短文网整理的《反比例》教学设计(精选34篇),快来看看吧,希望对您有所帮助。
《反比例》教学设计 篇1
教学目标
知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点
教学难点 1) 重点:画反比例函数图象并认识图象的特点.
2)难点:画反比例函数图象.
教学关键 教师画图中要规范,为学生树立一个可以学习的模板
教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段 教师画图,学生模仿
教具 三角板,小黑板
学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法
教学过程
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内 容 设计意图
一:课前检测:
1.什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)
2.反比例函数的定义中需要注意什么?
(1)k为常数,k0
(2)从y= 中可知x作为分母,所以x不能为零.
二:激发兴趣 导入新课
问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?
y=kx+b y=kx
K0 一、二、三 一、三
b0 一、三、四
K0 一、二、四 二、四
b0 二、三、四
问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?
可以
问题3:画图象的步骤有哪些呢?
(1)列表
(2)描点
(3)连线
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为 且k不等于0
生:我知道反比例函数的图象是曲线。
师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?
生:该研究反比例函数图象和性质了。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
三:探求新知
学生思考、交流、回答。
提问:你能画出 的图象吗?
学生动手画图,相互观摩。
(1) 列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
议一议
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交
学生先分四人小组进行讨论,而后小组汇报
做一做
作反比例函数 的图象。
学生动手画图,相互观摩。
想一想
观察 和 的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点
相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限
四:归纳与概括
反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第___、___象限,
(2) 当 k0 时,两支曲线分别位于第___、___象限.
五:课堂练习
(1)
(2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;
六:形成性检测
(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________
(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )
(A) (B) (C) (D)
(3)画 和 的图象
七:反馈拓展
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.
八:作业布置
(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象
(2) 习题5.2.1
(3)预习下一节 反比例函数的图象与性质II
复习上节主要内容
(3分钟)
(5分钟)
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的'问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:(1)x取绝对值相等符号相反的数值
(2) x取值要尽可能多,而且有代表性
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)
活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线
(4分钟)
培养学生归纳,语言表达能力
此中注意分类讨论思想的应用
巩固反比例函数图象性质
(2分钟)
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)
巩固作反比例函数图象的步骤,预习下一节课内容
教学反思与检讨:
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
反比例函数的图象与性质
一:画出 的图象
(1)列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
注:(1)x取绝对值相等符号相反的数值
(2)x取值要尽可能多,而且有代表性 三:练习
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
二:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第一、三象限,
(2) 当 k0 时,两支曲线分别位于第二、四象限.
《反比例》教学设计 篇2
一、教学内容:
反比例。(教材第47页例2)。
二、教学目标:
1、使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2、让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
三、重点难点:
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
四、教学准备:
投影仪。
五、教学过程:
(一)复习导入
1、让学生说说什么是正比例,然后用投影出示下面的题。下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2、说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
(二)目标解读:
1、学生认真度学习目标。
2、理解目标。
(三)自主预习:
理解:哪两种量叫做成反比例的量?什么是反比例关系?请举例说明。
(四)检查预习。
(五)合作探究
活动一:
1、学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
2、发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)即:30×10=20×15=15×20=?=300
3、高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
活动二:
1、归纳反比例的意义。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
2、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
3、生活中还有哪些成反比例的量?学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
活动三:
1、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
2、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。课堂作业
1、教材第48页的“做一做”。
2、教材第51页第9、10题。课堂小结
说一说成反比例关系的量的变化特征。
(六)当堂检测:
1、完成练习册中本课时的练习。
2、教材51~52页第8、14题。
(七)总结归纳:
反比例
两种相关联的量
变化
xy=k(一定)
积一定
学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)
教师板书配合说明这一规律: 30×10=20×15=15×20=?=300 教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2、归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
4、师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。
6、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
课堂作业
1、教材第48页的“做一做”。
2、教材第51页第9、10题。
课堂小结
说一说成反比例关系的量的变化特征。
课后作业
1、完成练习册中本课时的`练习。
2、教材51~52页第8、14题。
反比例教学反思
(六年级)今天用《反比例的意义》作为校内的研究课,这节课是上周六临时决定的,本来是要用复习单元《量的计量》来上的,但是担心毕业班后面的时间会很紧,所以临时决定提前。不过,我想不管什么的课,只要教师的素质高,一样能上出精彩,不能因为内容好上而选来作为公开课,相反,越是难上的课就越要拿出来研究研究,因为研究课就是供大家来讨论研究的,这样,以后上到同样的内容时就不会不知所措了,再者,越是难上才越能体现功底,并且这样的课上过之后,其他内容的课就会显得不是很难了,因为在信心上占有了优势。
周六决定了这节课后,我便整理了一份草案请师傅过目,在和师傅及其他几位老师研究过后,大家的意见是:这节课的内容比较多,要上好不容易,以往上到这个内容时是最麻烦的,因为这个内容十分抽象,所以,这节课的容量不宜太大。我虽然没有教过六年级,但是看过教材之后,也觉得这部分内容容量比较大,其实也不能说是容量大,就是比较抽象,如果学生学不好、说不出来其中的道理,就比较麻烦,就会影响到这节课能否上完。所以,在修改教案时,我十分注意容量问题,能精简的精简,尽量不在碎小的地方拌足。下面是我设计的思路。
首先简单回顾正比例的概念知识,然后给出单价、总价、数量,问:怎样组合才能符合正比例的要求?接着小结:“既然有正比例,那就有…”(学生说:反比例)引出课题《反比例》,引出课题后,我让学生先根据正比例的意义猜一猜什么是反比例,或者说,你认为什么是反比例。通过猜想,先初步的感知反比例,不管学生猜的对与错,最起码调动了学生的积极性和质疑心理,为后面的学习先奠定一定的基础。因为,后面我们要通过学习来验证猜想的对不对,通过验证后,之前猜对的学生在情感体验上就会得到满足,同时也培养了估计的能力,这也符合《课程标准》培养估计能力和推理的要求。在初步的猜想之后,用了一段小动画来直观的经历、感受反比例的建构过程(这个动画我做错了,后来经大家的提醒,我把这个动画作了修改),这个动画是这样的:有一堆黄沙,先用载重量大一些的货车运,然后换成载重量小一些的货车运,接着再换一辆载重量还要小的货车运,并提问:从动画中能想到什么?让学生知道,每次运的越少,运的次数就越多,每次运的越多,运的次数就越少,初步经历、感受反比例的建构过程。有了这样的一个基础,接下来出示例4和例5并按要求回答,然后把例4和例5放在一起比较,寻找这两道例题的共同点:都有两种相关联的量、都是一种量随着另一种量的变化而变化、两种量里对应数值的乘积一定。找出共同点之后,分步出示反比例的意义,然后用反比例的意义在回去解释例4,接着要求学生用这一知识解释例5,然后学会用字母x、y和k来表示它们之间的关系,接着实际运用,做练一练第1题和练习八的第4题,到这里我都是教要用一句话来判断两个量是否成反比例的,接下来出示例6,跟学生说明,我们也可以列数量关系式来判断,如果要列数量关系式判断的话,它们的乘积就要一定。至此,课的内容已经基本上完,后面就做了两组相关的练习,一组是判断两种量是否成反比例,其中有一题不成比例,有一题成正比例,有两题成反比例,另外一组题目是先把数量关系式填写完整,然后根据数量关系式回答问题。
最后总结本课内容,总结时,学生提到了和正比例的区别的联系,这是我备课时所没有想到的,而正好时间又多(因为担心不能上完,所以一直赶着上的),我就顺着学生的思路,要大家比较它们之间的区别和联系,由于前面学的比较好,学生很清楚地找出了它们之间的区别和联系,其中有个学生说到了它们之间的联系时是这样说的:它们相同点都是一种量随着另一种量的变化而变化,但是如果要讲具体怎么变化的就有区别了。为学生的精彩回答而感到高兴,看来他们今天学的比较好。同时,我也暗自为自己庆幸,不是庆幸上的好,而是庆幸课的内容按预计的上完了,也改掉了一直伴随我的老毛病——课堂上罗罗嗦嗦。下午教研活动时大家发表了意见,其中那个动画大家讲的最多,我也知道动画做错了,所以已经做了修改,另外大家提的比较多的是后面的总结,大家认为这节课没有必要进行正比例和反比例的比较,这节课的内容就是理解反比例的意义,但是我却不这样想,首先这部分内容不是我的预设生成,而是非预设生成,学生能想到为什么不趁热打铁比较一下呢?虽然这部分内容是下节课要专门讲的,在这里为什么不可提一提?学生能掌握不是更好吗?所以,在修改教案时,我决定把这个环节添上去。另外大家还认为这节课光练习说了,没有什么写的练习,光会说,那作业怎么写?没有经历写的练习,学生会吗?我想,这的确是有必要的,所以,在修改教案时也增添了进去。这样一来,这节课的内容满满当当,不多不少了。
《反比例》教学设计 篇3
一、教学内容
人教版六年制第十二册第42~43页的内容。
二、教学目标
(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。
(二)根据反比例的意义,正确判断两种量是否成反比例。
(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
三、教学难点
正确判断两种相关联的量是否成反比例。
四、教学过程
(一)情境导入
1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)
2.学生对上述问题发表意见。
3.师:今天,我们就来研究这种类型的.问题。
[设计意图:选取学生身边的生活实例引入新课,吸引学生的注意力,激发学生的探究欲。同时为新知的学习埋下伏笔,营造了一种轻松活泼的学习氛围。]
(二)探索新知
《反比例》教学设计【精华15篇】
作为一名老师,总归要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。我们应该怎么写教学设计呢?以下是小编为大家收集的《反比例》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《反比例》教学设计 篇4
第二课时
教学内容:
P42
教学目的:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:
引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:
利用反比例的意义,正确判断两个量是否成反比例。
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0。80元,1本;1。60元,2本;3。20元,4本;4。80元6本。
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的`式子表示?板书:x×y=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
《反比例》教学设计 篇5
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
组织学生小组内讨论:反比例的'意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4.师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6.你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:50 100 12
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1.完成练习册中本课时的练习。
2.教材51~52页第8、14题。
答案:
2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑马跑得快。
第3课时 反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
《反比例》教学设计 篇6
第二课时
教学内容:
P42
教学目的:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:
引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:
利用反比例的意义,正确判断两个量是否成反比例。
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0。80元,1本;1。60元,2本;3。20元,4本;4。80元6本。
2、成正比例的`量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
《反比例》教学设计 篇7
教学目标:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教法:自主探究,合作交流。
学法:小组合作交流。
教具:课件。
教学过程:
一、定向导学(5分).
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?(口答)
3、出示学习目标
1、理解反比例的意义,能根据反比例的意义。
2、正确的判断两种量是否成反比例。
二、自主学习(15分).
1、自学课本p47例2。
思考:
a、表中的两种量是( )和( )。这两种量是不是相关联?为什么?
b、水的高度是随着( )的变化而变化 ,水的高度越( )杯子的底面积就越( )。
c、相对应的杯子底面积和水的高度的乘积分别是( ),一定吗?
d、这个积表示( )表示它们之间的数量关系式是( )。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的.变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、合作交流(6分)
1、成反比例的量应具备什么条件?
2、数学书第48页的做一做,学生独立完成,集体订正。
四、质疑探究(4分)
举出生活中反比例关系的例子
五、小结检测(4分)。
1、说说反比例的意义,如何判断两种量是否成反比例。
2、检测
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
3、第51页8题
4、第51页9题
六、堂清 (6分)
p51练习九第10、11、12题。
板书设计:
成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母表示: x×y=k(一定)
《反比例》教学设计 篇8
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生运用正、反比例的意义正确解答应用题。
3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。
教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。
教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路
教学准备:课件
教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象
1、判断下面每题中的两种量成什么比例关系?
○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )
○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间
○5全校学生做操,每行站的人数和站的行数
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。
指名学生口答,老师板书。
二、创设情境,探究新知
从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)
1、教学例1
(1)出示例1(课件演示)让学生读题
一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
师:你用什么方法解答,给大家介绍一下如何?(自由回答)
(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)
学生解答如下几种:
解法一:140÷2×5=70×5=350千米
解法二:140×(5÷2)=140×2.5=350千米
如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:
A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?
B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)
C它们有什么关系?(行驶的路程和时间成正比例关系)
D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。
教师板书:速度一定,路程和时间成正比例。
师追问:两次行驶的路程和时间的什么相等(比值相等)
解法三:(用比例方法,怎样列式)
解:设甲乙两地间的总路长X千米
140 X 或 140:2=X:5
2 5 2X=140×5
X=350
答:甲乙两地之间公路长350千米。
小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。
2、怎样检验这道题做得是否正确呢?
3、变式练习改编题
出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?
4、教学例2(课件演示)
(1)出示例2,学生读题
例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?
提问:
(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
学生利用以前的方法解答。
70×5÷4=350÷4=87.5(千米)
(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)
这道题里的.路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。
指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。
(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程
4X=70×5 X=70×5/4 X=87.5
答:每小时行驶87.5千米。
师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?
B)题中哪一种是固定不变的?从哪里看出来?
C)它们有什么关系?
D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。
(5)变式练习(改编题)
出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
解:设需要x小时到达
87.5x=70×5 x=4
答:需要4小时到达。
三、归纳总结,揭示意义
想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)
四、巩固练习,考考自己(课件演示)
请你们按照刚才学习例题的方法去分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。
3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?
(2)王师傅4小时生产了200个零件,照这样计算 ?
4、四选一,每题只能选一次
(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)
a.150×30=1200x b.30:150=1200:x
c.150x=30×1200 d.150:30=1200:x
(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)
a.60×8=3x b.60:8=3:x
c.60×8=(8-3)x d.3:x=8:60
(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)
a.5×40=480x b.5:40=x:480
c.40x=5×480 d.40:5=x:480
(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)
a.24×5=6x b.24:5=6:x
c.(24+6)x=24×5 d.(24+6):x=24:5
(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)
a.3×75%=2x b.75%:3=2:x
c.75%x=2×3 d.3:75%=2:x
五、分层练习,深化新知
○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x
○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?
12×30=(12+6)×X
○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?
120×28=(120+20)×X
六、全课总结,温故知新
解比例应用题的一般步骤是什么?(学生自己用语言叙述)
一般方法和步骤:
1、判断题目中两种相关联的量是成正比例还是反比例;
2、设未知量为x,注意写明计量单位;
3、列出比例式,并解比例式;
4、检查后写出答案;
5、特别注意所得答案是否符合实际。
七、课后反馈,挑战难题
小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:
“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”
小明需要你的帮助,你会怎样编题?
《反比例》教学设计 篇9
教学目标:
通过具体问题认识成正比例、反比例的量。
能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值。
能找出生活中成比例和成反比例量的实例,并进行交流。
教学重点和难点:
理解两个变量之间的函数关系
教学准备
小黑板投影片
教学过程:
本节课主要是对回顾与交流部分知识进行复习。
一、生活中有哪些成正比例的量?有哪些成反比例的量?小组同学互相举例说一说。
①可以让学生课前进行复习,并收集相关信息,课上展示。
②以小组形式展开交流、反思,然后组织汇报。
③展示部分学生的优秀作品。
二、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。
(1)可以列表。
(2)可以画图。
(3)可以用式子表示。
教材创设了路程和时间之间的关系,并运用表格、图、关系式、自然语言等方式来描述这一关系,使学生体会刻画数量之间的关系的多种形式,并促使学生在几种方式之间进行转化。教学时,教师可以再举出一些实际问题或鼓励学生提供出实际问题,让学生再次经历多种方式表示的过程;教师应通过语言、板书等形式将几种方式进行对应。
三、举出生活中数学中一量虽另一量变化的例子。将学生的'视野由正比例、反比例拓展到两个量之间的关系,这也体现了教材的特点,学生只要举出例子就行了,教师可以让学生说清楚谁随谁变化,对于感兴趣的学生,教师可以鼓励学生通过表格、兔等大致的刻画变量之间的关系。
《反比例》教学设计 篇10
教学目标:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教法:自主探究,合作交流。
学法:小组合作交流。
教具:课件。
教学过程:
一、定向导学(5分).
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?(口答)
3、出示学习目标
1、理解反比例的意义,能根据反比例的意义。
2、正确的判断两种量是否成反比例。
二、自主学习(15分).
1、自学课本p47例2。
思考:
a、表中的两种量是( )和( )。这两种量是不是相关联?为什么?
b、水的高度是随着( )的变化而变化 ,水的高度越( )杯子的底面积就越( )。
c、相对应的杯子底面积和水的高度的乘积分别是( ),一定吗?
d、这个积表示( )表示它们之间的数量关系式是( )。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、合作交流(6分)
1、成反比例的量应具备什么条件?
2、数学书第48页的做一做,学生独立完成,集体订正。
四、质疑探究(4分)
举出生活中反比例关系的例子
五、小结检测(4分)。
1、说说反比例的意义,如何判断两种量是否成反比例。
2、检测
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的'速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
3、第51页8题
4、第51页9题
六、堂清 (6分)
p51练习九第10、11、12题。
板书设计:
成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母表示: x×y=k(一定)
《反比例》教学设计15篇[热门]
在教学工作者开展教学活动前,常常需要准备教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家整理的《反比例》教学设计,仅供参考,大家一起来看看吧。
《反比例》教学设计 篇11
[教学目标]
1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.
2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.
[教学过程]
1.回顾、梳理本章的知识:
如同已经学过的有关方程、函数的内容一样,本章内容分为3块:
(1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;
(2)数学研究:反比例函数的图象与性质;
(3)用数学解决问题:反比例函数的应用.
2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:
(1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;
(2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;
(3)形数结合——函数的.图象与性质的综合应用
2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△x
POD的面积为________
3. 设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.
例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。
(1)写出药物燃烧前、后y与x的函数关系式;
(2)研究表明,当空气中每立方米的含药量低于1。6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?
《反比例》教学设计 篇12
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点:掌握从实际问题中建构反比例函数模型.
教学难点:从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等).
2.学生准备:(1)复习已学过的反比例函数的图象和性质,(2)预习本节课的内容,尝试收集有关本节课的情境资料.
教学过程
一、创设问题情境,引入新课
复习:反比例函数图象有哪些性质?
反比例函数 y?k
x 是由两支曲线组成,
当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;
当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.
二、讲授新课
[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?
(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的.底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系.而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题.
师生行为:
先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动.
在此活动中,教师有重点关注:
①能否从实际问题中抽象出函数模型;
②能否利用函数模型解释实际问题中的现象;
③能否积极主动的阐述自己的见解.
生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=
所以储存室的底面积S是其深度d的反比例函数.
104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S的值和它相d
对应,反过来,知道S的一个值,也可求出d的值.
题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd
即施工队施工时应该向下挖进20米.
生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?
104 根据S=,把d=15代入此式子,得 d
S=104 ≈666.67. 15104. d
当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要. 师:大家完成的很好.当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,
三、巩固练习
1、(基础题)已知某矩形的面积为20cm2:
(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;
(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,
求其长为多少?
(3)如果要求矩形的长不小于8cm,其宽至多要多少?
2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.
(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?
(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?
设计意图:
让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望.
师生行为:
由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题.
生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米.
13000 所以,S·d=1000, S= . 3d
(2)根据题意把S=100cm2代入S=30003000中,得 100= .d=30(cm). dd
所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.
3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.
(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?
(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?
四、小结
1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。
2、利用反比例函数解决实际问题的关键:建立反比例函数模型.
五、布置作业
P54—55.第2题、第5题
六、课时小结
本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想.
《反比例》教学设计 篇13
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:
理解和领会反比例函数的概念.
教学难点:
领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的`表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
《反比例》教学设计 篇14
教学目标:
1、知识与能力目标:
(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
教学重点和难点
重点:进一步掌握反比例函数的概念、图像、性质并正确运用。
难点:反比例函数性质的灵活运用。数形结合思想的应用。
教学方法:
探究——讨论——交流——总结
教学媒体:
多媒体课件。
教学过程:
一、知识梳理:
同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?
课件展示:
1、反比例函数的意义
2、反比例函数的`图象与性质
3、利用反比例函数解决实际问题
二、合作交流、解读探究
(一)与反比例函数的意义有关的问题
课件展示:
忆一忆:什么是反比例函数?
要求学生说出反比例函数的意义及其等价形式
巩固练习:课件展示:
1、下列函数中,哪些是反比例函数?
(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4
2、写出下列问题中的函数关系式,并指出它们是什么函数?
⑴当路程s一定时,时间t与平均速度v之间的关系。
⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。
3、若y=为反比例函数,则m=______
4、若y=(m-1)为反比例函数,则m=______ 。
(二)运用反比例函数的图象与性质解决问题
1、反比例函数的图象是
2、图象性质见下表(课件展示):
3、做一做(课件展示)
(1)函数y=的图象在第______象限,当x<0时,y随x的增大而______ 。
(2)双曲线y=经过点(-3,______)。
(3)函数y=的图象在二、四象限内,m的取值范围是______ 。
(4)若双曲线经过点(-3,2),则其解析式是______.
(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。
(三)综合运用(课件展示)
一次函数的图像y=ax+b与反比例函数y=交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围
三、随堂练习
见课件
四、小结
1、反比例函数的意义
2、反比例函数的图象与性质
五、作业:
配套练习22页21、22题
《反比例》教学设计 篇15
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:描点画出反比例函数的图象
教学用具:直尺
教学方法:小组合作、探究式
教学过程:
1、从实际引出反比例函数的概念
我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例
即vt=S(S是常数);
当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(S是常数)
(S是常数)
一般地,函数 (k是常数, )叫做反比例函数.
如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数 与 的图象
解:列表
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的.时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)
(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数 的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.
同样可以推出 的图象的性质.
(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.
函数 的图象性质的讨论与次类似.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4
《反比例》教学设计 篇16
一、教学内容
人教版六年制第十二册第42~43页的内容。
二、教学目标
(一)经历探索两种相关联的量的'变化过程,发现规律,理解反比例的意义。
(二)根据反比例的意义,正确判断两种量是否成反比例。
(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
三、教学难点
正确判断两种相关联的量是否成反比例。
四、教学过程
(一)情境导入
1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)
2.学生对上述问题发表意见。
3.师:今天,我们就来研究这种类型的问题。
[设计意图:选取学生身边的生活实例引入新课,吸引学生的注意力,激发学生的探究欲。同时为新知的学习埋下伏笔,营造了一种轻松活泼的学习氛围。]
(二)探索新知
《反比例》教学设计 篇17
教学内容:
九年义务教育六年制小学数学第十二册P69——70
教学目标:
1、使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断成正、反比例的关系。
2、进一步提高学生的分析、比较、抽象、概括等能力。
3、进一步感知数学与生活的联系。
教学重点:
弄清正比例和反比例的量的意义
教学难点:
找生活中成正、反比例量的实例
设计理念:
课堂教学中引导学生回忆正、反比例意义,从学生的`已有的生活经验出发,观察、比较、分析,从而在生活中寻找、发现成正、反比例量的实例,弄清正比例、反比例量的意义及其之间的联系与区别,进一步感知数学与生活的联系。
教学步骤教师活动学生活动
一、揭示课题
回顾整理1、师:前几节课,我们学习了什么内容?这节课,我们练习正比例和反比例的有关知识。(板书课题)
2、回忆正、反比例意义。
提问:什么叫做正比例关系,什么叫做反比例关系?用字母的式子怎样表示正、反比例的关系?
学生口答,相互补充
二、比较分析
区分特征1、出示练习十三第9题
观察两张表格并思考回答书中第69页的问题。(表略)
2、全班交流
3、引导比较、总结正、反比例的特点(根据学生回答,板书)
4、讨论:判断两种相关联的量成不成正比例或者反比例关系的关键是什么?
学生观察、思考
小组讨论、交流
相互补充与完善
讨论、交流
三、巩固练习
感知应用
1、出示练习十三第11题
先填一填、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
2、练习十三第10题
看图填表。
根据题中的图像,你能说出这幅地图的比例尺是多少吗?图上距离和实际距离成什么比例?为什么?
在这幅地图上,量得甲、乙两地的图上距离是12厘米,两地的实际距离是多少米?你是怎样想的?
3、练习十三第12题
先独立判断,再交流判断理由
4、A、B、C三种量的关系是:A×B=C。
如果A一定,那么B和C成()比例
如果B一定,那么A和C成()比例
如果C一定,那么A和B成()比例
5、判断
(1)两种相关联的量,不成正比例就成反比例。
()
(2)在一定的距离内,车轮周长和它转动的圈数成反比例。
()
(3)X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。
()
6、练习十三第13题
找出生活中成正比例和成反比例的量的实例,用表格表示出来。
小组讨论完成表格
说说是怎样想的?
7、思考:如果X和Y成正比例,当X=16时,Y=0.8,,如果X=10时,Y是多少?
独立完成,集体评讲
填一填,议一议
判断、讨论
独立思考
大组交流
判断并说明理由
小组讨论完成表格
四、总结评价
质疑反思
通过这节课的练习,你进一步认识和掌握了哪些知识?还有哪些疑问?你能在生活中找到一些成正比例和成反比例的量的实例,介绍给爸爸、妈妈吗?
《反比例》教学设计 篇18
一、教学内容:
反比例。(教材第47页例2)。
二、教学目标:
1、使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2、让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
三、重点难点:
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
四、教学准备:
投影仪。
五、教学过程:
(一)复习导入
1、让学生说说什么是正比例,然后用投影出示下面的题。下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2、说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
(二)目标解读:
1、学生认真度学习目标。
2、理解目标。
(三)自主预习:
理解:哪两种量叫做成反比例的量?什么是反比例关系?请举例说明。
(四)检查预习。
(五)合作探究
活动一:
1、学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
2、发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)即:30×10=20×15=15×20=?=300
3、高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
活动二:
1、归纳反比例的意义。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
2、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
3、生活中还有哪些成反比例的量?学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
活动三:
1、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
2、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。课堂作业
1、教材第48页的“做一做”。
2、教材第51页第9、10题。课堂小结
说一说成反比例关系的量的变化特征。
(六)当堂检测:
1、完成练习册中本课时的练习。
2、教材51~52页第8、14题。
(七)总结归纳:
反比例
两种相关联的量
变化
xy=k(一定)
积一定
学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)
教师板书配合说明这一规律: 30×10=20×15=15×20=?=300 教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2、归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
4、师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。
6、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
课堂作业
1、教材第48页的“做一做”。
2、教材第51页第9、10题。
课堂小结
说一说成反比例关系的.量的变化特征。
课后作业
1、完成练习册中本课时的练习。
2、教材51~52页第8、14题。
反比例教学反思
(六年级)今天用《反比例的意义》作为校内的研究课,这节课是上周六临时决定的,本来是要用复习单元《量的计量》来上的,但是担心毕业班后面的时间会很紧,所以临时决定提前。不过,我想不管什么的课,只要教师的素质高,一样能上出精彩,不能因为内容好上而选来作为公开课,相反,越是难上的课就越要拿出来研究研究,因为研究课就是供大家来讨论研究的,这样,以后上到同样的内容时就不会不知所措了,再者,越是难上才越能体现功底,并且这样的课上过之后,其他内容的课就会显得不是很难了,因为在信心上占有了优势。
周六决定了这节课后,我便整理了一份草案请师傅过目,在和师傅及其他几位老师研究过后,大家的意见是:这节课的内容比较多,要上好不容易,以往上到这个内容时是最麻烦的,因为这个内容十分抽象,所以,这节课的容量不宜太大。我虽然没有教过六年级,但是看过教材之后,也觉得这部分内容容量比较大,其实也不能说是容量大,就是比较抽象,如果学生学不好、说不出来其中的道理,就比较麻烦,就会影响到这节课能否上完。所以,在修改教案时,我十分注意容量问题,能精简的精简,尽量不在碎小的地方拌足。下面是我设计的思路。
首先简单回顾正比例的概念知识,然后给出单价、总价、数量,问:怎样组合才能符合正比例的要求?接着小结:“既然有正比例,那就有…”(学生说:反比例)引出课题《反比例》,引出课题后,我让学生先根据正比例的意义猜一猜什么是反比例,或者说,你认为什么是反比例。通过猜想,先初步的感知反比例,不管学生猜的对与错,最起码调动了学生的积极性和质疑心理,为后面的学习先奠定一定的基础。因为,后面我们要通过学习来验证猜想的对不对,通过验证后,之前猜对的学生在情感体验上就会得到满足,同时也培养了估计的能力,这也符合《课程标准》培养估计能力和推理的要求。在初步的猜想之后,用了一段小动画来直观的经历、感受反比例的建构过程(这个动画我做错了,后来经大家的提醒,我把这个动画作了修改),这个动画是这样的:有一堆黄沙,先用载重量大一些的货车运,然后换成载重量小一些的货车运,接着再换一辆载重量还要小的货车运,并提问:从动画中能想到什么?让学生知道,每次运的越少,运的次数就越多,每次运的越多,运的次数就越少,初步经历、感受反比例的建构过程。有了这样的一个基础,接下来出示例4和例5并按要求回答,然后把例4和例5放在一起比较,寻找这两道例题的共同点:都有两种相关联的量、都是一种量随着另一种量的变化而变化、两种量里对应数值的乘积一定。找出共同点之后,分步出示反比例的意义,然后用反比例的意义在回去解释例4,接着要求学生用这一知识解释例5,然后学会用字母x、y和k来表示它们之间的关系,接着实际运用,做练一练第1题和练习八的第4题,到这里我都是教要用一句话来判断两个量是否成反比例的,接下来出示例6,跟学生说明,我们也可以列数量关系式来判断,如果要列数量关系式判断的话,它们的乘积就要一定。至此,课的内容已经基本上完,后面就做了两组相关的练习,一组是判断两种量是否成反比例,其中有一题不成比例,有一题成正比例,有两题成反比例,另外一组题目是先把数量关系式填写完整,然后根据数量关系式回答问题。
最后总结本课内容,总结时,学生提到了和正比例的区别的联系,这是我备课时所没有想到的,而正好时间又多(因为担心不能上完,所以一直赶着上的),我就顺着学生的思路,要大家比较它们之间的区别和联系,由于前面学的比较好,学生很清楚地找出了它们之间的区别和联系,其中有个学生说到了它们之间的联系时是这样说的:它们相同点都是一种量随着另一种量的变化而变化,但是如果要讲具体怎么变化的就有区别了。为学生的精彩回答而感到高兴,看来他们今天学的比较好。同时,我也暗自为自己庆幸,不是庆幸上的好,而是庆幸课的内容按预计的上完了,也改掉了一直伴随我的老毛病——课堂上罗罗嗦嗦。下午教研活动时大家发表了意见,其中那个动画大家讲的最多,我也知道动画做错了,所以已经做了修改,另外大家提的比较多的是后面的总结,大家认为这节课没有必要进行正比例和反比例的比较,这节课的内容就是理解反比例的意义,但是我却不这样想,首先这部分内容不是我的预设生成,而是非预设生成,学生能想到为什么不趁热打铁比较一下呢?虽然这部分内容是下节课要专门讲的,在这里为什么不可提一提?学生能掌握不是更好吗?所以,在修改教案时,我决定把这个环节添上去。另外大家还认为这节课光练习说了,没有什么写的练习,光会说,那作业怎么写?没有经历写的练习,学生会吗?我想,这的确是有必要的,所以,在修改教案时也增添了进去。这样一来,这节课的内容满满当当,不多不少了。
《反比例》教学设计 篇19
教学目标
(一)教学知识点
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力。
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题,理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识,初步认识数学与人类生活的.密切联系及对人类历史发展的作用。
教学重点:用反比例函数的知识解决实际问题。
教学难点:如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题。
教学方法:教师引导学生探索法。
教具准备:投影片四张
第一张:(记作5.3A)
第二张:(记作5.3B)
第三张:(记作5.3C)
第四张:(记作5.3D)
教学过程
Ⅰ、创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
一、新授:
1、实例1:(1)用含S的代数式表示P,P是 S的反比例函数吗?为什么?
答:P=600s (s0),P 是S的反比例函数。
(2)当木板面积为0.2 m2时,压强是多少?
答:P=3000Pa
(3)如果要求压强不超过6000Pa,木板的面积至少要多少?
答:至少0。lm2、
(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R之间的函数关系如图5—8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压U=36V , I=60k
2、完成下表,并回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
R() 3 4 5 6 7 8 9 10
I(A )
3、如图5—9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )
(1)分别写出这两个函数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;
《反比例》教学设计 篇20
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:
理解和领会反比例函数的概念.
教学难点:
领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的'函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
《反比例》教学设计 篇21
教学目标:
1、学生能通过表和图读出其中反映的数学信息。通过具体丰富的实例结合图,感知两个成反比例量满足的条件。
3、能根据反比例的意义,判断两个相关的量是不是成反比例。
教学重点:
理解反比例的意义。
教学难点:
正确判断两种量是否成反比例。
教学用具:
电脑课件
教学过程:
一、创设情境,复习引入
填空
()*()=路程
()*()=总价
每杯果汁质量○杯数=果汁总质量
底面积○高=圆柱体积
师:在前几节课里我们已经学过两个量之间可以成正比例的关系,现在就请你判断判断下面的情况。
师小结:判断两个量是否成正比例首先要一个量在增加,另一个量也在增加一个量减少另一个量也在减少而且这两个量的比值要相同。我们就说这两个量成正比例。
二、探究新知。
师:我们已经学习了正比例,同学们来猜猜我们今天可能要学习什么新知识呢?(生答:反比例)
课件出示:反比例(师同时板书:反比例)
师:同学们说得很好,我们今天就一起来研究什么是反比例。
1、加法表
出示:加法表
师:请同学们观察这个表,你能看懂这个表吗?把你看到的说给大家听听。(如果生不能回答,师可以问得更细:这个表横着的这一行数是什么?竖着的这一列数是什么?中间的这些数呢?)(指定两个数提问)
师:这里的18是哪两个加数的和?23呢?(生回答)演示:
1、(1)在加法表上,把和是12的方格圈起来
师:和是12时,哪个量随着哪个量的变化而变化?是怎么变化的? 演示圈和是12
师:请同学们认真观察说说把这些和是12的圈依次用线连接起来成为一个什么图形?
出示:生回答的同时出示:可连成一条直线。
师:这条直线表示的是什么和什么之间的关系?(生回答:加数与加数之间的关系)
2、乘法表
出示:乘法表
师:这是什么表?(生回答)
师:你会看这个表吗?把你看到地说一说。(请生回答)108在这里表示什么意思?
演示:
(2)在乘法表上,把积是12的方格圈起来
演示圈积是12
师:积是12时,哪个量随着哪个量的变化而变化?怎么变化的?
师:把这些积是12的连起来可以成一个什么样的图形?
出示一条曲线,生回答后出现字幕。
师:这条曲线图表示的是什么与什么之间的关系?
师总结:现在我们回过头来对比一下两个表:
3、第一个加法表中的这条直线图表示和怎么样?(和一定)什么与什么的关系?(加数和加数的'关系)
4、第二个乘法表中的这条曲线图表示积怎么样?(积一定)什么与什么的关系?(乘数与乘数的关系)
出示:思考:第(1)和第(2)中的两个变化关系相同吗?
师:观察这两个图,你觉得他们的变化关系相同吗?你是从哪里看出来的?(只需要学生回答到不相同就行。如果有孩子回答相同,师追问:哪儿相同?哪儿不同?)
5、探究例2。
师:春天来了,王叔叔打算去爬爬青城山,他有3种不同的交通工具可以选择。
出示三种交通工具图。
师:分别是哪三种交通工具?
出示:王叔叔要去游青城山。不同的交通工具所需时间如下,请把下表填完整。(及表格)
师:你能看懂这个表吗?表中出现了哪几个量?上面这一排数表示的是?下面这一排数呢?(请生回答)现在请同学们在书上独自完成表格。(生独自完成)
师:请你汇报答案,并说说你是怎么计算的。(生汇报)
师:现在我们把这个表制成图来看看。
出示:师:从图中你发现了什么?(生思考后说他发现的)
(生的回答需要说到:
1、一个量随着另一个量的变化而变化。
2、是怎么变化的?
3、在变化过程中什么不变?)
师:我们把刚才同学们发现的做一下总结。
出示:路程不变,速度快的交通工具所需的时间少,速度慢的交通工具所需的时间多,而且速度和时间的积一定。(生齐读)
6、究例3
师:王叔叔去青城山,怕口渴他带了600毫升的果汁打算把这些果汁和他的朋友们一起分享。
出示:
3、有600毫升果汁,可平均分成若干杯。请把下表填完整。
师:完成的同学请汇报答案。(请生汇报,师出示正确答案)
师:现在我们把这个表也制成图来看看。
师:从图中你发现了什么?请与同桌说一说。(生讨论)
师:说一说你的讨论结果。(只要正确的就给予肯定)
师:你们能像刚才的练习二那样完整的总结吗?(生总结,教师给予补充,多请几位学生汇报)
出示:果汁总量不变,分的杯数在增加,每杯的果汁量在减少,而且分的杯数和每杯果汁量的积一定。(生齐读)
师:我们回顾一下刚才我们绘出的4幅图,如果让你来把它们分分类,你会怎么分?为什么?
出示:四幅图(生回答他的分法)
师:同学们把这三幅图分为一类,那我们来看看这三幅图。
出示成反比例的三幅图。
师:刚才我们总结出来了从这三幅图中观察到的变化关系。出示:一个乘数增加,另一个乘数减小;一个乘数减小,另一个乘数增加,而且两个乘数的积一定。
路程不变,速度快的交通工具所需的时间少,速度慢的交通工具所需的时间多,而且速度和时间的积一定。
果汁总量不变,分的杯数在增加,每杯的果汁量在减少,而且分的杯数和每杯果汁量的积一定。
师和学生一起读后教师总结:我们就说,这两个乘数成反比例。我们就说,速度和时间成反比例。
我们就说,分的杯数和每杯的果汁量成反比例。
师:我们已经看了三个成反比例的例子,谁来总结一下什么情况下成反比例呢?(生回答到哪一点师就在黑板上出示哪一点)最后完成板书。
板书出示:一个量增加,另一个量在减少;一个量在减少,另一个量在增加,而且两个量的乘积一定。
师:实际上我们还可以用式子来表示反比例的关系。比如在乘法表中我们可以用一个乘数*另一个乘数=积(一定)速度*时间=路程(一定),分的杯数*每杯果汁量=果汁总量(一定)
如果我们用字母x和y表示两种相互关联的量,用k表示他们的积,反比例就可以用一个概括式来表示:
师:请你在你的听算本上写出。(让学生在听算本上写出他的反比例表达式)(请几位生叙述)
出示:xy=k(一定)
三、巩固应用,内化提高
1、练习“练一练”1题
课件出示“练一练”1题
师引导:已知什么?题目要求回答什么?
师:请同学们独自填空,并思考后面的问题。(生独立完成后汇报答案及问题,回答时要求完整,可多由一些学生回答)
2、补充练习:判断下面每题中的两种量是不是成反比例,并说明理由
(4)平行四边形的面积一定,它的底和高。
(5)被减数一定,差和减数。
3、课后思考题
课件出示:课后思考并和同学说一说:下面各题中的两个量是否成反比例,请你说明理由。
1、五一班人数一定,每组的人数和组数。
2、被除数一定,除数和商。
3、一条绳子的长度一定,剪去的部分和剩下的部分
四,回顾整理,反思提升
这节课有哪些收获?
《反比例》教学设计 篇22
本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。
教学课题:《反比例》
教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。
知识与技能:
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。过程与方法:
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
情感、态度与价值观:
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,体会比例尺的实际意义,学会解决生活中的一些实际问题。教学法
教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲
解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法
进行学习,必要时进行合作交流。
一课时
老师为了考考大家,给同学们出个脑筋急转弯:一只蚂蚁不到20秒钟从西安爬到了北京,你知道为什么吗?
生思考回答:在地图上。
师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识?
生:图形的放缩。
师:同学们说得真好,如果要给我们的教室画一张平面图,它应该是什么形状的?你会画吗?
生:长方形。
师:那我们来估一估它的长和宽吧!
(生:长大约9米,宽大约6米。)
师:请大家在练习本上画出教室的平面图。(生画师巡视)
学生动手操作,反馈。
师:同样画的都是我们的.教室,却不一样大,大家赞成谁的画法(故意)?为什么?
生:可以利用前面所学的知识——图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
师:你的想法很对,跟笑笑同学的想法一样。
师板书学生结果:逐步引出1:100
1、学生汇报。
2、学生讨论:
学生:图上1厘米长的线段表示实际100厘米。
3、引出课题。
教师:这就是今天要学习的新知识——比例尺(板书课题)
1、介绍各种比例尺的名称。
师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。
2、认识比例尺的意义。
师:比例尺1:500是什么意思?
生1:就是图上1厘米的长度代表现实中的500厘米。
生2:实际距离是图上距离的500倍。
1生3:图上距离是实际距离的。500
师:比例尺1:2200000是什么意思?
生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。
师:同学们讲得都对,那到底什么是比例尺?
学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际
距离的比。
小结比例尺的特点及应注意的问题.
1、练习1、求比例尺在一幅地图上,用20cm的线段表示实际距离10千米。求图上距离和实际距离的比?
学生独立做,集体反馈。
练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米?0204060千米。
练习3、4略
2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?
指导学生在画的长是9厘米、宽是6厘米的图上加上"比例尺1:100"。在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。
3、再次认识比例尺
出示一个手表的零件,这些零件如果要你画出来,你觉得有什么困难。你有什么办法吗?
求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。
比例尺把实际距离缩小一定的倍数如1:30000000
把实际距离扩大一定的倍数如200:1
引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?
补充板书:
把实际距离按原来的大小画出来,比例尺就是1:1
通过本节课的学习,你有哪些收获?
请大家把书翻到30页,量一量平面图中笑笑卧室的长是___厘米,宽是___厘米。算一算笑笑卧室实际的长是___米,宽是___米,面积是___平方米。
《反比例》教学设计 篇23
《反比例》教学设计15篇
作为一名优秀的教育工作者,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写呢?以下是小编为大家整理的《反比例》教学设计,仅供参考,希望能够帮助到大家。
《反比例》教学设计 篇24
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:
20支铅笔、一个笔筒;相关课件;学生分小组(每组各一份观察记录单及讨论表格)
讨论填表 观察记录单
教学过程:
一、情境导入 揭示内容
1、课前谈话:同学们,有谁去过北京?你知道南昌到北京需要多长时间吗?我们来看一组信息:(媒体显示:1、火车图片及火车启动的声音,2、文字信息是:两年前,小红乘坐由南昌开往北京西的T168次列车,需要花19时11分到达,现在火车提速了,小红再次乘坐这趟列车,还需这么多时间吗?为什么?)
2、学生对上述问题发表意见。
3、教师揭示:下面,我们就带着这个问题进行今天的学习。
[反比例的量与日常生活中常见的数量关系联系得非常紧密,利用身边的例子引出学习内容,使学生深刻感受到数学就在我们身边,我们身边处处有数学,也能体会到数学知识能够解决实际问题,学到有价值的数学。]
二、小组协作 概括意义
(一) 活动一:(例4)
1、 教师出示一个笔筒,里面装着许多笔,请同学们仔细观察,记录老师每次拿笔的支数和拿的次数。
教师操作:每次拿10支 拿了2次;
每次拿5支, 拿了4次;
2、学生进行小组活动,观察后,以小组为单位,填写观察记录单。
3、 如果每次拿的支数分别是4、2、1时,你们能推算出相对应的拿的次数吗?(继续讨论填表)
4、 学生汇报观察记录单的填写结果。并且说一说你是怎样知道相对应的拿的次数?
5、 引导观察:在填、拿的过程中,你发现什么变了?怎样变的?什么没变?
6、 让学生说出几组相对应的乘积。
7、 小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
[数学教学是数学活动的教学,将学生熟悉的事情或操作性强的事例作为学生学习的内容,学生感觉亲切、贴近生活,易于理解,在观察中思考,在操作中体验,学生学得主动、学得积极,在填一填、拿一拿、猜一猜的活动中,自然而然地体会
了反比例的变化规律,为抽象概括反比例的意义奠定基础。]
(二) 活动二:(例5)
1、 教师谈话:与五(3)班的同学合作,老师感觉棒极了。下面我们来轻松轻松,参观一下邮政路小学的操场,看看他们在干些什么?(出示同学们在操场上做操的情景图)
2、 师:我们学校将举行“雏鹰起飞”广播操表演,需要挑选24名同学参加,请大家讨论一下,应该怎样站队,可以使每一行站的人数同样多。
3、 学生小组讨论,共同完成讨论表。
4、 学生小组汇报站队情况,电脑演示站队结果。(先演示每行站的人数,再出示站的行数;同时电脑上填出相对应的表格数据。)
5、 教师引导学生观察所填的表格,说一说,你又发现了什么?
6、 小结:在站队的过程中,每行站的人数变化了,站的行数也随着变化,但每行站的人数和站的行数的积即总人数总是一定的。
[利用信息技术这个平台,将学习内容形象再现,学生经过讨论,再通过电脑媒
体直观地看到24人站队的具体情况,深刻感受到站队的总人数不变,每队站的人数变化了,站的行数也随着变化。]
(三) 比较概括 巩固应用
1、 让学生比较两张表,说一说它们有什么共同的地方?
使学生明确:表中的两种量都是一种量变化,另一种量也随着变化,像这样的两种量成它为两种相关联的量;它们的变化规律是:两种量中相对应的两个数的乘积总是一定的。
2、 揭示反比例的意义(阅读课本,明确反比例关系)
3、 如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?
4、 完成第59页的“做一做”。
5、 表中的两种相关联的量,容易看出其变化规律,如果不给出表中的数据,让你直接判断两种相关联的量是否成反比例,你行吗?
6、 自己解决第59页的例题6,重点地说一说:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?
7、 小结:虽然已经播种的公顷数和剩下的公顷数是两种相关联的量,但是它们的乘积是不一定的,所以不成反比例。
三、强化练习 发展提高
1、 先想一想,再在小组内说一说:
(1
(2
(3
和 的积总是一定的;
所以, 和 是成反比例的量。
2、 判断下面每题中的两种量是不是成反比例的,为什么?
(1)植树的总棵数一定,每人植树的.棵数与人数。 ( )
(2)李叔叔从家到工厂,骑自行车的速度和所需的时间。 ( )
(3)华荣做12道数学题,做完的题和没有做的题。 ( )
(4)长方形的面积一定,它的长和宽。 ( )
(5) 小林拿一些钱买练习本,单价和购买的数量。 ( )
3、 机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获? 还有什么遗憾?
五、板书设计:
本节课有以下几个特点:
1、很好的抓住了学生的兴奋点,教师遵循学生的年龄特点和认知规律,将教材中的例题进行再创造,改成了学生熟悉的事例,设计精心,形式新颖,情境意识强,问题导向明确。从学生的实际出发,由实际生活引入,使学生感受数学就在身边。
2、教学过程中,教师为学生创造了轻松、民主的课堂氛围。教师与学生一道沉浸在数学活动中,从操作、观察、讨论、填表、比较、分析、概括等一系列循序渐进的活动里,逐步抽象出反比例的意义,在这个学习过程中,学生能够畅所欲言,主动学习。
3、充分利用电教媒体,新课的导入、活动的进行、习题的出示均由电脑显示,充分刺激学生的多种感官,调动了学生学习的积极性、加大了课堂教学的密度,提高了课堂教学的效率。
本节课很好的实现了教学目标,学生经历了操作、思考、讨论、比较等一系列活动,充分明确了反比例的意义,并能够正确地判断两种量是否是成反比例的量;在整个学习过程中,学生表现出的情感是积极的、向上的,每位学生都愿参与到学习活动中来,能与同伴很好交流、合作,体现出一丝不苟的学习态度和实事求是的学习精神。但其中有一道题学生的争议很大,即总路程一定时,已行路程和剩下的路程。全班还有许多同学认为是成反比例的量,这些同学忽略了两种相关联的量一定要乘积一定的时候,这两种量才是成反比例的量。这也暴露了学生在解决问题中思考的过程还不够灵活和全面。今后的教学过程中要加强对学生思维深刻性和全面性的培养。
《反比例》教学设计 篇25
教学内容:
苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。
教材学情分析:
《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。
“练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的`这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。
教学目标:
⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:进一步理解比和比例的一些知识。
教学难点:感受比的应用价值,在活动中获得一些新的认识。
教学具准备:
教学流程:
一、自主学习,完成练习。
⑴揭示课题。
教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。
⑵自主练习。
教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。
学生自主练习,教师巡视。
二、交流讨论,梳理知识。
⑴整理比的知识。
交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。
⑵感受生活中的比例。
交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。
⑶整理比例的知识。
交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。
⑷整理解比例的知识。
交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。
⑸解决实际问题。
交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。
⑹谈谈本节课的收获。
《反比例》教学设计 篇26
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的.关系叫做反比例关系。
3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4.师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6.你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:50 100 12
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1.完成练习册中本课时的练习。
2.教材51~52页第8、14题。
答案:
2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑马跑得快。
第3课时 反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
《反比例》教学设计 篇27
一、教学内容
人教版六年制第十二册第42~43页的内容。
二、教学目标
(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。
(二)根据反比例的意义,正确判断两种量是否成反比例。
(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
三、教学难点
正确判断两种相关联的`量是否成反比例。
四、教学过程
(一)情境导入
1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)
2.学生对上述问题发表意见。
3.师:今天,我们就来研究这种类型的问题。
[设计意图:选取学生身边的生活实例引入新课,吸引学生的注意力,激发学生的探究欲。同时为新知的学习埋下伏笔,营造了一种轻松活泼的学习氛围。]
(二)探索新知
《反比例》教学设计 篇28
教学目标:
通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。
教学过程:
一复习
判断下面每题中的两种量是成正比例还是成反比例?
1.速度一定,路程和时间。
2.正方形的边长和它的面积。
3.生产总时间一定,生产一个零件所用时间和零件总数。
4.中国儿童报的订数和钱数。
二引导练习
这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。
板书课题:正、反比例的比较
出示表格。
表一:
路程/千米4080160200320
时间/时12458
表二
速度/每时行多少千米12090604030
时间/时346912
1.说一说。
提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?
2.想一想:路程、速度和时间这三个量中每两个量之间有什么样的.比例关系?
师板书:速度时间=路程
师:当速度一定时,路程和时间成什么比例关系?
当路程一定时,速度和时间成什么比例关系?
当时间一定时,路程和速度成什么比例关系?
3.比较正比例和反比例关系。
通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?
学生同桌或前后桌讨论,教师提问并板书如下:
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例:两种量中相对应的两个数的积一定。关系式XY=K(一定)
4.小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?
《反比例》教学设计 篇29
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生运用正、反比例的意义正确解答应用题。
3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。
教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。
教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路
教学准备:课件
教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象
1、判断下面每题中的两种量成什么比例关系?
○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )
○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间
○5全校学生做操,每行站的人数和站的行数
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。
指名学生口答,老师板书。
二、创设情境,探究新知
从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)
1、教学例1
(1)出示例1(课件演示)让学生读题
一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
师:你用什么方法解答,给大家介绍一下如何?(自由回答)
(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)
学生解答如下几种:
解法一:140÷2×5=70×5=350千米
解法二:140×(5÷2)=140×2.5=350千米
如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:
A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?
B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)
C它们有什么关系?(行驶的路程和时间成正比例关系)
D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。
教师板书:速度一定,路程和时间成正比例。
师追问:两次行驶的路程和时间的什么相等(比值相等)
解法三:(用比例方法,怎样列式)
解:设甲乙两地间的总路长X千米
140 X 或 140:2=X:5
2 5 2X=140×5
X=350
答:甲乙两地之间公路长350千米。
小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。
2、怎样检验这道题做得是否正确呢?
3、变式练习改编题
出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?
4、教学例2(课件演示)
(1)出示例2,学生读题
例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?
提问:
(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
学生利用以前的方法解答。
70×5÷4=350÷4=87.5(千米)
(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)
这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。
指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的`乘积相等,列式。
(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程
4X=70×5 X=70×5/4 X=87.5
答:每小时行驶87.5千米。
师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?
B)题中哪一种是固定不变的?从哪里看出来?
C)它们有什么关系?
D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。
(5)变式练习(改编题)
出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
解:设需要x小时到达
87.5x=70×5 x=4
答:需要4小时到达。
三、归纳总结,揭示意义
想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)
四、巩固练习,考考自己(课件演示)
请你们按照刚才学习例题的方法去分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。
3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?
(2)王师傅4小时生产了200个零件,照这样计算 ?
4、四选一,每题只能选一次
(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)
a.150×30=1200x b.30:150=1200:x
c.150x=30×1200 d.150:30=1200:x
(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)
a.60×8=3x b.60:8=3:x
c.60×8=(8-3)x d.3:x=8:60
(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)
a.5×40=480x b.5:40=x:480
c.40x=5×480 d.40:5=x:480
(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)
a.24×5=6x b.24:5=6:x
c.(24+6)x=24×5 d.(24+6):x=24:5
(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)
a.3×75%=2x b.75%:3=2:x
c.75%x=2×3 d.3:75%=2:x
五、分层练习,深化新知
○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x
○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?
12×30=(12+6)×X
○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?
120×28=(120+20)×X
六、全课总结,温故知新
解比例应用题的一般步骤是什么?(学生自己用语言叙述)
一般方法和步骤:
1、判断题目中两种相关联的量是成正比例还是反比例;
2、设未知量为x,注意写明计量单位;
3、列出比例式,并解比例式;
4、检查后写出答案;
5、特别注意所得答案是否符合实际。
七、课后反馈,挑战难题
小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:
“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”
小明需要你的帮助,你会怎样编题?
《反比例》教学设计 篇30
一、教学内容:
《反比例的意义》是六年制小学数学(人教版)下册的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
二、学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
三、设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
四、教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力。
3.培养学生热爱数学的激情。
五、教学重难点:
教学重点:理解反比例的意义。教学难点:能正确判断成反比例的量。
六、教学流程:
(一)、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)师:从字面上看“反比例”与“正比例”会是怎样的关系?生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
设计意图:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
(二)、提供材料,组织研究1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。生3:我认为第一个同学的`说法不准确,应该换成“增加”和“减小”
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)师:表2和表3中两个量的变化规律有哪些共性?(生答略。)师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)师:如果用字母a和b表示两个相关联的量,用c表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]设计意图:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表
1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)5.学习例6师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
(三)、巩固练习,拓展应用1.基本练习。(略)2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
设计意图:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数
量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
(四)、总结
七、板书设计
反比例关系判断两个量x×y=k(一定)
八、教学反思
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
《反比例》教学设计 篇31
【教材分析】
本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。
【教学目标】
1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;
2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;
3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。
【教学重点】掌握反比例的意义。
【教学难点】有条理地思考、判断成反比例的量。
【教学准备】多媒体课件
【教学过程】
一、联系生活,导入新课
1、同学们,前两节课我们认识了正比例,怎样的两种量成正比例呢?
(结合回答板书:相关联、比值一定、y/x=k)
2、判断下表中的两种量是否成正比例,为什么?
表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。
表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。
表3:不成正比例。数量和单价的比值不是一定的。
二、自主合作,探究发现
1、设疑引入(购买笔记本问题)
(1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。
(2)四人小组合作研究:
1、观察表格中的两个量有什么变化?
2、这种变化有什么规律?
3、这种规律与成正比例的量的规律有什么不同?
(3)全班交流。
1、观察表格中的两个量有什么变化?
单价变化(扩大),数量也随之变化(缩小)
2、这种变化有什么规律?
这两个量的乘积总是一定的.。
板书:单价×数量=总价(一定)
指出:都是用60元购买笔记本
3、这种规律与成正比例的量的规律有什么不同?
①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。
②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。
(4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢?
请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。
(5)交流:学生结合投影说说单价和数量之间的关系。(2到3人)
单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。
这就是我们今天要认识的成反比例的量。(揭示课题)
2、试一试
师:我们继续来学习反比例,请看大屏幕:
(1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们相关联吗?根据已知条件把表格填完整。
然后指名口答,全班校对。
(2)同桌合作讨论(出示要求)
算一算:相对应的两个数的乘积各是多少?
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(3)全班交流。
算一算:相对应的两个数的乘积各是多少?
(乘积都是72)
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
(这个乘积表示一共运的水泥吨数,每天运的吨数×天数=总吨数(一定)板书)
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(略)
3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定)
4、用字母式子表示反比例的意义。
教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?
根据学生回答,教师板书:x×y=k(一定)
三、巩固应用,深化发展
1、完成“练一练”
让学生判断每袋糖果的粒数和装的袋数是否成反比例。
(1)出示题目和要求
(2)把自己的想法和同桌互相说一说
(3)再全班交流、评议。
2、根据情况选择完成练习十三第6题
出示题目,学生独立思考后依次交流3个问题
3、根据情况选择完成练习十三第7题
(1)出示题目
(2)学生独立思考
(3)全班交流、评议。
4、判断下面每题中的两个量,哪些成反比例?
(1)用同样多的钱购买不同的笔记本的单价和数量。
(2)一个人的年龄与体重。
(3)长方形的面积一定,长方形的长与宽。
(4)长方形的周长一定,长方形的长与宽。
(5)X和Y是两种相关联的量。(机动)
X×Y=5 5×X=Y
四、全课总结,拓展延伸
今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。
《反比例》教学设计 篇32
一、教学内容
人教版六年制第十二册第42~43页的内容。
二、教学目标
(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。
(二)根据反比例的意义,正确判断两种量是否成反比例。
(三)渗透函数思想,使学生受到辩证唯物主义观点的.启蒙教育。
三、教学难点
正确判断两种相关联的量是否成反比例。
四、教学过程
(一)情境导入
1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)
2.学生对上述问题发表意见。
3.师:今天,我们就来研究这种类型的问题。
[设计意图:选取学生身边的生活实例引入新课,吸引学生的注意力,激发学生的探究欲。同时为新知的学习埋下伏笔,营造了一种轻松活泼的学习氛围。]
(二)探索新知
《反比例》教学设计 篇33
教学目标
1、知识与技能
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
2、过程与方法
学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。
3、情感态度与价值观
经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。
教学重点
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
教学难点
反比例函数解析式的确定。
教学过程
一、创设情境,导入新课
问题1:(课件展示)
体育课上测试了百米赛跑成绩,那么时间t与平均速度v的关系是怎样的?你能用含有t的代数式表示v吗?
问题2:(课件展示)
我们知道,矩形的面积s与长a宽b之间的关系为S=ab,那么,当S=245时,长a宽b可用怎样的函数关系式表示?
问题3:(课件展示)
下列问题中,变量间的对应关系可用怎样的函数关系式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。
(2)某住宅小区要种植一个面积为1000㎡的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。
(3)已知某市的`总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。
二、观察思考,明晰概念
1、这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?
2、这些函数关系式与正比例函数、一次函数有何不同?
3、这些函数关系式有什么共同的特征?
4、各关系式中两变量之间有什么关系?
5、你能归纳出反比例函数的概念吗?
通过回答以上问题,师生共同总结反比例函数的概念。
三、小组讨论,领悟概念
1、反比例函数关系式中有几个变量?
2、变量之间存在什么关系?
3、反比例函数还有其他形式吗?若有请指出。
4、反比例函数中,变量x、y和常数k有什么具体要求?为什么?
四、内化新知,拓展应用
1、下列函数中哪些是反比例函数?请指出反比例函数中的k值。
2、已知y是x的反比例函数,且当x=2时,y=6。
(1)写出y与x的函数关系式。
(2)求当x=4时,y的值。
3、当x为何值时函数y=x—2a—4是反比例函数?
4、已知函数y= y1+y2,与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。
(1)求y与x的函数关系式。
(2)当x=—2时,求函数y的值。
五、课堂练习
师生共同完成教课书第40页的练习题。
六、课堂小结
1、通过本节课的学习你对反比例函数有怎样的认识?
2、反比例函数与正比例函数的区别有哪些?
七、作业布置
教材中本节习题17.1第1、2、4题。
《反比例》教学设计 篇34
一、教学内容:
反比例。(教材第47页例2)。
二、教学目标:
1、使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2、让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
三、重点难点:
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
四、教学准备:
投影仪。
五、教学过程:
(一)复习导入
1、让学生说说什么是正比例,然后用投影出示下面的题。下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2、说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
(二)目标解读:
1、学生认真度学习目标。
2、理解目标。
(三)自主预习:
理解:哪两种量叫做成反比例的量?什么是反比例关系?请举例说明。
(四)检查预习。
(五)合作探究
活动一:
1、学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
2、发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)即:30×10=20×15=15×20=?=300
3、高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
活动二:
1、归纳反比例的意义。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
2、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
3、生活中还有哪些成反比例的量?学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
活动三:
1、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
2、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。课堂作业
1、教材第48页的'“做一做”。
2、教材第51页第9、10题。课堂小结
说一说成反比例关系的量的变化特征。
(六)当堂检测:
1、完成练习册中本课时的练习。
2、教材51~52页第8、14题。
(七)总结归纳:
反比例
两种相关联的量
变化
xy=k(一定)
积一定
学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)
教师板书配合说明这一规律: 30×10=20×15=15×20=?=300 教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2、归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
4、师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。
6、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
课堂作业
1、教材第48页的“做一做”。
2、教材第51页第9、10题。
课堂小结
说一说成反比例关系的量的变化特征。
课后作业
1、完成练习册中本课时的练习。
2、教材51~52页第8、14题。
反比例教学反思
(六年级)今天用《反比例的意义》作为校内的研究课,这节课是上周六临时决定的,本来是要用复习单元《量的计量》来上的,但是担心毕业班后面的时间会很紧,所以临时决定提前。不过,我想不管什么的课,只要教师的素质高,一样能上出精彩,不能因为内容好上而选来作为公开课,相反,越是难上的课就越要拿出来研究研究,因为研究课就是供大家来讨论研究的,这样,以后上到同样的内容时就不会不知所措了,再者,越是难上才越能体现功底,并且这样的课上过之后,其他内容的课就会显得不是很难了,因为在信心上占有了优势。
周六决定了这节课后,我便整理了一份草案请师傅过目,在和师傅及其他几位老师研究过后,大家的意见是:这节课的内容比较多,要上好不容易,以往上到这个内容时是最麻烦的,因为这个内容十分抽象,所以,这节课的容量不宜太大。我虽然没有教过六年级,但是看过教材之后,也觉得这部分内容容量比较大,其实也不能说是容量大,就是比较抽象,如果学生学不好、说不出来其中的道理,就比较麻烦,就会影响到这节课能否上完。所以,在修改教案时,我十分注意容量问题,能精简的精简,尽量不在碎小的地方拌足。下面是我设计的思路。
首先简单回顾正比例的概念知识,然后给出单价、总价、数量,问:怎样组合才能符合正比例的要求?接着小结:“既然有正比例,那就有…”(学生说:反比例)引出课题《反比例》,引出课题后,我让学生先根据正比例的意义猜一猜什么是反比例,或者说,你认为什么是反比例。通过猜想,先初步的感知反比例,不管学生猜的对与错,最起码调动了学生的积极性和质疑心理,为后面的学习先奠定一定的基础。因为,后面我们要通过学习来验证猜想的对不对,通过验证后,之前猜对的学生在情感体验上就会得到满足,同时也培养了估计的能力,这也符合《课程标准》培养估计能力和推理的要求。在初步的猜想之后,用了一段小动画来直观的经历、感受反比例的建构过程(这个动画我做错了,后来经大家的提醒,我把这个动画作了修改),这个动画是这样的:有一堆黄沙,先用载重量大一些的货车运,然后换成载重量小一些的货车运,接着再换一辆载重量还要小的货车运,并提问:从动画中能想到什么?让学生知道,每次运的越少,运的次数就越多,每次运的越多,运的次数就越少,初步经历、感受反比例的建构过程。有了这样的一个基础,接下来出示例4和例5并按要求回答,然后把例4和例5放在一起比较,寻找这两道例题的共同点:都有两种相关联的量、都是一种量随着另一种量的变化而变化、两种量里对应数值的乘积一定。找出共同点之后,分步出示反比例的意义,然后用反比例的意义在回去解释例4,接着要求学生用这一知识解释例5,然后学会用字母x、y和k来表示它们之间的关系,接着实际运用,做练一练第1题和练习八的第4题,到这里我都是教要用一句话来判断两个量是否成反比例的,接下来出示例6,跟学生说明,我们也可以列数量关系式来判断,如果要列数量关系式判断的话,它们的乘积就要一定。至此,课的内容已经基本上完,后面就做了两组相关的练习,一组是判断两种量是否成反比例,其中有一题不成比例,有一题成正比例,有两题成反比例,另外一组题目是先把数量关系式填写完整,然后根据数量关系式回答问题。
最后总结本课内容,总结时,学生提到了和正比例的区别的联系,这是我备课时所没有想到的,而正好时间又多(因为担心不能上完,所以一直赶着上的),我就顺着学生的思路,要大家比较它们之间的区别和联系,由于前面学的比较好,学生很清楚地找出了它们之间的区别和联系,其中有个学生说到了它们之间的联系时是这样说的:它们相同点都是一种量随着另一种量的变化而变化,但是如果要讲具体怎么变化的就有区别了。为学生的精彩回答而感到高兴,看来他们今天学的比较好。同时,我也暗自为自己庆幸,不是庆幸上的好,而是庆幸课的内容按预计的上完了,也改掉了一直伴随我的老毛病——课堂上罗罗嗦嗦。下午教研活动时大家发表了意见,其中那个动画大家讲的最多,我也知道动画做错了,所以已经做了修改,另外大家提的比较多的是后面的总结,大家认为这节课没有必要进行正比例和反比例的比较,这节课的内容就是理解反比例的意义,但是我却不这样想,首先这部分内容不是我的预设生成,而是非预设生成,学生能想到为什么不趁热打铁比较一下呢?虽然这部分内容是下节课要专门讲的,在这里为什么不可提一提?学生能掌握不是更好吗?所以,在修改教案时,我决定把这个环节添上去。另外大家还认为这节课光练习说了,没有什么写的练习,光会说,那作业怎么写?没有经历写的练习,学生会吗?我想,这的确是有必要的,所以,在修改教案时也增添了进去。这样一来,这节课的内容满满当当,不多不少了。
