短文网整理的平行四边形面积教学设计(精选12篇),快来看看吧,希望对您有所帮助。
平行四边形面积教学设计 篇1
教学内容:
小学数学五年级上册第87——88页
教学目标:
知识与技能目标:
理解并掌握平行四边形面积计算公式。
过程与方法目标:
能够运用公式解决实际问题。
情感态度与价值观:
通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。
教学重难点:
(1)教学重点:平行四边形面积计算公式的推导和运用。
(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。
教学用具:
1、课件
2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。
学情分析:
这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。
教学过程:
一、激情导课
(大屏幕出示校园情景图)
同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)
看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)
1、探究平行四边形面积计算公式。
2、运用公式解决生活中的实际问题。
师随着学生的回答在课题前板书:探究和运用
师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)
二、民主导学
任务一:自主探究平行四边形的面积计算方法。
同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)
任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。
提示:如果采用数方格的方法,同学们可以参照课本87页的'表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)
自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。
展示交流:
1、先请数方格的小组上台展示。
预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。
我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。
(对小组进行评价)
师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。
2、请用割补法的小组上台展示自己的研究成果。
预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
(师随着生的表述板书)
长方形的面积=长×宽
平行四边形的面积=底×高
(对小组进行评价)
预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......
(对小组进行评价)
预设:(3)、师演示。
师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。
师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)
任务二:解决问题
出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?
自主学习:独立在练习本上解答,完成后与小组内同学交流。
展示交流:注意指导学生的书写格式。
三、检测导结
1、计算下面每个平行四边形的面积。
2、已知下面图形的面积和底,怎样求出它的高?
以上三题,做对一道得一颗星,全部做对得三颗星。
集体订正,组内互批。
反思总结:请同学们谈谈这节课的收获吧!
平行四边形面积教学设计 篇2
[教学目标]
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点、难点]
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
[教具、学具准备]
多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。
[教学过程]
一、复习旧知,导入新课。
1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。
2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。
师板书:长方形的面积=长×宽
师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。
二、动手实践,探究发现。
1、剪拼图形,渗透转化。
(1)小组研究
老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。
(2)汇报结果
第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。
板节课题:平行四边形面积计算
2、动手实践,探究发现。
(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?
(2)学生重新剪拼,互相探讨。
(3)汇报讨论结果。
师板书:平行四边形的面积=底×高
(4)让学生齐读:平行四边形的面积等于底乘以高。
(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?
(必须知道平行四边形的底和高)
课件展示讨论题:平行四边形的底和高是否相对应。
(6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)
(7)比较研究方法。
三、分层训练,理解内化。
课件显示练习题
第一层:基本练习
第二层:综合练习
第三层:扩展练习
下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
四、课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
附说课稿:
一、 教材与与学情分析
《平行四边形的`面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。
小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标:
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教具、学具准备:
多媒体课件、长方形纸、剪刀、直尺、
二、理念设计:
1、运用信息技术手段,优化数学课堂教学。
2、体现“数学从生活中来,再回到生活中去”。
3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。
三、教法、学法
教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。
学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
四、教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)复习旧知,导入新课。
新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
(二)动手实践,探究发现。
1、剪拼图形,渗透转化。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。
2、动手实践,探究发现。
在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。
当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。
(三)分层训练,理解内化。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:
第一层:基本练习:
计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
第二层:综合练习:
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
2、把平行四边形模型拉近,它们的面积发生变化了吗?
通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
(四)课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。
当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。
平行四边形面积教学设计 篇3
教学内容:人教版五年级上册第六单元第一课时P87-88
教学目标 :
1.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。
3.感受数学在生活中的作用,体验学习数学的乐趣。
教学重点和难点
教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积计算公式的推导过程。
教具学具:课件、一个平行四边形、剪刀
教学过程
一、创设情境,生成问题
1.故事导入
2.从平行四边形的地中引出课题“平行四边形的面积”。
二、探索交流,解决问题
1.用数方格的方法计算面积。
(1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)
(2)学生完成,汇报结果。
(3)观察表格的数据,你发现了什么?
通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
2.推导平行四边形面积计算公式。
(1)提问:如果不数方格,能不能计算平行四边形的'面积呢?
(2)引导解决方法:把平行四边形转化成长方形
(3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平
行四边形和剪刀进行剪拼,教师巡视指导。
(4)学生汇报演示剪拼的过程及结果。
(5)教师用课件演示剪—平移—拼的过程。
(6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
(7)出示讨论题,小组讨论。
(8)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式用字母怎样表示?
S=ah
三、巩固应用,分层提高
1.教学例1
例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
S=ah=6×4=24(m2),
答:它的面积是24平方米。
2.练一练
(1)一个停车位是平行四边形,它的底长5米,高2.5米。它的面积是多少?
(2)判断题
(3)选择题
(4)求平行四边形的面积
(5)扩展题
四、回顾整理,反思提升
1.通过这节课的学习,你有哪些收获?
2.用本课所学的知识证明老财主没有偏心。
五、板书
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
平行四边形面积教学设计 篇4
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1.使学生理解和掌握平行四边形的面积计算公式。
2、会正确计算平行四边形的面积。
过程与方法:
1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1.什么叫面积?常用的面积计量单位有那些?
2.出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入:出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?
板书课题:平行四边形的面积
2.用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的.面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b.请学生演示剪拼的过程及结果。
c.教师用教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
S=ah
三、 应用反馈。
1.出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个平行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)
平行四边形面积教学设计 篇5
教学内容:
小学数学五年级上册第87——88页
教学目标:
知识与技能目标:
理解并掌握平行四边形面积计算公式。
过程与方法目标:
能够运用公式解决实际问题。
情感态度与价值观:
通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。
教学重难点:
(1)教学重点:平行四边形面积计算公式的推导和运用。
(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。
教学用具:
1、课件
2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。
学情分析:
这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。
教学过程:
一、激情导课
(大屏幕出示校园情景图)
同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)
看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)
1、探究平行四边形面积计算公式。
2、运用公式解决生活中的实际问题。
师随着学生的回答在课题前板书:探究和运用
师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)
二、民主导学
任务一:自主探究平行四边形的面积计算方法。
同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)
任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。
提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)
自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。
展示交流:
1、先请数方格的小组上台展示。
预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。
我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。
(对小组进行评价)
师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。
2、请用割补法的小组上台展示自己的研究成果。
预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的'底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
(师随着生的表述板书)
长方形的面积=长×宽
平行四边形的面积=底×高
(对小组进行评价)
预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......
(对小组进行评价)
预设:(3)、师演示。
师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。
师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)
任务二:解决问题
出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?
自主学习:独立在练习本上解答,完成后与小组内同学交流。
展示交流:注意指导学生的书写格式。
三、检测导结
1、计算下面每个平行四边形的面积。
2、已知下面图形的面积和底,怎样求出它的高?
以上三题,做对一道得一颗星,全部做对得三颗星。
集体订正,组内互批。
反思总结:请同学们谈谈这节课的收获吧!
平行四边形面积教学设计 篇6
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=ah或S=ah
课后记:
第二课时
教学内容:
平行四边形面积计算的练习(P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的'面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
平行四边形面积教学设计 篇7
一、教学目标
1.结合具体情境,通过操作活动,经历推导平行四边形的面积计算公式并交流方法的过程。
2.理解和掌握平行四边形面积计算公式,会运用计算相关图形的面积并解决一切实际问题。
3.通过观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
二、教学重、难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。教学难点:平行四边形面积计算公式的推导。
三、教具学具:
自制长方形框架,平行四边形,小黑板四.教学过程
(一)情境导入
1.师:请同学们看老师手上的框架,这是什么图形?(长方形)长方形有什么特点呢?哪条是长?哪条是宽?
它的长是5厘米,宽是3厘米,它所围成的长方形面积是多少?
(板书:长方形的面积=长×宽)用字母表示S=ab
2.师:注意看,接下去老师要变魔术了哦!如果捏住这个长方形的一组对角,像这样往外拉(教师演示学生看),变成什么图形了?生:平行四边形。
师:平行四边形有什么特点?哪条是底?哪条是高?高有几条(无数条)
3.让学生拿出学具,感受一下长方形变成平行四边形的过程。 (板书:)
4.(学生观察主题图)提问:你们看到了哪些图形?
(长方形、三角形、平行四边形、圆形、梯形、正方形)
提问:在这么多的图形里,有哪些图形出现在了老师的小魔术里?
(长方形、平行四边形)提问:那这两个图形分别在哪里呢?
(两个大花坛)
5.(出示两个花坛)我们已经学会计算长方形的面积,如果要比较这两个花坛的大小,怎么办,谁有办法?(引导学生说可以计算平行四边形的面积)引导学生说出可以用数格子的方法。(板书:计算平行四边形面积的方法)
师:好,这节课我们就来学习一下平行四边形的面积要怎么计算?(板书课题:平行四边形的面积)
(二)合作探索
1.用数方格的方法计算平行四边形面积。
⑴将课本翻到87页,不足一格的按半格算,数一数,这个长方形和平行四边形的面积由几个小格组成?(板书:数格子)(都是24格)
⑵同桌对子讨论,观察比较两个图形的关系,并完成表格,一个方格代表1㎡。提问:你发现了什么?平行四边形的底和长方形的长、平行四边形的高和长方形的宽它们有什么关系呢?
(生可能回答)生1:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等。
生2:它们的面积也相等。
生3:平行四边形的面积可以用底乘高来计算。
师:非常好。接下来我们就来验证一下平行四边形的面积计算公式是不是底乘高。
(板书:平行四边形的面积=底×高)
2.操作验证
⑴提问:不数方格,能用其它方法来证明它们面积相等吗?(一张平行四边形的纸,一把三角尺和一把剪刀)
⑵提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。(板书:割补法)
⑶对子两人一小组,商议如何通过画一画、剪一剪等方法来进行操作研究;两人合作操作。有困难的对子可以请老师帮忙;比一比哪一对同学能快速解决问题。
2
思考:a、什么改变了?
b、什么没有发生改变?
c、原平行四边形和拼出的长方形有什么联系?(出示关系图)⑷展示学生作品:不同的方法将平行四边形变成长方形。提问:观察拼出的长方形和原来的'平行四边形,你发现了什么?(平行四边形的面积=底×高)
引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S=ah(边说边板书)
(三)巩固练习
1.出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。(板书:S=ah=6×4=24㎡)利用例题推出:h=S÷a a=S÷h
2.已知平行四边形的面积是16.8平方米,高是4米,底是多少米?16.8÷4=4.2(米)
一块平行四边形钢板,底是15米,高是底的1.2倍。这块钢板的面积是多少平方米?
15×1.2=18(米)15×18=270(平方米)
四、课堂小结
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?
老师魔术中长方形和平行四边形的面积相等吗?请同学们看课本90页第八题,回去思考,我们下节课来进行讨论。
五、板书设计
平行四边形的面积计算平行四边形面积的方法:长方形的面积=长×宽1、数格子平行四边形的面积=底×高2、将平行四边变成长方形——割补法S:面积a:底h:高字母表示:S=ah例一:a=6m h=4m S?ah?6?4?24(m2)
平行四边形面积教学设计 篇8
教材分析
本内容在教科书的第79至81页。包括引入、用数方格的方法计算面积和探究平行四边形面积计算公式三个环节。
学情分析
在此之前学生已经掌握了平行四边形的特征以及长方形、正方形面积计算方法,它们是进一步学习其他平面图形面积和立体图形表面积的基础。
教学目标
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点 理解公式并正确计算平行四边形的面积。
教学难点
用割补的方法把一个平行四边形转化为一个长方形,推导出平行四边形面积的计算公式。
教学准备每人准备一个长方形、平行四边形和一把剪刀。
教学过程
(一)剪剪拼拼,渗透转化。
(每生发一个长为10厘米,宽为15厘米的长方形)
师:同学们,这种形状的'图形你们可是再熟悉不过了,你们能根据老师给的条件快速算出它的面积吗?
师:今天我们要给长方形来变变样。
师:你有办法马上算出这个图案的面积吗?
师:为什么这么快就算出来了。
师:大家想一想,这个图案和变样之前的长方形相比,什么变了,什么没变?
师小结:转化思想。
(二)创设情境,探究新知。
1、猜测平行四边形面积的计算方法。
师:我们手中都有一个平行四边形,如果让你来计算它的面积你想知道它的哪些数据?这么多方法,到底哪种对呢?
2、组织探究活动。
同桌合作活动,活动前思考:
想一想,你准备把平行四边形转化成什么图形,为什么?
提示:在分割时,先用直尺和铅笔画出直直的虚线,再用剪刀小心地剪开。
边操作边思考:
转化后的图形与平行四边形有什么关系?
你认为平行四边形的面积该如何计算?
4、交流探究结果
师:先请这组同学来给大家介绍他们是如何将平行四边形转化成长方形的。
5、推导面积公式
师:我们成功地把平行四边形转化成了长方形,你还发现了什么关系?
小结:回顾一下观察的全过程:我们是沿着平行四边形的一条高将它剪开,通过平移转化成一个长方形。因为这是一次等积变形,所以长方形的面积等于平行四边形的面积。我们还看到长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积等于长乘宽,所以推导出平行四边形的面积等于底乘高。
长方形的面积=长×宽
平行四边形的面积=底×高
师:如果用S表示平行四边形的面积,用a表示它的底,用h表示它的高,平行四边形面积的字母公式是什么呢?S=ah
(三)练习巩固,课堂拓展
1、求下面平行四边形的面积。
2、出示练习十五第一题,独立完成。(强调书写规范,点一下为什么要把停车位设计成平行四边形的)
3、判断:哪个平行四边形的面积是2×3=6
4、看谁算得快
5、睁大眼睛,别看花眼啦
6、书本练习十五第7题。
7、书本第83页第5题。
平行四边形面积教学设计 篇9
教学目标:
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法――转化与等积变形。
教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:
一、情境激趣
二、自主探究
古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?
在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?
1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
(6)引导学生交流自己的发现。
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的.面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底×高是否适合所有的平行四边形面积呢?
2、动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)
(3)观察并思考:
①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
观察面积公式,要求平行四边形的面积必须知道哪两个条件?(平行四边形的底和高)
(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?
(转化图形的形状)
(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3、运用公式,解决问题。
(1)出示例1
例1学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?
(2)学生独立完成并反馈答案。
三、看书释疑P79~81
四、巩固运用
1、判断,平行四边形面积的概念。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形的高不变,底越长,它的面积就越大()。
(3)一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。()
2、计算,平行四边形的面积。
3、拓展1,你有几种方法求下面图形的面积?
4、拓展2比较,等底等高的平行四边形的面积。
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
平行四边形面积教学设计 篇10
[课程标准]
探索并掌握平行四边形的面积公式,并能解决简单的实际问题。
[学情分析]
学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。
[学习目标]
1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)
2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)
[评价任务]
评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。
评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。
[资源与建议]
1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。
2、相关的资源:(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。
3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。
4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。
[教学过程]
一、情境导入
出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?
师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的`面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]
二、探究新知
1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。
(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。
(2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)
(3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)
生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。
生:我发现平行四边形的面积=底×高
师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。
[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]
2、合作交流探究新知
(1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?
(2)、活动4:动手操作
以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)
(3)、活动5:学生汇报、交流。
师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,
(边演示边说剪拼过程,并贴剪拼图于黑板。)
师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?
你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?
哪个小组和他剪的不一样?
师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。
(4)、大屏幕演示不同的拼法。
(5)、活动6:小组讨论
师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)
小组讨论:
a、拼成的长方形的面积和原来平行四边形的面积—————。
b、拼成的长方形的长与原来平行四边形的底———————。
c、拼成的长方形的宽与原来平行四边形的高———————。
(6)学生汇报,教师总结板书:
师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
教师板书平行四边形的面积=底×高,
(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)
(8)介绍板书字母式。
师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。
观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?
[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]
三、实践应用
活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)
[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]
四、课堂检测
1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)
2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)
3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)
[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]
五、全课小结。
想一想你这节课学到了什么?
板书设计:平行四边形的面积
长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
平行四边形面积教学设计 篇11
教学目标
1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。
3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。
教学重点
掌握并会用公式计算平形四边形的面积。
教学难点
利用转化的数学思想和方法来探索平形四边形面积公式
教学教程:
一、创设情境,引出问题
同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)
那长方形和正方形的面积与什么有关,怎么计算呢?(学生回答)
平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)
今天我们就来研究平行四边形的面积公式
二、自主探究,动手操作
1、出示要求
把平行四边形的纸片剪一刀,然后拼成一个长方形。
2、学生动手操作,教师深入学生当中观察指导
3、汇报会交流。
生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。
生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。
师:要拼成一个长方形要怎么做才能办到呢?
生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。
师:对,只要沿着平行四边形的一条高剪开,再平移就可以拼成一个长方形。
4、议一议:平行四边形和拼出的长方形有什么关系呢?
生1:拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。
生2:拼成的平行四边形的'面积和长方形的面积想等。
师:那谁来总结一下平行四边形的面积公式。
生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)
5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。
生:S=a×h
过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。
三、巩固训练,拓展延伸
1、试一试,计算平行四边形的面积。让学生先说一说图上的数据都表示什么,再试着计算。
2、练一练第1题。指名读题,独立完成。
3、问题讨论。提出问题:下图中的两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。
生:两个图形的面积相等,因为它们的底一样,高也相等。
生:平行四边形的面积等于底乘高,它们的底都是2、6,高都是1、8,所以面积相等。
师:也就是说,等底等高的平行四边形的面积想等。
四、课堂小结
通过本节课的学习,你有哪些收获?
五、布置作业
1、完成57页第2、3题
2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。
平行四边形面积教学设计 篇12
设计理念:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教学内容:
五年级上册第79-81页《平行四边形的面积》。
教学目标:
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。
学情分析:
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
教学重点:
掌握平行四边形面积计算公式。
教学难点:
平行四边形面积计算公式的推导过程。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
课前活动:
1、游戏:小小魔术师。教师出示不规则图形。
你能将这些图形分别变成我们学过的一个平面图形吗?(强调变形后的图形形状变了,面积不变。)
2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的'数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。
一、故事引入,激起质疑
1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。
一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?
阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的钱全部付清,怎么样?”
巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”
2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?
我们说的毛毯的大小指的是毛毯的什么?
以前我们学过哪些图形的面积,计算公式是什么?
3、这节课我们继续研究面积:平行四边形的面积。(板书课题)
以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。
设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。
二、动手操作,探究方法
(一)猜想
请同学们拿出学具袋中中的平行四边形,看一看,摸一摸、想一想,大胆猜测一下:平行四边形的面积怎样计算呢?
根据学生猜测,板书:可能出现(底x高或底x邻边)
根据学生的回答随机让学生画高,指名板演并强调平行四边形的高有无数条
(二)验证
1、到底哪种猜测正确呢?这就需要我们进行验证才知道。
2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?
3、静静地想,想好了吗?
(三)操作
1、探究活动步骤:
想好了,我们来看“深入探究活动”,分三步进行:
第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。
第二步:结合剪拼过程,思考这三个问题:大声读出来!
深入探究学习卡
①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?
②剪拼后的图形与原来的平行四边形相比,什么不变?”
③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系
第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。
明白了吗?比比看,哪个小组进行的又快又好!开始吧!
2、学生活动,教师参与。
请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。
3、汇报交流
(1)汇报剪拼过程。
一边演示,一边说说你的剪拼过程。
(2)指导规范叙述:
(板书:沿高剪平移)并追问:为什么要沿高剪?
(四)推导
1、汇报探究的三个问题。
结合剪拼过程,谁来说说你对这三个问题的思考?
①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。
②剪拼后的长方形与原来的平行四边形相比,面积不变。
③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。
2、汇报交流:面积不变,长---底,宽---高
追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?
请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。
师板书:平行四边形的面积=底x高
长方形的面积=长x宽
设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。
(五)结论
1、证实猜想,得出结论:平行四边形的面积=底x高是正确的
2、用字母表示:S=ah
三、解决问题,拓展延伸
1、算一算:在我们的生活当中,平行四边形随处可见,出示情境图,你发现了哪些平行四边形?你会计算吗?
2、你能算出芸芸家这块菜地的面积吗?
题上给了这么多信息,应该怎么选择呢?试试看,你一定行!
看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!
3、接下来大家要加油噢!看,向你挑战!怕不怕?
下面两个平行四边形,它们的面积一样大吗?
小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?
四、全课小结,完善新知:
现在大家看:哪块毛毯的面积大呢?
你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!
同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了平行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!
设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。
