的不同。
教学目标
知识与能力:
1、让学生经历发现、总结比的基本性质的过程,在感受和理解比的基本性质的发生和发展的过程中培养学生的创新精神;
2、使学生在小组探究中掌握运用比的基本性质把一个比化成最简单的整数比的方法,培养学生解决简单实际问题的能力;
过程与方法:
经历比的基本性质的探索过程,引导学生初步认识从“特殊”到“一般”的规律,将未知转化为已知,合理运用归纳思想、整体思想,发展学生的逆向思维,渗透探索问题的思想与方法;
情感态度与价值观:
1、本节课突出学生的主体地位,让学生高高兴兴地进入数学世界,在探索中激发兴趣,从发现中寻找快乐;
2、培养学生做事、待人应具体问题具体分析的良好习惯。
教学重点和难点
重点:理解比的基本性质,比利用比的基本性质化简比。
难点:比值和化简比的区别。
比的性质教学反思 篇7
本节内容是学习分数的基本性质,是在学习了分数与除法的关系、理解了分数的意义的基础上进行教学的,是今后学习约分、通分的基础。分数的基本性质与商不变的规律有着密切联系,以往的教科书是利用商不变的'规律单纯地从数的角度去学习分数的基本性质。新的教材从几何直观的角度探索分数的性质,以便于学生更好地理解掌握该知识。因此在教学中我进行了全新的安排,让学生更充分、直观地参与到学习当中去,主要有以下几个方面。
1、以几何直观的形式进行课堂导入和教学。
在新课的导入环节我运用了猴王分饼的情境,通过几何图形直观地让学生从视觉上感觉到在我们的生活中,有很多地方虽然分数不同但其表示的实际大小有可能是相同的;紧接着我让学生通过动手操作得到一组直观图形,进一步地感知可以用不同的分数表示相同的大小,这样让学生从形的角度引出一组相等的式子,为学习分数的基本性质打下基础。
2、以学生“亲身参与、动手操作、自主探究”为主阵地。
我在第二个环节中安排了一次小组合作动手操作的内容。让学生以小组为单位,四名学生分工合作、各司其职,动手折一折、画一画、剪一剪、比一比,让学生在亲身参与的过程中逐步抽象出分数的基本性质,理解分数基本性质的脉络、为后面的学习打下坚实的基础。
一节课下来,总体来说学生学习兴趣高、小组合作性学习效果良好,基本上做到了重点得到落实难点得到突破。但通过课后与老师交流觉得这节课还是存在着以下一些问题。
1、学生在动手操作的小组合作学习环节中,有一些学生还是手足无措,不知怎么操作,尽管我在合作之前已作了详细的分工,但学生在具体怎么折,最后怎么剪、怎么比上面还是一头雾水。特别是在这一环节完成后进行小结时没有进行细致地小结,只是以为学生已知道,简单带过了,没有让这次操作活动在结尾处得到升华。
2、练习环节还做得不够到位。我自己认为练习时间较少,练得不够充分。同时在课后交流时老师们也认为我在练习时应放手让学生自主去试做,不怕出问题,在练习中要尽量让问题暴露出来,在出现问题之后再来一次精讲,那样的效果会更好。
通过此次学校公开课,我对自己的教学有了更深地认识,这节课在上之前,与平常课比较还是多下了些功夫;在备课时预设了很多环节,正是有了课前充分的预设才能保证课上得比较流畅,尽管课前做了精心地准备,在上课中都还是出现了一些考虑不周到的地方。反思自己平时的备课又怎么会做到这样充分呢?因此我想在今后的教学中,不管是随堂课、公开课都要严格要求自己,在课前精心备好教材、备好学生,只有这样才能将一节课上好,才能让学生在课堂上学得愉快,自己在课堂上教得轻松。
比的性质教学反思 篇8
前天,上完“比的基本性质”后,我反复地在思考一个问题:实际上我们的学生学习数学知识有一个最重要的基础:已有的知识。尤其对六年级学生而言,他们在以前学习的过程中,积累了丰富的数学知识。我充分利用学生的'已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。
在学生大胆猜想得出比的基本性质是比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变时,我给予学生充分的肯定,但没有在学生的验证时让学生比较同时乘以或除以相同的数(0除外)和同时扩大或缩小相同的倍数的微小区别,造成学生一定的概念上的混淆。总之,教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。
比的性质教学反思 篇9
本节课首先通过学生回忆已有知识,进而类推、猜想比的基本性质,然后通过举例验证,共同推导完善比的基本性质。在这一过程中,学生领悟了利用旧知学习新知的方法,沟通了知识间的联系,培养了初步的类比推理能力。化简比的难点是最后结果的表现形式,因此,通过让学生讨论“什么是最简单的整数比”。使学生明确化简比的结果只能是一个比,并且前后项应该是互质的,然后让学生遵循这条原则,尝试化简各类比(整数比、分数比、小数比),使学生掌握学习的主动权,积极探索,完成学习。不可思议的是,学生在试化简:时,有的把这两个分数都化成小数再化简,也有的.前项除以后项来化简,大多数学生都是前、后项同时乘4的方法来化简。于是,我及时让学生讨论、比较,得出化简分数比的一般方法。
但是,在学生大胆猜想得出比的基本性质是比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变时,我给予学生充分的肯定,但没有在学生的验证时让学生比较同时乘以或除以相同的数(0除外)和同时扩大或缩小相同的倍数的微小区别,造成学生一定的概念上的混淆。
比的性质教学反思 篇10
1、加强数学教学与现实生活联系。
弗赖登塔尔说:“数学来源于现实,富于现实,用于现实”。数学只有与现实生活密切联系,才能使学生切实理解数学源于生活,用于生活,激发学生学习数学的兴趣,激活学生独立思考与自主探索的动力,基于此理念,在设计新课导入时,采用了学生熟知的让学生说出学生尺中一段的长度的情景,一方面激发学生主动学习,另一方面激发和培养了学生关注生活中数学的意识。
2、充分利用好信息技术这一现代教学手段。
根据学生年龄特点,利用多媒体课件,充分展示数学的变化过程,让学生通过观察、分析、比较、讨论,自己获得知识,锻炼自己的分析、推导和概括能力。
3、关注学生独立思考后的合作与交流。
例6教学,采用分组学习,把如何应用小数的性质解决实际问题交给学生来处理,在学生独立思考分组学习后,教师把讲台让给了学生,这样可以激发学生的学习情趣,课堂气氛民主、和谐,让全体学生全身心地投入到学习活动中去,从而加深对小数性质的理解。
4、首尾照应,教学完整。
通过小数性质的学习,最后顺利解决了开课时提出的问题,小数的末尾添上0或去掉0,小数的大小会发生什么变化?可以启示学生:生活中处处有数学,我们学好数学知识,就能很好地解决一系列实际问题。
陶行知先生曾说过:“先生强迫学生去学习,把知识硬灌给他,他是不情愿学习的,即使是学,也是学而不化,过不了多久,他还会把知识还给先生的”。可见,教学要关注学生主体性的发挥,充分激发学生学习的兴趣,在数学教学中,教师要认真钻研教材,深入挖掘知识的'内在规律和相互联系,把数学特有的严谨、抽象、简洁、概括等属性,借助于多媒体课件的优势,充分地展现在学生面前,不仅可以较好地激发学生的求知欲望,而且强化了学生的感知,突出了教学的重点,突破了难点,从而达到优化教学的效果。如:在教学例5时,利用课件演示,让学生感知0.1米=0.10米=0.100米,0.30=0.3,并经过学生思维的碰撞,概括得出小数的性质,突出了教学的重点。
不足之处:
课堂中由于本人的语言组织的不够,教学环节不够自然,特别是由于本人的疏忽,课件中还有好几处错误。真如熟语所说,当事者迷,旁观者清。恳请各位同仁多提宝贵意见,以便今后更好地进行教学。
比的性质教学反思 篇11
教完“比的基本性质”后,我不停地在思考一个问题:学生学习数学知识有一个最重要的基础:已有知识,尤其对六年级学生而言,他们在以前学习的过程中,积累了丰富的数学知识,尽管这些知识的获得有的来自于他人的帮助,有的来自于自身的感悟,但是不管怎样,不管其来源如何,既然学生已经掌握,就纳入到了学生已有的知识结构体系中,这些的确是客观存在的现实,并作为小学生已有知识的一部分构成进一步学习新知的数学资源。《数学新课程标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。小学生已有的知识是学生进行数学学习的重要资源。
其实,对于小学生而言,由于他们已经有了许多相关的数学知识,很多教材中的“新知识”对于学生来讲并非“新知识”。正因为这样,我理解的小学生数学学习的实质是,用自己已有的知识与新知进行交互作用,进而重新建构自己的知识体系的过程。学生以前学习的“商不变的规律”、“分数的基本性质”、“比与分数、除法之间的'关系”和今天学习的“比的基本性质”相互联系起来,让学生在已有知识的基础上学习新知就可以起到事半功倍的效果。
因此,学生的已有知识理所当然地成为他们数学学习的一个重要基础,进而成为我们进行数学教学的一个庞大资源库。 而这些学生已经掌握的数学知识,为他们进一步学习数学提供了一个有利的条件。教师如果能够注意到这些情况,并将学生已有的知识科学合理进行利用,与学习数学新知互相结合起来,必将起到良好的效果。因此,关注学生已有的知识,贴近学生的实际情况,既是数学学科的特点所决定的,更是数学学习所必需的。
一、引导学生通过对比、思考,主动建构概念。
数学建构主义学习的实质是:主体通过对客体的思维构造,在心理上建构客体的意义。所谓“思维构造”是指主体在多方位地把新知识与多方面的各种因素建立联系的过程中,获得新知识意义。学生通过观察具体的感性材料,己初步形成概念的表象,再进一步引导学生对比、思考,将新知识与已有的适当知识建立联系,又要将新知识与原有的认知结构相互结合,通过纳入、重组和改造,构成新的认知结构,建构出新的概念。本课中,引导学生观察了两组比的特征后,进一步启发学生联系起商不变的性质和分数的基本性质,通过对比、思考、重组等思维活
二、应用概念解决问题,广开言路,发展学生的创新思维。
学习概念的最终目的是为了运用概念来解决实际问题。心理学原理告诉我们,概念一旦获得,如不及时巩固,就会被遗忘。应用概念解决问题其实就是进一步巩固概念知识。只有把学到的知识运用到实践中去,学习才是有意义的。本课中,应用比的基本性质化简比,方法不只一种,不管采用的是哪一种方法,只要合符规律,都给予了充分的肯定。尊重了学生的情感、态度、价值观,使学生从中体会到成功的喜悦,提高自己的学习兴趣,进而培养了学生的创新意识。随后还安排了综合性练习,这些练习不仅能起到巩固、深化概念的作用,还可以培养学生分析和解决问题的能力。
比的性质教学反思 篇12
《梯形的性质》这节课是在学生掌握了三角形、平行四边形、特殊平行四边形(矩形、菱形、正方形)等有关知识,并且具备初步的观察、操作等探究特殊四边形活动经验的基础上出现的。目的在于让学生对等腰梯形特征入相关规律进行系统探索、归纳和总结,进一步学习、掌握说理和进行推理的数学方法。其中数学的分类、转化思想都有所体现。
八年级上学期上这个阶段学生基础好,上课很积极。有很强的表现欲,通过前两学期的培养,具有一定的独立思考和探究的能力。但这个学段的学生的口头语言表达能力方面稍有欠缺,所以在本节课的教学过程中,设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。由于学生在小学已学过梯形,特别是特殊的直角梯形和等腰梯形,并且生活中抽象成梯形的物品比比皆是,所以学生对梯形并不陌生。但结等腰梯形特征及相关规律并没有进行系统探索、归纳和总结,因此本课教学采用“观察——猜想——操作——证明”为主线的教学方法,在这个设计中,观察猜想表现的是学生的洞窗察力,操作的意义在于实验,它强化了对猜想的直觉,证明需要探索,可以激发和培养学生的创新意识和创新思维。
根据以上的分析我确立的教学目标是:
1.掌握梯形的相关概念和等腰梯形的性质,能正确运用等腰梯形的性质时行计算、推理。
2.经历观察、猜想、推理等过程,以展合情推理能力和语言表达能力,主动探究的`习惯,逐步掌握说理的基本方法。
3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,体会图形变换的方法和转化的思想。
4.通过探索等腰梯形的性质,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决的问题的经验。
5.通过动手实践,相互间的交流,进一步激发学习热情和求知欲。同时体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。
重点:等腰梯形的性质的探索过程。难点:解决问题的基本方法。
本节课根据我对新课程的理解,主要是经课前送给学生的第一份礼物“在数学的天地里重要的不是我们知道什么,而是我们怎么知道的”这设计理念。整堂课着重体现探究的主线,转化的数学思想,以学生为主体,采用“观察——猜想——操作——证明”为主线的教学方法,在这个设计中,观察猜想表现的是学生的洞察力,操作的意义在于实验,它强化了对猜想的直觉,证明需经探索,可以激发和培养学生的创新意识和新思维。
本节课我对我的设计比较满意的有以下几个方面:
1.本节课的难点是解决梯形问题的基本方法:如何添加辅助线将梯形问题转化为平行四边形和三角形中去解决。突破的过程中我做了应有的点拨和铺垫,让学生回顾证明两角相等的常用方法,研究平行四边形时我们把平行四边形转化成了什么图形解决的,使学生有了一个大概的探究方向,不是毫无目的空泛的去凭空想象。
2.对于本节的习题设计我是本着为本节的重点、难点的服务的原则,所以习题的设置充分体现了辅助线的重要作用。强化学生梯形辅助线的引法,并且一题多变,把梯形问题放到了平坐标系中,转换了一个情境,但是解决问题的方法没变,并和已有知识想连,让学生觉得知识间是有密切联系的,要学会学以至用。
3.本节课我通过巧设问题情境,以开放、探究问题为引线,激发学生的好奇心和求知欲,坚持实施以学生自主探究为主的开放式教学,给学生充足的思考时间和充分的展示机会,点燃了学生思维的火花,课堂上不同层次的学生都有成功的体验,不同的人有不同的收获。通过这节课,使我深深体会到学生的创造潜力是金矿,就看教师如何去开采,给学生一个题目,让他们去探究:给学生一个冲突,让学生去讨论:给学生一个自由的发展空间,他们会回报你一个惊喜。
4.“梯形“是数学思想”传授的很好的载体,在学习过程中应该发挥学生的主体作用,进行充分地探讨,体会图形与图形之间的互相转化关系。可以开放性地让学生观察、发现、验证、说理。整体的课堂安排应该在浓厚的探索气氛中进行。
比的性质教学反思 篇13
平行四边形学生在小学就学过了,学生对平行四边形的有关性质还是比较容易理解、接受的。本节课我主要是让学生利用平行线的性质、三角形全等有关知识等有条理地表达自己的发现,培养学生多角度地阐述自己观点的能力,让学生深入地理解、运用平行四边形的性质,提高学生的数学能力。主要有以下几点收获:
1、遵循学生学习数学的认知规律,对教材内容进行了重组加工,由三角形开始引入,过渡到研究任意四边形,主要从边、角、对角线出发,自然引出比较“好看”的四边形——平行四边形。
2、将教材中平行四边形性质的探究活动完全开放。为学生提供了自主合作探究的舞台,营造了思维驰骋的空间,激发了学生思维创新的火花,培养了学生的动手能力和语言表达能力。
3、探究平行四边形的性质从定义入手,强调概念,由文字表达到几何语言的表达,注重循序渐进,由浅入深。
总体来说,本节课课堂气氛较为活跃,基本达到了预期教学效果,但引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑。由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。最后的小结部分也没有完成,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角作归纳,配以图表方便记忆。这些都是在今后的.教学中要多加注意和需要不断改进的。
教学永远是一门遗憾的艺术,“吹尽黄沙始现金。”让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。
比的性质教学反思 篇14
安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的不是很充分。
性质2的'应用比较多,学生往往不能灵活应用这条性质,因此要由图形训练和规范符号语言。
在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,设计一组填空题,有利于性质2的应用。
要培养学生讨论和自觉纠错的学习习惯。性质在证明中的应用,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”最后留出时间进行课堂小结。
比的性质教学反思 篇15
分数的基本性质是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的,分数的基本性质在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮忙,所以,分数的基本性质是本单元的教学重点课。
这节课我大胆利用猜想验证反思的教学方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅仅是数学知识,更主要的是数学学习的`方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题。鉴于以上思考,我在本节课的教学设计上努力做到以下几点:
1、充分发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较,验证自我的猜想。课前教师给每位学生发了一个大小相等的圆,但圆被平均分的份数不相同,有2份、3份、4份、5份、6份、7份、8份、9份、12份、16份。要求学生自我任意图上颜色,并用分数表示,然后经过找朋友的游戏让学生直观地认识两个分数的分子分母不一样,但实际表示的大小却是一样的,进而让学生初步发现分数的基本性质。之后让学生经过举例来验证自我的猜想是否正确,从而培养学生的动手本事,以及观察问题解决问题的本事。
2、运用知识,解决实际问题。为了把知识转化为本事,练习题的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。学完例2以后,立刻结合知识点进行反馈练习,加深对这个过程的理解。在学完整个新知以后,在进行综合练习,巩固提高。经过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的本事。
3、0除外的环节设计是本节课的亮点,在学生根据三个分数归纳出分数的基不性质后,缺少0除外这个难点,我设计了确定一个分数的分子和分母同时乘0,让学生经过练习,立刻想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外。突破难点。
