加法交换律教案

短文网

2025-12-14教案

短文网整理的加法交换律教案(精选12篇),快来看看吧,希望对您有所帮助。

加法交换律教案 篇1

教学目标

1。使学生理解加法的意义,并会应用解答实际问题。

2。进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性。

3。使学生理解并掌握加法交换律并能运用这一定律进行验算。

教学重点

使学生对加法的意义的建立,加法交换律的概括及对它们的理解、掌握。

教学难点

学生对加法意义、加法交换律运用。

教学步骤

一、铺垫孕伏。

1、口算。

44+56 37+23 180+20 42+8+10

12+0 0+17 386+124 124+235

2、导入:以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助。

二、探究新知。

(一)教学加法的意义。

1、加法的意义。

(1)例1 一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?

教师提问:这题怎样解答?

(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算。)

教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?

(板书:两个数合并成一个数的运算就叫加法)

教师明确:这就叫加法的意义。

(板书:加法的意义)

(2)练习:小强有125枚邮票,小明有75枚邮票。小强和小明一共有多少枚邮票?

说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来。加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2、加法等式中各部分名称。

教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数 加数 和)

3、有关0的加法。

教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有

哪几种情况呢?

小结:任何数和0相加都得原数。

(二)教学加法交换律

1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性。除此之外,关于加法的运算还有一些基本性质,它对我们以后的计算将起到很大的作用。

2、教师提问:137+357=494(千米),表示求的是什么?

如果要求济南到北京的铁路长又该怎样列式计算呢?

357+137=494(千米)

3、引导学生观察,比较两种解法的结果。

教师板书:137+357=357+13

4、出示例2,引导学生归纳规律。

18+17○17+18

124+235○235+124

0+25○25+0

规律:

①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置。

②每个等式中,左右两边的加数的和相等。

教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。

教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变。当然前提是等号两边的两个加数必须相同。

5、练习:判断:下面各等式运用了加法交换律,对吗?为什么?

9+7=7+9 10+1=10+1

20+8=2+26 2+0=0+2

6、用字母表示加法交换律。

教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?

教师强调:用字母表示这一运算定律更简单清楚。如果用字母a和b分别表示两个加数(注意:a、b是拉丁字母),在这我们读作“ei”和“bi”,(教师领读几遍,提醒学生不要按汉语拼音来读)

教师板书:a+b=b+a

提醒注意:a与b可以表示0、1、2、3、……中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变。而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变。a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变。

7、学生分组自由举例说明加法交换律。

8、学习、掌握了加法的`交换律,目的在于更好地运用。实际上,在以前我们早就应用它解决计算问题。同学们想一想:在哪些计算中都用了加法交换律呢?(验算)

9、练习:运用加法交换律,在下面的□里填上适当的数。

766+589=589+□ 257+□=474+257 a+15=15+□

三、巩固发展。

1、填空。

(1)把( )数合并成( )数的运算叫做加法。

(2)一个数加0,还得( )。如12+0=( )。

2、下面各等式哪些符合加法交换律?符合的画“√”。

230+370=380+220 30+50+40=50+30+40

a+10=100+a 230+420=430+220

四、课堂小结。

今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

五、布置作业。

1、根据运算定律在下面的□填上适当的数。

48+□=72+□ 29+35=□+29

a+38=□+□ □+55=55+42

2、口算下面各题,说一说是怎样应用运算定律的。

91+89+11 85+41+15+59

168+250+32 282+53+37+18

六、板书设计

加法的意义和运算定律

例1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?

137+357=494(千米)

357+137=494(千米)

答:北京到济南的铁路长494千米。

意义:把两个数合并成一个数的运算叫做加法。

7+0=7 0+7=7 0+0=0

例2 加法交换律:

137+357=357+137

18+17=17+18

24+235=235+24

加法交换律教案 篇2

加法交换律

教学内容:P17:例1 “做一做” 、练习五:2、3。

教学目标

1、知识与技能:结合具体的情境,引导学生认识和理解加法交换含义。

2、过程与方法:能用字母式子表示加法交换律,初步学会应用加法交换律进行一些简便运算。

3、情感态度与价值观:体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。培养学生观察,比较,抽象,概括的初步思维能力。

教学重点:认识和理解加法交换律含义。

教学难点:引导学生抽象概括加法交换律。

教具学具:多媒体课件

教学过程

一、创设情境

1.引入谈话。

在我们班里,有多少同学会骑车?你最远骑到什么地方?

骑车是一项有益健康的'运动,这不,这里有一位李叔叔正在骑车旅行呢! (多媒体演示:李叔叔骑车旅行的场景。)

2.获得信息。

问:从中你可以得到哪些信息? (学生同桌交流,然后全班汇报。) 问题是什么?

3.解决问题。

问:能列式计算解决这个问题吗? (学生自己列式并口答。)

二、探索规律

1.加法交换律。

(1)解决例1的问题。 根据学生回答板书:

40+56=96(千米) 56+40=96(千米)

问:两个算式都表示什么?得数怎样?○里填什么符号? 40+56○56+40,

(2)你能照样子再举几个例子吗?

(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。

(4)反馈交流。 两个加数交换位置,和不变。

(5)揭示定律。

问:①知道这条规律叫什么吗?

②把加数换成其他任意的数,交换律还成立吗?

③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)

④交流反馈,然后看书:看看课本上的小朋友是怎么说的。

⑤根据加法交换律对口令。

师:25+65=______ 78+64=______

⑥完成课本第18页下面的“做一做”1

三、巩固提高

1、运用加法交换律填上合适的数

830+420=( )+( ) ( )+200=( )+37

27+29=29+( ) A+( )=20 +( )

2、完成P19“练习五”第2题。

3、完成P19“练习五”第3题。

四、课堂小结:你有什么收获?

板书设计 加法交换律

加法交换律:两个加数交换位置,和不变。

加法交换律用字母表示为:A+b=b+A

加法交换律教案 篇3

教学目标:

1.在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。

2.在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透建模的数学思想,培养学生的符号感。

教学重点:理解并掌握加法交换律、结合律。

教学难点:归纳、概括出加法交换律和结合律。

教学准备:课件

教学过程:

一、谈话引入

1.师生谈话。

同学们,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强?

学生自由发言。

2.课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说)

追问:你能根据这些信息,提出哪些用加法计算的问题?

(1)跳绳的有多少人?

(2)参加活动的女生有多少人?

(3)参加活动的一共有多少人?

3.导入新课。

在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中

的运算规律。(板书课题)

二、交流共享

1.加法交换律。

(1)提出问题:求跳绳的有多少人,应该怎样列式计算?

(2)列式解答。

指名学生回答,教师板书:28+17=45(人)

追问:还可以怎样列式?

教师板书:17+28=45(人)

(3)观察发现。

提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。

引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。

引导:我们可以用什么符号将这两道算式连起来呢?(等号)

师板书:28+17=17+28

(4)照样子写一写。

让学生试写等式,并投影展示。

提问:观察这些等式,你有什么发现?

(两个加数交换位置,和不变)

(5)指导学生用自己喜欢的方法表示出这种规律。

学生在各自的练习本上表示规律后,交流各自的表示方法。

(6)用字母表示加法交换律。

明确:如果用字母a、b分别表示两个加数,上面的规律可以写成:

a+b=b+a

教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)

2.加法结合律。

(1)课件出示问题:跳绳和踢毽子的一共有多少人?

(2)学生独立列式计算。教师巡视,注意不同的'解答方法,并指名两人板演不同的方法。

(3)组织汇报交流。

解法一:先算出跳绳的有多少人。

(28+17)+23

=45+23

=68(人)

解法二:先算出女生有多少人。

28+(17+23)

=28+40

=68(人)

提问:这两道算式有什么相同的地方和不同的地方?

学生观察、比较这两个不同算式的计算结果。

追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写?

根据学生的回答,师板书:(28+17)+23=28+(17+23)

(4)加深认识、探索规律。

①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。

(45+25)+16○45+(25+16)

(39+18)+22○39+(18+22)

②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?

学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,

和不变。

追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示?

师板书:(a+b)+c=a+(b+c)

小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)

三、反馈完善

1.完成教材第56页“练一练”。

让学生说说每个等式各运用了什么运算律及判断的依据。

第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。

2.完成教材第58页“练习九”第1、2、3题。

(1)第1题中的最后一小题运用了加法交换律和加法结合律。

(2)第2题是运用加法交换律进行验算,这在过去的计算过程中有学习过,通过这几题的练习加深学生的认识。

(3)第3小题让学生通过计算和观察、比较,进一步认识加法交换律和结合律。

让学生计算,并说说每组中两题的联系。

比较每组中的两题,说说哪一题计算起来更加简便。

四、反思总结

通过本课的学习,你有什么收获?还有哪些疑问?

加法交换律教案 篇4

教学内容:

北师大版小学数学四年级上册第三单元乘法探索与发现(三)加法交换律与结合律P47.

教学目标:

1、经历探索过程,推导出加法交换律和结合律,会用字母表示数。

2、会运用加法交换律和结合律对一些算式进行简便计算。

3、激发学生的学习兴趣,培养学生的思维能力和科学的学习方法。

教学重点:

引导学生探索概括出加法交换律和结合律,并初步理解运用、进行简便计算。

教学难点:

加法交换律和结合律的探索推导过程与运用。

教具准备:

PPT课件等

教学过程:

一、复习导入,回忆旧知。

要求学生回忆一下上一节课学过的乘法的运算规律。

(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)

a×b=b×a

(a×b)×c=a×(b×c)(黑板板书)

(那么加法是否也有同样的'规律呢?让我们现在来探讨一下)

二、创设情境、操作体验

1、由生活引入,通过对话的形式与学生共同探讨交换的含义。

数一数:本班男生的人数和本班女生的人数,求本班一共有多少人?

男生+女生:(26+17)人

女生+男生:(17+26)人

结果无论哪一种计算方法,计算出来的结果都是相等的。

再举书本上两个例子来说明。

26+17=17+26

3+2=2+3

15+20=20+15

a+b=b+a (黑板板书)

让学生列出不同的算式,分析比较两个算式的共同点和不同点。

突出强调“交换”的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。

2、出示题目:同学们的课间活动很丰富,看,有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子,参加活动的一共有多少人?

方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。

方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。

那么得出:(28+17)+23=28+(17+23)整十

(3+2)+5=3+(2+5)

(19+12)+38=19+(12+38)整十

(a+b)+c=a+(b+c)

结果表明,计算出来的结果都是相等的。

3、再举书本中的例子来说明结合的两个数的条件和原因。

57+49

=50+7+40+9

=50+40+7+9

=(50+40)+(7+9)因为50+40=90,90是一个整十数。

=90+16

=106

三、巩固练习,加深记忆。

1、书本P47(3)利用你发现的规律,计算下列各式。

2、想一想:下面的等式各应用了什么运算律?

82 + 0 = 0 + 82

47 +(30 + 8)=(47 + 30)+ 8

(87 + 68)+ 32 = 84 +(68 + 32)

75 +(48 + 25)=(75 + 25)+ 48

3、比一比:谁算得又快又对!

38+76+24 (88+45)+12

四、布置作业。

五、板书设置。

加法交换律教案 篇5

教学内容:

苏教版小学数学第七册第七单元运算律

第56――58页例题,“想想做做”的第1――5题。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算,初步感受到应用加法交换律和结合律可以使一些计算简便。

2.在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:

发现规律,理解和掌握运算律。

教学难点:

概括运算律并用字母表示。

教学过程:

一、师生合作,探索加法交换律

1.创设情境,解决问题

(1)谈话:随着学校开展的“植根童趣,放飞童心”的活动以来,课间同学们的活动变得更加丰富多彩了。(出示挂图)

提问:从这张图片中,你获得了哪些数学信息?

(2)你能根据这些信息提出一些用加法计算的问题吗?

指名口答。

(3)今天这节课,我们就一起来研究其中的这两个问题

(出示问题)

(4)先解决第一个问题:参加跳绳的一共有多少人?

①应怎样列式计算?

指名回答,教师板书:28+17=45(人)

②追问:还可以写成什么?

指名回答,教师板书:17+28=45(人)

2.观察、比较、发现规律

(1)这两道算式都是求什么的人数?结果都是多少?

(2)你能用一个符号把它们连接起来吗?

板书:28+17=17+28

(3)仔细地观察这个算式,在等号的两边,什么变了?什么不变?你有什么发现?

同桌交流

(4)你们能够自己模仿写出几个这样的算式吗?试试看。

追问:这样的算式能写几个?

指名回答,教师板书。

(5)你能用自己喜欢的方法把我们发现的规律简单明了地表示出来吗?可以用符号、字母、文字等。

学生试着写一写。

指名回答,教师板书。

(6)谈话:刚才同学们能用自己喜欢的方式表示了我们发现的规律,这些规律叫运算律。但是自己创造的符号只有自己明白,还要学习数学界公认的表示方法,那就是用字母a、b分别表示两个加数,我们发现的.规律就可以写成a+b=b+a,这个规律我们给它起个名字叫加法交换律。

(7)谁来说说加法交换律用字母怎样表示?用语言怎样表达?

齐读。

(8)其实加法交换律我们早就会用了,想想看,什么时候我们用过?

指出:在验算加法时用的就是加法交换律。

3..练习:

96+35=35+()

204+57=()+204

a+45=45+()

二、学法迁移,探索加法结合律

1.解答例题,发现规律

(1)刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题,看看有没有新的发现?

(2)齐读问题。你会列式解决这个问题吗?

你打算先求什么?再求什么?

学生练习,教师巡视。

学生汇报,教师板书:(28+17)+23=68(人)

28+(17+23)=68(人)

(3)比较一下这两道算式,他们有什么相同点和不同点?

(4)这两道算式结果相同,我们可把它写成怎样的算式?

2.板书(28+17)+23=28+(17+23)

(5)练习:

下面的○里能填上等号吗?

(45+25)+23○45+(25+23)

(36+18)+22○36+(18+22)

(6)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律,和你的同桌交流一下。

和不变,这就是我们今天所学的第二个运算律――加法结合律。

3.练习

(45+36)+64=45+(□+□)

560+(140+70)=(560+140)+□

a+(27+b)=(□+□)+b

三、组织练习

1.第58页想想做做第1题。

仔细观察,同桌交流后汇报。

重点讨论第四个等式,引导学生发现这里同时运用了两种加法运算律。

2.想想做做第3题。

学生计算第1小题,并用加法交换律验算,请学生板演。

评讲,让学生体会加法交换律的价值。

3.想想做做第4题

(1)下面我们来比一比谁做得对又快。

男生计算每组题中的第1小题,女生计算每组题中的第2小题。

(2)交换题目再来比一比。

(3)问:如果让你来选,你愿意做哪一题?为什么?

(4)小结:因为运用了加法运算律可以使计算简便,而每组中的第2小题都运用了加法运算律,所以第2小题做得快。

4.想想做做第5题

(1)谈话:在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易算了,那么什么样的两个数和是100呢?下面我们来做第5题,你能很快找出哪两片树叶上数的和是100吗?

(2)学生独立连线,同桌互相校对。

(3)提问:什么样的两个数和是100?

(4)小结:看来,在计算过程中,要有一双敏感的眼睛,看到数字就能很快地判断出能不能凑成整百数。

四、回顾总结

有个成语叫“学有所成”,请同学们说说看,这节课你学到了什么?有什么新的收获?

五、作业:想想做做第3题剩下的题目。

教学反思:这节课主要教学加法的交换律和结合律,创设学生熟悉的生活情境出发,让学生根据信息自由地提问,培养了学生的发散性思维,以及问题意识,同时也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到数学的乐趣,又复习巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。

加法交换律教案 篇6

教学目标:

1.理解和掌握加法结合律,并应用加法结合律使计算简便。

2.培养观察、归纳、概括的潜力。

教学重点:

理解并掌握加法结合律。

教学难点:

加法结合律的.推导。

教学过程:

一、复习导入

20+34=()+()

36+()=64+()

A+700=+

二、新授

1.出示准备题:

37+26+63、37+(26+63)

59+38+732和59+(38+732)

讨论:比较两式题的异同。刚才的两个例子说明了什么?

2.上述两题贴合猜想,可能是偶然。请同学们自己来找一找贴合猜想的式题。

(学生自由举例,小组交流结果。汇报结果,找到许多式题贴合猜想。

3.能证明猜想正确,还有我们身边的一些生活实例。

请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?

三、小组展示

1.学生先汇报

A.口头列式:

(88+104)+96

88+(104+96)

B.分别说说先求什么,再求什么?

C.决定,得数会相同吗?(相同)

D.计算结果。得出(88+104)+96=88+(104+96)

2.提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的地方?

3.用字母表示加法结合律。

(1)谁能用符号(任意选3个符号)表示加法结合律?如:(□+△)+○=□+(△+○)

(2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?

三、练习

1.下面哪些等式贴合加法结合律?

a+(20+9)=(a+20)+9

15+(7+b)=(20+2)+b

(10+20)+30+40=10+(20+30)+40

2.简便计算。

273+352+648

64+36+81+19

3.五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)

板书设计:

加法结合律

37+26+63=37+(26+63)

59+38+732=59+(38+732)

(88+104)+96

88+(104+96)

加法结合律:(a+b)+c=a+(b+c)

加法交换律教案 篇7

教学目标

1.使学生理解加法的意义,并会应用解答实际问题.

2.进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性.

3.使学生理解并掌握加法交换律并能运用这一定律进行验算.

教学重点

使学生对加法的意义的建立,加法交换律的概括及对它们的理解、掌握.

教学难点

学生对加法意义、加法交换律运用.

教学步骤

一、铺垫孕伏.

1、口算.

44+56 37+23 180+20 42+8+10

12+0 0+17 386+124 124+235

2、导入:以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助.

二、探究新知.

(一)教学加法的意义.

1、加法的意义.

(1)例1 一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

教师提问:这题怎样解答?

(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算.)

教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?

(板书:两个数合并成一个数的运算就叫加法)

教师明确:这就叫加法的意义.

(板书:加法的意义)

(2)练习:小强有125枚邮票,小明有75枚邮票.小强和小明一共有多少枚邮票?

说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来.加法就是把两个数合并成一个数的.运算,所以这道题要用加法计算.

2、加法等式中各部分名称.

教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数 加数 和)

3、有关0的加法.

教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有

哪几种情况呢?

小结:任何数和0相加都得原数.

(二)教学加法交换律

1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性.除此之外,关于加法的运算还有一些基本性质,它对我们以后的计算将起到很大的作用.

2、教师提问:137+357=494(千米),表示求的是什么?

如果要求济南到北京的铁路长又该怎样列式计算呢?

357+137=494(千米)

3、引导学生观察,比较两种解法的结果.

教师板书:137+357=357+13

4、出示例2,引导学生归纳规律.

18+17○17+18

124+235○235+124

0+25○25+0

规律:

①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置.

②每个等式中,左右两边的加数的和相等.

教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律.

教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变.当然前提是等号两边的两个加数必须相同.

5、练习:判断:下面各等式运用了加法交换律,对吗?为什么?

9+7=7+9 10+1=10+1

20+8=2+26 2+0=0+2

6、用字母表示加法交换律.

教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?

教师强调:用字母表示这一运算定律更简单清楚.如果用字母a和b分别表示两个加数(注意:a、b是拉丁字母),在这我们读作ei和bi,(教师领读几遍,提醒学生不要按汉语拼音来读)

教师板书:a+b=b+a

提醒注意:a与b可以表示0、1、2、3、中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变.而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变.a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变.

7、学生分组自由举例说明加法交换律.

8、学习、掌握了加法的交换律,目的在于更好地运用.实际上,在以前我们早就应用它解决计算问题.同学们想一想:在哪些计算中都用了加法交换律呢?(验算)

9、练习:运用加法交换律,在下面的□里填上适当的数.

766+589=589+□ 257+□=474+257 a+15=15+□

三、巩固发展.

1、填空.

(1)把( )数合并成( )数的运算叫做加法.

(2)一个数加0,还得( ).如12+0=( ).

2、下面各等式哪些符合加法交换律?符合的画.

230+370=380+220 30+50+40=50+30+40

a+10=100+a 230+420=430+220

四、课堂小结.

今天我们学习了加法的意义和加法的一个运算定律加法交换律.谁能结合具体的题目说一说加法的意义和加法交换律的含义?

五、布置作业.

1、根据运算定律在下面的□填上适当的数.

48+□=72+□ 29+35=□+29

a+38=□+□ □+55=55+42

2、口算下面各题,说一说是怎样应用运算定律的.

91+89+11 85+41+15+59

168+250+32 282+53+37+18

六、板书设计

加法的意义和运算定律

例1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

137+357=494(千米)

357+137=494(千米)

答:北京到济南的铁路长494千米.

意义:把两个数合并成一个数的运算叫做加法.

7+0=7 0+7=7 0+0=0

例2 加法交换律:

137+357=357+137

18+17=17+18

24+235=235+24

加法交换律教案 篇8

课题:加法的意义和加法交换律(小学数学人教版第八册)

授课教师:王晓华(六里坪镇财神庙小学)

教学内容:教材第48、49页的例1和例2,练习十一的第1、2题。

教学要求:

1、使学生在已有加法知识的基础上,理解并概括加法的意义和加法交换律,能从感性认识上升到理性认识。

2、培养学生初步的归纳推理能力。

教学重点:加法交换律

教学难点:使学生在理解的基础上自己概括出加法的意义和归纳出加法交换律。

教学准备:小黑板

教学方法:启发式

教学过程

一、课题提示

我们学了几年数学,几乎每天都与加法打交道,谁能说说什么是加法吗?今天我们学习加法的意义。(板书课题:加法的意义)

二、教学新课

(一)、教学加法的意义。

1、出示例1。学生读题,指名说已知条件和问题,老师画线段图。

2、独立解答。指名学生说自己所列的算式及其得数(在图下板书)然后问:为什么要用加法算?

3、引导看线段图,老师辅以手势说明,我们用加法把137和357合并成了494这一个数,可见加法是一种运算。加法是一种怎样的运算呢?

4、说出式中的各部分的名称。什么是加数?什么是和?

5、刚才的加法中,加数中不含0;如果含有0,得多少呢?举例:7+0=7,0+7=7,0+0=0。…,得出结论,一个数加上0,还得原数。

(二)教学加法交换律。

1、看例1线段图,刚才我们求北京到济南的铁路长。如果要求济南到北京的铁路长还可以怎样列式?

2、为什么用加法算?

3、比较两个算式有什么样的关系?(板书:在两个算式间画上“=”)有什么相同点和不同点?

4、如果其他任意两个数相加时,交换一下两个加数的位置,相加的和是不是也不变呢?

5、出示例2两组式子,引导学生比较。讨论:两组算式有什么共同点?归纳并板书加法交换律。

6、加法交换律除了用文字语言进行叙述外,还可以用字母写成的式子来表示。如果用字母a和b分别表示两个加数,怎样表示加法交换律?

说一说a和b分别表示什么?比较一下文字叙述和字母表示的式子,哪一种简明好记。

7、巩固练习:教材第49页的“做一做”。(出示小黑板)

(1)填空。

①把两个数合并成( )个数的( ),叫着加法;相加的两个数叫做( ),加得的`数叫做( )。

②86+124=( )+86 ( )+25=25+a

③两个数相加,交换它们的位置,它们的( )不变。

④418+382=382+418,这是应用了加法的( )律。

⑤一个数加上( ),是原数。

(2)判断。(对的打“√”,错的打“×”)

①任意两个数的和,一定比这两个数大。( )

②下面哪些算式符合加法交换律?

430+270=280+420( ) 28+a=a+28

570+250=250+570( ) 40+30+10=40+10+30( )

③用字母a和b分别表示两个加数,加法交换律写成:a+b=a+c。( )

8、想一想,我们以前在哪里曾经用加法交换律?(加法验算)

三、课堂小结

说一说加法的意义和加法交换律的含义。

四、作业布置

练习十一的第1、2题。

附板书:

加法的意义和加法交换律

例1(略) 7+0=7 0+7=7 0+0=0

(画示意图) 一个数加上0,还得原数

137+357=494(千米)

137+357=494(千米) 137+357=357+137

加数 加数 和 18+17㈡17+18

答:(略) 两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。

把两个数合并成一个数的运算,叫做加法。 a+b=b+a

加法交换律教案 篇9

教学目标

1、经历加法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。

2、通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发展应用意识。

教学重难点

教学重点:理解并掌握加法交换律和乘法交换律的意义以及运用。

教学难点:会用符号或字母表示加法交换律和乘法交换律。

教学过程

一、练习导入、感受交换的好处

首先出示加法和乘法的计算题让学生快速口算出答案,接着给出两个复杂的算式。现在还能马上口算出答案吗?针对这两个算式你有什么想法?

二、合作探究,探索新知

1、将加法和乘法算式同时呈现,让学生一组一组观察,每组中的两个算式有什么相同和不同的地方?为什么可以把等号连起来?你还发现了什么?

2、通过模仿创造出几组加法和乘法算式,加以验证。观察教师的例子、自己仿写的以及书本中淘气和笑笑写的算式,和同伴交流自己的发现。

3、总结;课件出示内容;

4、寻找生活中的事例解释所发现的规律。

5、我会接着追问:关于交换律的算式和事例学生们能举的完吗?你们能创造一个更简单的方法来表达发现的规律吗?

6、选择方法进行投影对比,让学生解释自己的方法,P23在对比评价中得出更简便的.字母表示法(板贴a+b=b+a;a.b=b.a)这里要注重说清楚ab各表示什么,以及两个运算律的异同。

三、巩固规律

1、规则是我说算式,学生说交换后的算式,适时加入减法和除法,在学生产生冲突时继续追问:a+b=b+a;a.b=b.a那么a-b=b?a÷b=?。

四、深化练习,拓展提高

1、结合下面的例子说明等式为什么成立。通过现实背景理解交换律的实际意义。

2、运用规律填一填,了解学生对交换律的掌握情况。

3、计算下列各题,并运用规律进行验算,通过比较,发现利用交换律在计算中可以选择符合习惯的方式列竖式,还具有验算的作用,

4、接着出示课始的复杂运算鼓励学生运用所学的交换律使问题简单化。

五、全课小结

说说本节课有哪些收获?

加法交换律教案

作为一名优秀的教育工作者,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写呢?下面是小编整理的加法交换律教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

加法交换律教案 篇10

教学目标:

1、使学生理解加法的意义,并能在实际计算中应用.

2、使学生掌握加法交换律,并会应用定律进行验算.

3、培养学生观察、比较、概括推理的能力.

教学重点:

由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性.因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中.

教学难点:

由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点.

教学过程:

一、复习准备

1.口算.

39+47 83+15 420+180

47+39 15+83 180+420

2.口答.

(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?

(2)小敏做了25朵红花,做的黄花比红花多5朵.做黄花多少朵?

(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?

二、学习新课

师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)

1.教学加法的意义.

(1)例 一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

读题后,师生共同完成线段图:

学生独立解答:

137+357=494(千米)

加数加数和

答:北京到济南的铁路长494千米.

提问:

①这道题为什么用加法计算?

②加法是一种什么样的运算?

③要合并的两个数指的是什么数?合并成的一个数指的是什么数?

引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米.

启发提问:加法的意义是什么?说说看.

引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”.

教师板书加法的意义.

练一练

练习十一第1题,应用加法的意义说明各题为什么用加法计算.

在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题.

(2)教学加法各部分名称.

提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)

教师板书.(写在例1算式的下面)

教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.

反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?

(3)加法中有关0的问题.

提问:

①我们例1做的加法,两个加数是什么样的数?(是自然数)

②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)

③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)

引导学生讨论:

0的加法可能有哪几种情况?举例说明.

在学生讨论的基础上,使学生明确:一个数加上0,还得原数.

(4)阅读课本第47页“加法的意义”.

2.教学加法交换律.

根据加法的意义引出加法交换律.

提问:

(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)

(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的.式子,写成137+357=357+137)

教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.

(3)出示18+17○17+18

350+150○150+350

274+100○100+274

873+127○127+873

提问:

①观察每组算式有什么关系?○里应填什么符号?

引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.

②这几组算式有什么共同特点?你发现了什么规律?

引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.

教师明确:你们发现的这个规律,就叫做加法交换律.

板书:“两个数……,它们的和不变.”

教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?

学生看书自学:第48页.

反馈提问:

什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?

教师板书加法交换律的字母公式:

a+b=b+a

引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.

教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.

练一练

现在用你们学过的知识做第48页的“做一做”.

订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.

3.总结.

(1)说一说加法的意义是什么?

(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?

三、巩固反馈

1.口答.(用加法意义说明算法)

玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?

2.下面各式哪些符合加法交换律?

140+250=260+130 260+450=460+250

20+70+30=70+30+20 a+400=400+a

3.根据运算定律在“□”里填上适当的数.

(1)□+55=55+42 (2)a+44=□+□

(3)38+35=□+38 (4)48+□=72+□

订正时,要求学生严格按照定义、定律来加以说明.

四、作业

练习十一第2~4题.

板书设计

加法的意义和运算定律

例1 一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

137+357=494(千米)

加数加数和

357+137=494(千米)

答:北京到济南的铁路长494千米.

把两个数合并成一个数的运算,叫做加法.

18+17 17+18

350+150 150+350

274+100 100+274

873+127 127+873

两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:

a+b=b+a

五、教学后记:

学生能理解加法的意义,掌握了、加法的交换律并会用运算定律进行计计算。

加法交换律教案 篇11

教学内容:

教材第48、49页的例1和例2,练习十一的第1、2题。

教学要求:

1、使学生在已有加法知识的基础上,理解并概括加法的意义和加法交换律,能从感性认识上升到理性认识。

2、培养学生初步的归纳推理能力。

教学重点:

加法交换律

教学难点:

使学生在理解的基础上自己概括出加法的意义和归纳出加法交换律。

教学准备:

小黑板

教学方法:

启发式

教学过程

一、课题提示

我们学了几年数学,几乎每天都与加法打交道,谁能说说什么是加法吗?今天我们学习加法的意义。(板书课题:加法的意义)

二、教学新课

(一)、教学加法的意义。

1、出示例1。学生读题,指名说已知条件和问题,老师画线段图。

2、独立解答。指名学生说自己所列的算式及其得数(在图下板书)然后问:为什么要用加法算?

3、引导看线段图,老师辅以手势说明,我们用加法把137和357合并成了494这一个数,可见加法是一种运算。加法是一种怎样的.运算呢?

4、说出式中的各部分的名称。什么是加数?什么是和?

5、刚才的加法中,加数中不含0;如果含有0,得多少呢?举例:7+0=7,0+7=7,0+0=0。…,得出结论,一个数加上0,还得原数。

(二)教学加法交换律。

1、看例1线段图,刚才我们求北京到济南的铁路长。如果要求济南到北京的铁路长还可以怎样列式?

2、为什么用加法算?

3、比较两个算式有什么样的关系?(板书:在两个算式间画上“=”)有什么相同点和不同点?

4、如果其他任意两个数相加时,交换一下两个加数的位置,相加的和是不是也不变呢?

5、出示例2两组式子,引导学生比较。讨论:两组算式有什么共同点?归纳并板书加法交换律。

加法交换律教案 篇12

教学目标

1使学生理解加法的意义,并会应用解答实际问题。

2进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性。

使学生理解并掌握加法交换律并能运用这一定律进行验算。

教学重点

使学生对加法的意义的建立,加法交换律的概括及对它们的理解、掌握。

教学难点

学生对加法意义、加法交换律运用。

教学步骤

一、铺垫孕伏。

1、口算。

44+56 37+23 180+20 42+8+10

12+0 0+17 386+124 124+235

2、导入:以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助。

二、探究新知。

(一)教学加法的意义。

1、加法的意义。

(1)例1 一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?

教师提问:这题怎样解答?

(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算。)

教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?

(板书:两个数合并成一个数的运算就叫加法)

教师明确:这就叫加法的意义。

(板书:加法的意义)

(2)练习:小强有125枚邮票,小明有75枚邮票。小强和小明一共有多少枚邮票?

说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来。加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2、加法等式中各部分名称。

教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数 加数 和)

3、有关0的加法。

教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有

哪几种情况呢?

小结:任何数和0相加都得原数。

(二)教学加法交换律

1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的.加法的特殊性。除此之外,关于加法的运算还有一些基本性质,它对我们以后的计算将起到很大的作用。

2、教师提问:137+357=494(千米),表示求的是什么?

如果要求济南到北京的铁路长又该怎样列式计算呢?

357+137=494(千米)

3、引导学生观察,比较两种解法的结果。

教师板书:137+357=357+13

4、出示例2,引导学生归纳规律。

18+17○17+18

124+235○235+124

0+25○25+0

规律:

①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置。

②每个等式中,左右两边的加数的和相等。

教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。

教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变。当然前提是等号两边的两个加数必须相同。

5、练习:判断:下面各等式运用了加法交换律,对吗?为什么?

9+7=7+9 10+1=10+1

20+8=2+26 2+0=0+2

6、用字母表示加法交换律。

教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?

教师强调:用字母表示这一运算定律更简单清楚。如果用字母a和b分别表示两个加数(注意:a、b是拉丁字母),在这我们读作“ei”和“bi”,(教师领读几遍,提醒学生不要按汉语拼音来读)

教师板书:a+b=b+a

提醒注意:a与b可以表示0、1、2、3、……中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变。而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变。a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变。

7、学生分组自由举例说明加法交换律。

8、学习、掌握了加法的交换律,目的在于更好地运用。实际上,在以前我们早就应用它解决计算问题。同学们想一想:在哪些计算中都用了加法交换律呢?(验算)

9、练习:运用加法交换律,在下面的□里填上适当的数。

766+589=589+□ 257+□=474+257 a+15=15+□

三、巩固发展。

1、填空。

(1)把( )数合并成( )数的运算叫做加法。

(2)一个数加0,还得( )。如12+0=( )。

2、下面各等式哪些符合加法交换律?符合的画“√”。

230+370=380+220 30+50+40=50+30+40

a+10=100+a 230+420=430+220

四、课堂小结。

今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

五、布置作业。

1、根据运算定律在下面的□填上适当的数。

48+□=72+□ 29+35=□+29

a+38=□+□ □+55=55+42

2、口算下面各题,说一说是怎样应用运算定律的。

91+89+11 85+41+15+59

168+250+32 282+53+37+18

六、板书设计

加法的意义和运算定律

例1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?

137+357=494(千米)

357+137=494(千米)

答:北京到济南的铁路长494千米。

意义:把两个数合并成一个数的运算叫做加法。

7+0=7 0+7=7 0+0=0

例2 加法交换律:

137+357=357+137

18+17=17+18

24+235=235+24

大家都在看