短文网整理的《比例的意义》教案(精选36篇),快来看看吧,希望对您有所帮助。
《比例的意义》教案 篇1
教学内容:
比例的意义、基本性质,比例各部分名称,组比例。
教学目标:
1. 使学生理解比例的意义,认识比例各部分的名称。
2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。
教学重点:
比例的意义和基本性质。
教学难点:
理解比例的基本性质。
教学过程:
一、 复习
1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。
2、 求下面各比的比值,哪些比的比值相等?
12:16 : 4.5:2.7 10:6
二、 新授
提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。
1、 比例的意义
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
从上不中可以看到,这辆汽车:
第一次所行台的.路程和时间的比是
第二次所行驶的路程和时间的比是
这两个比的比值各是多少?它们有什么关系?
(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。
板书:80:2=200:5 或 =
师:这样的式子,我们给它一个名字叫做比例。
(2) 口答
A、把复习第2题中两个比值相等的比用等号连起来。
B、用等号连接起来的式子叫做什么?
C、根据刚才的回答,你能说出什么叫比例吗?
(3) 小结。
A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。
B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。
(4) 练习,课本第10页做一做。
2、 比例的基本性质。
(1) 比例各部分的名称。
引导学生观察黑板上的例题:80:2=200:5
并自学课本
提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?
(2) 说出下面各比例的外项和内项?
6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8
(3) 计算:上面比例中的外项积与内项积。
(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?
师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?
(5)你能得出什么结论?
三、 巩固练习
1、 完成第2页的做一做。
2、 完成第3页的做一做第1题。
四、 总结
1、 比例的意义和基本性质是什么?
2、 怎样判断两个比能否组成比例?
五、 作业
1、 完成练习四的第1-3题。
《比例的意义》教案 篇2
教学目标:
1、理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:CAI课件
教学过程:
一、复习、导入
1、谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、课件显示:算出下面每组中两个比的比值
⑴3:518:30⑵0.4:0.21.8:0.9
⑶5/8:1/47.5:3⑷2:89:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
5、那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、出示例1根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1)课件出示:3:5
前项后项
(2)课件出示:3:5=18:30
内项
外项
(3)如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书:3×10=5×63:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的.基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14:21和6:9
1.4:2和5:10
3、判断下面哪一个比能与1/5:4组成比例。
①5:4②20:1
③1:20④5:1/4
4、在()里填上合适的数。
1.5:3=():4
=
12:()=():5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、全课总结(略)
《比例的意义》教案 篇3
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的`数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
教学目的:
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
《比例的意义》教案 篇4
学情分析
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标
1、使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点和难点
教学重点:认识反比例关系的意义。
教学难点 :掌握成反比例量的变化规律及其特征。
教学过程
一、复习导入
1、正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2、下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3、说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4、引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、教学新课
1、教学例4。
出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?
点名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)
2、教学例5。
出示例5。
按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?
(板书:每袋重量和袋数的积一定)
乘积8000是什么数量,这种数量关系用式子怎样表示?
[板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)
3、概括。
(1)综合例4、例5的`共同点。
提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例4、例5里两种相关联的量,它们是什么关系的量呢?
像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。
问:两种相关联的量成不成反比例的关键是什么?
(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。
4、具体认识。
(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例5里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)做练习八第4题。
让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]
(4)判断。
现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
三、巩固练习
1、 做“练一练”第l,2,3,4,5题。
指名口答,说说理由。思考时可以引导看数量关系式,说明理由。
2、拓展应用。
3、综合练习
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
《比例的意义》教案 篇5
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
《比例的意义》教案 篇6
教学目标
知识目标:理解比例的意义,掌握组成比例的关键条件。
能力目标:能正确的判断两个比能否组成比例。
情感目标:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
重点解比例的意义,掌握组成比例的关键条件。
难点正确的判断两个比能否组成比例。
教学过程教学预设个性修改。
目标导学复习激趣目标导学自主合作汇报交流变式训练。
创境激疑
一、创设情境,导入新课
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
合作探究
二、新授(课件出示不同大小的国旗图案)
师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?
(板演,观察到比值相等,教师板书:两个比相等)
师:那我们就可以将这两个比用等号连接。(教师板书生汇报的两个相等的比)
教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(生回答,等式;有两个相等的比)
(教师再强调:一定是比值相等的两个比才能组成比例。)
师:你还能从四面国旗中找出哪些比例?
(写在练习本上,然后汇报。教师板书)
师:我们在学习比的'时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(口答)
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。
拓展应用下面哪些组的两个比可以组成比例?如果能,在()打对号。
10:2和35:42()0.6:0.2和):4和3:():和12:8()
总结小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?
作业布置做一做。
《比例的意义》教案 篇7
教学内容:教材第42~44页例4~例6,“练一练”,练习八第4—7题。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:认识反比例关系的意义。
教学难点:掌握成反比例量的变化规律及其特征。
教学过程:
一、复习旧知
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、教学新课
1.教学例4。
出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例5。
出示例5。
请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)
3.概括反比例的意义。
(1)综合例4、例5的共同点。
提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的'量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。
4.具体认识。
(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例5里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)做练习八第4题。
让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]
(4)判断。
现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例6。
出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?【板书;每本的页数×本数=纸的总页数(一定)】请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做“练一练”第l题。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.做“练一练”第2题。
指名口答,说说理由。思考时可以引导看数量关系式。
3.做练习八第5题。
让学生先在书上判断。指名口答,要求说出数量关系式判断。
4.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
5.做练习八第6题。
各人先在书上写各成什么比例。指名口答,要求说明理由。
6.做练习八第7题。
先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习八第7题。
《比例的意义》教案 篇8
教学内容:
《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
c、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:1020=6002030=6003020=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?
生:……
师:模仿例4的.方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。
六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
[案例分析]:
通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
《比例的意义》教案 篇9
教学内容
人教版教材第33-34页比例的意义和基本性质。
教学目标
1、理解比例的意义,认识比例各部分的名称。
2、能运用比例的意义判断两个比能否组成比例,并会组比例。
3、理解并会应用比例的基本性质。
教学过程
一、情境导入,复习比的知识
教师出示课件,结合画面引入。
师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
教师板书课题:比例的意义和基本性质。
师:说到比例,我们很容易想起前面学过?(教师拖长声音)
生:比(几乎异口同声地)
师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。
[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]
二、自主探究,学习比例的意义
1、探求共性,概括意义
师:刚才第三题10:6 与 4.5:2.7 的比值有何特点?
生1:我发现这两个比的比值相等 。 师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!
生2:用等号。(师把左右两个中间板书 = )
师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?
生:比例(有几个学生低声说)
师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)
师:你现在想知道什么叫比例吗?
生:想(学生声音响亮,愿望强烈)
师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式: a:b=c:d或 = (b、d不能为0)
2、根据意义,判断比例
师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?
生:看比值是不是相等
师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10 和 9∶15 (2)20∶5 和 1∶4
师:比一比 看谁说的又快又好!
生1:因为 6∶10 = 0.6
9∶15 = 0.6
所以 6∶10 = 9∶15
生2: 因为 20∶5 = 4
1∶4 = 0.25
所以 20∶5和1∶4不能组成比例. (学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)
师:请同学们自己独立完成学案上的课堂训练
(一)第1题。(再次巩固判断两个比是否成比例的方法,并熟练解题思路。)
[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]
三、合作探究,学习比例的基本性质
1、组织看书,认识名称
师:a:b里比号前面的a叫——(生齐答:前项)比号后面的b叫——(生齐答:后项)。那么在比例里的各部分有哪些名称呢?请同学自学课本,并汇报。然后完成学案上的课堂训练
(一)第2题进行巩固。
2、活动探究,总结性质
小组活动内容:
①观察比例的两个内项与两个外项,算一算,你发现了什么。
②如果把比例写成分数形式,是否也有上面发现的规律?
③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再找几个比例进行验证。
④通过以上研究,你发现了什么?(5分钟后,学生基本停止了讨论。)
师:请汇报你发现的规律。
生1:两个外项的积等于两个内项的积
生2:不对,老师,我有个反例:0:1=1:0 0×0=0,1×1=1,所以?
还没等生2说完,生3迫不及待:不对,比的后项不能为0的,你这个不是比例。
生2:那我0:1=0:2 (很着急的改了)
生4:那0×2=0 ,1×0=0,还是两个外项积等于两个内项积。
师:同学们验证得非常认真,现在我们可以一致公认——(生齐答:任何一个比例里,两个外项的'积等于两个内项的积。)
师:和比的基本性质一样,我们把这种性质叫做比例的——(生齐答:比例的基本性质。)(板书:基本性质)
3、应用性质,自主判断
师:刚才我们应用比例的基本性质解决了这两个问题(课件展示刚才的问题:下面哪组中的两个比可以组成比例?把组成的比例写出来(1)6∶10和9∶15 (2)20∶5和1∶4)
师:学过比例的基本性质后,你有新的方法解决这个问题吗?不一会,就有学生举起了小手。
生1:第(1)题,只要算一下6×15=90,10×9=90,乘积相等,所以能组成比例.
生2:第(2)题,20×4=80,5×1=5,乘积不相等,所以不能组成比例.
师:很好!同学们发现了一种新的判断两个比是否成比例的方法,现在请大家用你发现的方法完成学案课堂训练
(二)。
4、总结方法,辨析概念
师:我们学了比例的意义和基本性质后,你有几种方法判断两个比能否组成比例?
生:两种,一种是利用比例的意义,通过计算两个比的比值来判断;另一种是利用比例的基本性质,通过计算能够构成内项与外项的两个数的积是否相等来判断。
师:(惊喜!)这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢?
生1:比是两个数相除,是一个算式;比例是两个比相等,是一个等式
生2:比有两项,比例有四项。
生3:比与比例各部分的名称不同,比的项分别叫做前项和后项;比例的四项,有两个叫做外项,有两个叫做内项。
师:同学们的概括能力很强,你们真的很棒!
师:把你们回答的内容总结一下,边说边展示课件:从意义上、项数上进行对比:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。 [设计意图:以上比例基本性质的教学,把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。]
四、灵活运用,大显身手
师:以上就是我们这节课学习的内容,大家想要知道自己掌握的情况,请认真完成学案灵活运用与拓展天地的部分。
[设计意图:这一部分设计了活用知识点与拓展天地两个部分,其中活用知识点侧重于考察基础知识、而拓展天地则侧重于培养学生的发散思维。拓展天地的这个问题要想写出全部的八个比例式,需要综合运用比例的意义与基本性质,难度比较大,而教师的教学设计就是要善于把学生已有的知识引向纵深,并以此为载体促进学生能力的提高。]
五、归纳小结,交流收获
师:同学们,通过本堂课的学习,你有什么收获,还有什么疑问?
[设计意图:培养学生反思自己学习过程的意识,有利于学生掌握、巩固新知,并促使学生能深入思考和探索。
《比例的意义》教案 篇10
教学内容:
比例的意义和基本性质。
教学要求:
使学生理解比例的意义,会用比例的意义正确地判断两个比是否 成比例,使学生理解比例的基本性质。
教学重点:
理解比例的意义和基本性质。
教学难点:
灵活地判断两个比是否组成比例。
教 具:
投影机等。
教学过程:
一、复习。
1、什么叫做比?什么叫做比值?
2、求出下面各比值,哪些比的比值相等?
12:16 : 4.5:2.7 10:6
二、提示课题,引入新课。
1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。
2、引入新课。
三、导演达标。
1、教学比例的意义。
(1)引导学生观察课本的表格后回答:
A、第一次所行驶的路程和时间的比是什么?
B、第二次所行驶的路程和时间的比是什么?
C、这两次比的比值各是什么?它们有什么关系?
板书: 80:2=200:5 或 =
(2)引出比例的意义。
A、表示两个比相等的式子叫做比例。
B、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的?比和比例有什么区别?
C、判断两个比能不能组成比例,关键是看两个比的比值是否相等。
D、做一做。(先练习,后讲评)
2、教学比例的基本性质。
(1)看书后回答:
A、什么叫做比例的项?
B、什么叫做比例的`外项、内项?
(2)引导学生总结规律?
先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。
3、练习:判断下面的哪组比可以组成比例。
6:9和9:12 1.4:2和7:10
四、巩固练习:第一、二题。(指名回答,集体订正)
五、总结:今天我们学习了什么?
比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。
六、作业:第二题。
《比例的意义》教案 篇11
教学内容:
《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:
理解反比例的意义。
教学难点:
两种相关联的量的变化规律。
教学准备:
学生准备:复习正比例关系,预习本节内容。
教师准备:
投影片3张,每张有例题一个。
教学过程设计:
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
c、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:1020=6002030=6003020=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的.?根据什么?
生:……
师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。
六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
[案例分析]:
通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
《比例的意义》教案 篇12
教学目标
知识目标:理解比例的意义。
技能目标:能正确判断两个比是否能组成比例,培养学生抽象概括能力。
情感目标:使学生初步感知事物间是相互联系、变化发展的。
教学重难点
重点:理解比例的意义。
难点:判断两个比能否组成比例。
教学工具
多媒体课件
教学过程
一、新课导入
请同学们回忆一下比的知识,比的'前项、后项和比值。
二、教学过程
1.比例的意义
(1)出示P40例1
操场上和教室里两面国旗的长和宽的比值有什么关系?
2.4∶1.6=3∶2
60∶40=3∶2
2.4∶1.6=60∶40
象这样表示两个比相等的式子叫做比例。
比例也可以写成:=
做一做
1、下面那组中的两个比可以组成比例?把组成的比例写出来。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) ∶和6∶4 (4)0.6∶0.2和∶
答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2
(4)0.6∶0.2=3∶2 ∶ =3∶1
所以,只有第一组可以组成比例为6∶10=9∶15
2、用图中4个数据可以组成多少比例?
答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5
全课小结
通过这节课,我们学到了什么知识?什么是比例?
拓展延伸
用8、12四个数分别作为比例的项,你能组成几个比例?
课后小结
通过这节课,我们学到了什么知识?什么是比例?
课后习题
一、填空
1、( )叫做比例。
2、两个比的( )相等,这两个比就相等。
3、把6×8=24×2改写成四个比例。
4、把7m=8n改写成四个比例。
5、根据8×9=3×24,写出比例( )
6、如果7a=6b,那么a:b=( ):( )。
7、如果9a=5b,那么b:a=( ):( )。
二、选择
1、下面的比中能与3∶8组成比例的是( )。
A.3.5∶6 B.1.5∶4 C.6∶1.5
2、甲数除乙数的商是1.8,那么甲数与乙数的比是( )。
A.9:5 B.5:9 C.1:8
3、下面的数中,能与6、9、10组成比例的是( )。
A.7 B.5.4 C.1.5
板书
表示两个比相等的式子叫做比例。
《比例的意义》教案 篇13
教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
教学重点难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
教具学具准备:
幻灯片、学习卡。
教学过程:
一、创设情景,引入新课。
出示三幅场景图。
(1)图上描述的是什么情景?这几幅图都与什么有关?
(2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)
(3)你们有见过这样的国旗吗?或者这样的?
我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题
二、自主探究,明确意义
1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?
2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?
3、学生汇报。
4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。
像这样表示两个比相等的式子叫做比例。(板书)
5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?
6、深入探讨:
(1)比例有几个比组成?
(2)是不是任意两个比都能组成比例?
(3)判断两个比能不能组成比例,关键要看什么?
7、完成“做一做”。
三、探究比例的基本性质。
1、学习比例各部分的名称。
教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)
(1)指名读一读有关知识。
(2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?
随着学生的回答教师出示:
2.4: 1.6 = 60: 40 (外项)(内项)
└-内项-┘ =
└------外项-------┘ (内项)(外项)
(3)如果把比例写成分数形式,你能找出它的内项和外项吗?
(4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。
2、研究比例的基本性质。
(1)活动探究,总结性质。
谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。
①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?
2.4:1.6=60:40 =
②你能举一个例子,验证你的发现吗?
③你能得出什么结论?
④你能用字母表示这个性质吗?
(2)运用性质。
①提问:学了比例的基本性质,你觉得运用它能解决什么问题?
②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1) 6:3和8:5 (2) 0.2:2.5 和 4:50
(3) :和 : (4) 1.2: 和 :5
四、巩固练习。
1、填空
(1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。
(2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。
(3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。
(4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。
(5)如果5a=3b,那么, = , = 。
2、判断。
(1)在比例中,两个外项的积减去两个内项的积,差是0。( )
(2)18:30和3:5可以组成比例。( )
(3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )
(4)因为3×10=5×6,所以3:5=10:6。( )
3、把下面的等式改写成比例:(能写几个写几个)
16 × 3 = 4 × 12
四、总结归纳
1、这节课我们学习了什么知识?你有什么收获?
2、判断两个比能不能组成比例,有几种方法?
比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。
板书设计
比例的意义和基本性质
表示两个比相等的式子叫做比例。
2.4: 1.6 = 60: 40 (外项)(内项)
└-内项-┘ 或 =
└------外项-------┘ (外项)(内项)
在比例里,两个外项的积等于两个内项的积。
A:B=C → AD=BC
《比例的意义》教案15
教学内容:教科书第19—21页正比例的意义,练习六的1—3题。
教学目的:
1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。
2.初步培养学生用事物相互联系和发展变化的观点来分析问题。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程():
一、复习
用,投影片逐一出示下面的题目,让学生回答。
1.已知路程和时间,怎样求速度?板书: =速度
2.已知总价和数量,怎样求单价?板书: =单价
3.己知工作总量和工作时间,怎样求工作效率?板书:
=工作效率
4,已知总产量和公顷数,怎样求公顷产量?板书: =公顷产量
二、导人新课
教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)
三、新课
1.教学例1。
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:
提问:
“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)
“表中有哪几种量?”
“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”
“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”
教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60, =60…… 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。
然后教师指着 =60, =60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)
教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)
2.教学例2。
出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
让学生观察上表,并回答下面的问题:
(1)表中有哪两种量?
(2)米数扩大,总价怎样?米数缩小,总价怎样?
(3)相对应的总价和米数的比各是多少?比值是多少?
当学生回答完第二个问题后,教师板书: =3.1, =3.1, =3.1……
然后进一步问:
“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的',米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。
3.抽象概括正比例的意义。
教师:请同学们比较一下刚才这两个例题,回答下面的问题;
(1)都有几种量?
(2)这两种量有没有关系?
(3)这两种量的比值都是怎样的?
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)
接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?
最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?
学生回答后,教师板书: =K(一定)
4,教学例3。
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
教师引导:
“面粉的总重量和袋数是不是相关联的量?”·
“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书: =每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”
5.巩固练习。
让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。
四、课堂练习
完成练习六的第1—3题。
第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)
第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。
《比例的意义》教案 篇14
教学要求:
1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学重点:认识正比例关系的意义。
教学难点:掌握成正比例量的变化规律及其特征。
教学过程:
一、复习铺垫
1.说出下列每组数量之间的关系。
(1)速度 时间 路程
(2)单价 数量 总价
(3)工作效率 工作时间 工作总量
2.引入新课。
上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)
二、教学新课
1.教学例1。
出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:
(1)表里有哪两种数量,这两种数量是怎样变化?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论,得出:
(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。
(2)时间扩大,路程也扩大;时间缩小,路程也缩小。
(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)
2.教学例2。
出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)
3.概括。
(1)综合例1、例2的共同点。
提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)
(2)概括正比例关系的意义。
像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢? 指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子 =k (一定)来表示。
4.具体认识。
(1)提问:例l里有哪两种相关联的'量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?
(2)做练习八第1题。
让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。
5.教学例3。
出示例3,让学生思考。提问:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。
三、巩固练习
现在,我们根据上面的判断方法来做一些题。
1.做“练一练”第l题。
指名学生口答,说明理由。可以结合写出数量关系式。
2.做“练一练”第2题。
指名口答,并要求说明理由。
3.做练习八第2题。
小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)
4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?
一种苹果,买5千克要10元。照这样计算,买15千克要30元。
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?
五、家庭作业
练习八第3题。
《比例的意义》教案 篇15
教学内容:教科书第19—21页正比例的意义,练习六的1—3题。
教学目的:
1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。
2.初步培养学生用事物相互联系和发展变化的观点来分析问题。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程():
一、复习
用,投影片逐一出示下面的题目,让学生回答。
1.已知路程和时间,怎样求速度?板书:=速度
2.已知总价和数量,怎样求单价?板书:=单价
3.己知工作总量和工作时间,怎样求工作效率?板书:
=工作效率
4,已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量
二、导人新课
教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)
三、新课
1.教学例1。
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:
提问:
“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)
“表中有哪几种量?”
“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”
“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”
教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来:=60.=60,=60……让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。
然后教师指着=60,=60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(—定)
教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)
2.教学例2。
出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
让学生观察上表,并回答下面的问题:
(1)表中有哪两种量?
(2)米数扩大,总价怎样?米数缩小,总价怎样?
(3)相对应的总价和米数的比各是多少?比值是多少?
当学生回答完第二个问题后,教师板书:=3.1,=3.1,=3.1……
然后进一步问:
“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书:=单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。
3.抽象概括正比例的意义。
教师:请同学们比较一下刚才这两个例题,回答下面的问题;
(1)都有几种量?
(2)这两种量有没有关系?
(3)这两种量的比值都是怎样的?
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的`两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)
接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?
最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?
学生回答后,教师板书:=K(一定)
4,教学例3。
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
教师引导:
“面粉的总重量和袋数是不是相关联的量?”·
“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书:=每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”
5.巩固练习。
让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。
四、课堂练习
完成练习六的第1—3题。
第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)
第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。
《比例的意义》教案 篇16
教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。
教学目的:
1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。
2.使学生进一步认识事物之间的相互联系和发展变化规律。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程():
一、复习
1.让学生说说什么是成正比例的量:
2.用投影片出示下面的题:
(1)下面各题中哪两种量成正比例?为什么?
①笔记本单价一定,数量和总价:
⑨汽车行驶速度一定.行驶的路程和时间。
②工作效率一定.’工作时间和工作总量。
①一袋大米的重量一定.吃了的和剩下的。
(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?
二、导入新课
教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。
三、新课
1.教学例4。
出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。
让学生观察这个表,然后每四人一组讨论下面的.问题:
(1)表中有哪两种量?
(2)所需的加工时间怎样随着每小时加工的个数变化?
(3)每两个相对应的数的乘积各是多少?
学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数
“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)
“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”
学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。
2.教学例5。
用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。
(1)理解题意,填写装订本数。
“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)
“这40本是怎么计算出来的?”(用600÷15)
“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。
(2)观察分析表中两种量的变化规律。
让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)
“装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数
15 40
20 30
25 24
一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。
1,单价一定.数量和总价。
2,路程一定,速度和时间。。
3,正方形的边长和它的面积。
1.时间一定,工效和工作总量。
二、导入新课
教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断
两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我
们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。
板书课题:正比例和反比例的比较
三、新课
1.教学例7。
出示例7的两个表:
表1 表2
让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:
在表l中: 在表2中:
相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化
一定。因此,路程和时间 ,路程是一定的。因此,速
成正比例关系。 度和时间成反比例关系
然后提问:
(1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/
(2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?
教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?
板书:速度×时间=路程
=速度 =速度
教师:当速度一·定时,路程和时间成什么比例关系?
教师:当路程一定时,速度和时间成什么比例关系?
教师:当时间一定时。路程和速度成什么比例关系?
2.比较正比例和反比例关系。
教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:
四、巩固练习
1.做教科书第28页“做一做”中的题目。
让学生自己填,并说一说为什么。
2.做练习七的第1—2题。
教师巡视,个别辅导,最后订正。
五、小结
教师:请同学们说说正比例和反比例关系有什么相同点和不同点?
《比例的意义》教案15篇
作为一名无私奉献的老师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。我们应该怎么写教案呢?以下是小编整理的《比例的意义》教案,希望能够帮助到大家。
《比例的意义》教案 篇17
教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。
教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。
教学重点:理解比例的意义和基本性质。
教学难点:用比例的意义或性质判断两个比成不成比例。
教学理念:以学生为主体,把较多的时间和空间留给学生探索、交流、概括。
教具、学具准备:小黑板,教学课件
教学步骤
一、复习铺垫
l.什么叫做两个数的比?请你说出两个比。(教师板书)
2.什么是比的比值?上面两个比的比值是多少?
3.引入新课。
我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)
二、导入新课
1.教学比例的`意义。
让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)
(1) 3 :5 24 :40 (2) :7.5 :3
追问:比值相等,说明每组里两个比怎样?
指出:表示两个比相等的式子叫做比例。
说一说,上面两个等式表示的是怎样的式子?
2.下面两个比之间的哪些○里能填“=”,为什么?
1 :2○3 :6 0.5 :0.2○5 :2
1.5 :3○15 :3:2○:1
提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。
3.教学例1。
出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。
让学生根据比例的意义,在( )里填上适当的数。
3 :6=5 :( ) 0.8 :( )=1 :
4.教学比例的基本性质。
向学生说明比例各部分的名称。
让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。
5.判断能否组成比例。
出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?
强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?
让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?
三、巩固练习
1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?
2. 完成“练一练”。
指名4人板演.集体订正.说说是怎样判断的?
3.做练习六第1题。
让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。
4.做练习六第2题。
让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)
5.完成练习六第3题。
学生先观察、计算,然后口答,说明理由。
四、全课小结
这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?
五、布置作业
练习六第4、5题。
《比例的意义》教案 篇18
教学目标
1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。
2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。
3、体验获得成功的乐趣,建立学好数学的自信心。
教学重难点
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例。
教学工具
ppt课件
教学过程
请同学们回忆一下上学期我们学过的比的知识,谁能说说:
1、什么叫做比?比的书写形式有哪些?
2、什么叫做比值?
一、情境引入
同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。
(生齐声说:升旗仪式)
课件出示:升旗仪式的情景
你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?
不了解是吧?那老师告诉大家:
课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。
提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?
指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)
在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。
那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?
那么下面呢我们看一下老师收集到的一些信息。
课件出示不同场合下的'国旗
课件出示:不同场合下的国旗
提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。
(2)学校的国旗长2.4米,宽1.6米。
(3)教室里面的国旗长60厘米,宽40厘米。
(4)会议桌上的国旗长15厘米,宽10厘米。
那我们现在看到的这些国旗的大小都一样吗?
师小结:在不同的场合的国旗的大小是不一样的。
追问:它们的形状相同吗?(相同)
尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。
二:探究新知
下面请同学们拿出练习本,听清要求:
先写出图中国旗长与宽的比然后再求出它的比值。
学生自主计算,教师巡视。
提醒:同学们在计算时,一定要认真。注意计算结果的准确性。
哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答
根据学生汇报并分类板书。
5:10/3=3/2
2.4::16=3/2
60:40=3/2
15:10=3/2
大家同意他的计算结果吗?
师:请同学们观察黑板上的计算结果,看看有什么发现。
指名回答
师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的
板书:5:10/3 2.4:1.6
师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?
来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6
提问:那么谁能根据这四个5:10/3=3/2
2.4:1.6=3/2
60:40=3/2
15:10=3/2
相等的比也像老师一样写一个等式呢?
指名回答并根据汇报板书
我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答
老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)
大家齐读两遍,开始。
学生齐读
这就是我们今天要学习的内容—比例的意义
板书课题
提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?
指名回答
教师明确:两个比相等并在这句话的字的下面标上黑点
表示两个比相等的式子叫做比例。
2、深入理解比例的意义
那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。
那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。
追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?
(指名回答)
大家同意吗?
对学生的回答进行评价
追问:如果不相等的话,能组成比例吗?
教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!
(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??
请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!
班内交流:哪位同学说一说你们小组找出来哪些比例?
同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕
展示:2.4:1.6 = 60:40 (长:宽=长:宽)
1.6:2.4 = 40:60 (宽:长=宽:长)
2.4:60 =1.6:40 (长:长=宽:宽)
这里能组成的比例还有很多,同学们课下再找出其他的比例吧!
2、比和比例的区别?
(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!
(2)交流:谁愿意来说一说你们小组讨论的结果?
(生答)
(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的式子。,请看屏幕上的表格
三、智慧城堡
师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?
四、谈收获
这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?
五、全课总结:
师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
课后小结
比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
《比例的意义》教案 篇19
教学内容:
教材第99~102页例1~例3。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关
系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例2。
出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050
所需的天数
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的.天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例1
出示例1。
请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例3。
出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做练一练。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做练习十二第1题。
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习十二第2~4题。
《比例的意义》教案 篇20
教学内容:
《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
c、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:1020=6002030=6003020=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?
生:……
师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。
六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
[案例分析]:
通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
《比例的意义》教案 篇21
教学要求:
1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学重点:
认识正比例关系的意义。
教学难点:
掌握成正比例量的变化规律及其特征。
教学过程:
一、复习铺垫
1.说出下列每组数量之间的关系。
(1)速度 时间 路程
(2)单价 数量 总价
(3)工作效率 工作时间 工作总量
2.引入新课。
上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)
二、教学新课
1.教学例1。
出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:
(1)表里有哪两种数量,这两种数量是怎样变化?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论,得出:
(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。
(2)时间扩大,路程也扩大;时间缩小,路程也缩小。
(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)
2.教学例2。
出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)
3.概括。
(1)综合例1、例2的共同点。
提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的'量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)
(2)概括正比例关系的意义。
像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢? 指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子 =k (一定)来表示。
4.具体认识。
(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?
(2)做练习八第1题。
让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。
5.教学例3。
出示例3,让学生思考。提问:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。
三、巩固练习
现在,我们根据上面的判断方法来做一些题。
1.做“练一练”第l题。
指名学生口答,说明理由。可以结合写出数量关系式。
2.做“练一练”第2题。
指名口答,并要求说明理由。
3.做练习八第2题。
小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)
4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?
一种苹果,买5千克要10元。照这样计算,买15千克要30元。
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?
五、家庭作业
练习八第3题。
《比例的意义》教案 篇22
教学目标
1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.
教学重点
理解正反比例的意义,掌握正反比例的变化的规律.
教学难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
1.写出路程和时间的比并计算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 这个比值表示什么意义?
(4) 360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
教师板书:商不变
(二)成反比例的量
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.
2.教师提问
(1)计算工效和时间的乘积.
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)
3.小结:有什么规律?(板书:积不变)
(三)不成比例的量
1.出示表格
2.教师提问
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的'吨数少;总和不变
(四)结合三组题观察、讨论、总结变化规律.
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化
不同点:第一组商不变,第二组积不变,第三组和不变.
总结:
3.分别概括
4.强调第三组题中两种相关联的量叫做不成比例
5.教师提问
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式
三、巩固练习
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽
4.修一条路,已修的米数和剩下的米数.
四、课堂总结
今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.
五、课后作业
(一)判断下面每题中的两种量是不是成正比例,并说明理由.
1.苹果的单价一定,购买苹果的数量和总价.
2.轮船行驶的速度一定,行驶的路程和时间.
3.每小时织布米数一定,织布总米数和时间.
4.长方形的宽一定,它的面积和长.
(二)判断下面每题中的两种量是不是成反比例,并说明理由.
1.煤的总量一定,每天的烧煤量和能够烧的天数.
2.种子的总量一定,每公顷的播种量和播种的公顷数.
3.李叔叔从家到工厂,骑自行车的速度和所需时间.
4.华容做12道数学题,做完的题和没有做的题.
六、板书设计
《比例的意义》教案 篇23
教学目标
1.使学生理解比例的意义,掌握组成比例的条件。
2.使学生能正确地判断两个比能否组成比例。
3.认识比例的各部分名称,掌握比例的基本性质。
教学重点和难点
比例的意义和性质的理解与应用。
教学过程设计
第一部分:比例的意义
(一)复习准备
1.求比值:
2.请你找出比值相等的两个比。
1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8
(二)学习新课
1.一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。
板书:80∶2
再请你说出第二次行驶路程和时间的比。
板书:240∶6
师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)
师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)
得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)
教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)
师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)
思考题:
1.什么叫比例?
2.比例的各部分名称?
3.组成比例的重要条件?
采取自学→两人讨论→集体讨论。
师再次强调组成比例的条件:
A.必须是两个比。
B.两个比的比值必须相等。
C.必须是一个式子。
最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。
师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)
比例还有其它书写格式吗?请同学们看,老师怎样写。
(三)巩固反馈
1.判断下面两个比能否组成比例?
(1)1∶3和3∶9( )
(2)60∶30和160∶80( )
(4)0.2∶0.4和1.6∶4( )
并组成比例。(学生先写再说)
3.随意写比例,互相查看。(至少写2个)
第二部分:比例的性质
(一)讲授比例的'性质
让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?
学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:
请你指出黑板上比例中的内外项。
现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:
通过以上几道题,使学生看到,在比例里两个外项的积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)
师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。
师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。
师:比例写成分数形式时,比例的性质如何理解呢?
80×6=2×240 1.2×8=24×0.4
即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:
(二)课堂练习
(放幻灯片)
(1)用比例性质验证你所写的比例是否正确?
(2)用2,8,5,20四个数组成比例。
(3)填适当的数。
3∶18=5∶( )
为什么填30?有几个答案?
4.8∶0.6=( )∶2
为什么只能填16?
12∶( )=( )∶5
有几个答案?
(4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?
(5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?
(三)课堂总结
(学生小结这节课所学内容。)
1.质疑:(学生、老师质疑)(幻灯片)
①表示两个相等的式子叫比例。对吗?
2.思考题:
(1)根据30×3=45×2写比例式。
(2)求x:
12∶30=8∶x
能不能应用今天所学的内容解决?怎么解决?比例的性质还可以应用在什么问题上?
课堂教学设计说明
本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。
第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。
第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。
另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。
在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。
板书设计
《比例的意义》教案 篇24
教学内容:教材第99~102页例1~例3。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:认识反比例关系的意义。
教学难点:掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关
系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例2。
出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050
所需的天数
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的'数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例1
出示例1。
请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例3。
出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做练一练。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做练习十二第1题。
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习十二第2~4题。
《比例的意义》教案
作为一名专为他人授业解惑的人民教师,常常需要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。那么大家知道正规的教案是怎么写的吗?以下是小编精心整理的《比例的意义》教案,希望能够帮助到大家。
《比例的意义》教案 篇25
教学目标:
1、理解比例的意义,认识比例各部分名称,能通过观察、猜想、验证等方法得出分数的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、培养学生猜想与验证、观察与概括的能力。
4、让学生经经历探究的过程,体验成功的快乐,收获数学学习的兴趣和信心。
教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
教学难点:自主探究比例的基本性质。
教学准备:投影片、练习纸
三案设计:
学案
一、自学质疑
[探究任务一] 比例的意义
1、投影出示几组比,让学生写出各组的比值,
二、比例的基本性质
教案
一、回顾旧知、孕伏新知:
1、谈话:同学们,我们已经学过了比的许多知识,说说你已经知道了比的哪些知识?
(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?能很快算出下面每组中两个比的比值吗?
2、 师板书题目:
(1)4:5 20:25 (2)0.6:0.3 1.8:0.9
(3)1/4: 5/8 3:7.5 (4)3:8 9:27
[评析:开门见山,从学生已有的知识经验入手,方便快捷,循序渐进,为新课做好准备。因为这些题目还要用到,所以不惜费时板书——有效的呈现方式]
二、丝丝入扣,深挖比例的意义
(一)认识意义
1、 指名口答每组中两个比的比值,在比例下方写上比值。
师问:你们有什么发现吗?(三组比值相等,一组不等)
2、是啊,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:4:5=20:25
师:最后一组能用等号连接吗?为什么?
数学中规定,像这样的一些式子就叫做比例,今天这节课我们就一起来研究比例(板书:比例)
[评析:通过口算求比值,不经意间学生就有了发现,有三组式子比值相等,一组不等,如行云流水般引出比例。有效的课堂教学,就需要像这样做好新旧知识的完美衔接。]
3、同学们想研究比例的哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
4、那好,我们就先来研究比例的意义,到底什么是比例呢?观察黑板上这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
板演:表示两个比相等的式子叫做比例。
学生议一议,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
5、质疑:有三个比,他们的比值相等,能组成比例吗?
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生议一议,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。让学生像一个数学家一样真正经历知识探索和形成的全过程,无时无刻不享受成功的快乐!]
(二)练习
1、投影出示例1,根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第1题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
(1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
(2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。这一环节,一学生对于“为什么”设计到了正反比例的知识,教师也不失时机予以评价,不但使该生兴致勃勃,也引得其他学生投来艳羡的目光,生成地精彩!]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、认识比例各部分的名称
(1)板书出示: 4 : 5
前项 后项
(2)板书出示:4 : 5 = 20 : 25
(3)如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:4/5=20/25
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义及其各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,大家有兴趣吗?
三、探究比例的基本性质
1、投影出示:
你能运用3、5、10、6这四个数,组成几个等式吗?(等号两边各两个数)
2、 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3
或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答,师相机引导并板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6: 3=10:5……
3、 引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不一样,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的'作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证猜想:
师:这是你的猜想,有了猜想还必须验证。
(1)请看黑板上这几个比例的内项的积与外项的积是不是相等?(学生进行验证,纷纷表示内项积等于外项积)
(2)学生任意写一个比例并验证。师巡视指导。
师:有一位同学也写了一个比例,他认为这个比例的内项积与外项积是不相等的,大家看看是什么原因?
板书:1/2 ∶1/8 = 2∶ 8
众生沉思片刻,纷纷发现等式不成立。
生:1/2∶1/8 = 4,而 2∶8 =1/4,这两个比不能组成比例。
师:看来刚才发现的规律前要加一个条件——在比例里(板书),这个规律叫做比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考4/5=20/25是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
[及时总结评价,不但可以帮助学生理清知识脉络,而且可以让他们感受创造的快乐,树立学习的信心。尤其是教师的评价:科学家也是这样研究问题的!更给了学生无上的荣耀!]
四、反馈提升
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9 1.4 :2 和 5 :10
让学生明确可以通过比例的意义和基本性质两个途径判断两个比能否组成比例。
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ②20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
①1.5:3=( ):4
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,第4题中第②题属于开放题,答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、课后留白
同一时间、同一地点,人高1.5米,影长2米;树高3米,影长4米。
(1)人高和影长的比是( )
树高和影长的比是( )
(2)人高和树高的比是( )
人影长和树影长的比是( )
你有什么发现?
为什么同一时间、同一地点两个不同物体高度与其影长的比可以组成比例?请大家课后查找有关资料。
[设计意图:数学服务于生活,在生活中能更好地检验数学学习的成色!“带着问题离开教室”是新课程的理念,没有完美的课堂,缺憾不失为一种美!]
六、全课总结:这节课你有什么收获?
(最后的机会仍然给学生,学生通过清晰的板书总结的很到位)
《比例的意义》教案 篇26
教学目标:
1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:CAI课件
教学过程:
一、复习、导入
1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、 课件显示:算出下面每组中两个比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、 指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的'路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
前项 后项
(2) 课件出示:3 : 5 = 18 : 30
内项
外项
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、 综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ② 20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
1.5:3=( ):4
=
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、全课总结(略)
《比例的意义》教案 篇27
教学目标
1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。
2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。
3、体验获得成功的乐趣,建立学好数学的自信心。
教学重难点
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例。
教学工具
ppt课件
教学过程
请同学们回忆一下上学期我们学过的比的知识,谁能说说:
1、什么叫做比?比的书写形式有哪些?
2、什么叫做比值?
一、情境引入
同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。
(生齐声说:升旗仪式)
课件出示:升旗仪式的情景
你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?
不了解是吧?那老师告诉大家:
课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。
提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?
指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)
在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。
那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?
那么下面呢我们看一下老师收集到的一些信息。
课件出示不同场合下的国旗
课件出示:不同场合下的国旗
提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。
(2)学校的国旗长2.4米,宽1.6米。
(3)教室里面的国旗长60厘米,宽40厘米。
(4)会议桌上的国旗长15厘米,宽10厘米。
那我们现在看到的这些国旗的大小都一样吗?
师小结:在不同的场合的国旗的大小是不一样的。
追问:它们的形状相同吗?(相同)
尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。
二:探究新知
下面请同学们拿出练习本,听清要求:
先写出图中国旗长与宽的比然后再求出它的比值。
学生自主计算,教师巡视。
提醒:同学们在计算时,一定要认真。注意计算结果的准确性。
哪个同学愿意和大家来分享你的`成果?和大家勇敢的分享你的成果。指名回答
根据学生汇报并分类板书。
5:10/3=3/2
2.4::16=3/2
60:40=3/2
15:10=3/2
大家同意他的计算结果吗?
师:请同学们观察黑板上的计算结果,看看有什么发现。
指名回答
师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的
板书:5:10/3 2.4:1.6
师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?
来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6
提问:那么谁能根据这四个5:10/3=3/2
2.4:1.6=3/2
60:40=3/2
15:10=3/2
相等的比也像老师一样写一个等式呢?
指名回答并根据汇报板书
我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答
老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)
大家齐读两遍,开始。
学生齐读
这就是我们今天要学习的内容—比例的意义
板书课题
提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?
指名回答
教师明确:两个比相等并在这句话的字的下面标上黑点
表示两个比相等的式子叫做比例。
2、深入理解比例的意义
那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。
那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。
追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?
(指名回答)
大家同意吗?
对学生的回答进行评价
追问:如果不相等的话,能组成比例吗?
教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!
(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??
请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!
班内交流:哪位同学说一说你们小组找出来哪些比例?
同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕
展示:2.4:1.6 = 60:40 (长:宽=长:宽)
1.6:2.4 = 40:60 (宽:长=宽:长)
2.4:60 =1.6:40 (长:长=宽:宽)
这里能组成的比例还有很多,同学们课下再找出其他的比例吧!
2、比和比例的区别?
(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!
(2)交流:谁愿意来说一说你们小组讨论的结果?
(生答)
(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的式子。,请看屏幕上的表格
三、智慧城堡
师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?
四、谈收获
这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?
五、全课总结:
师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
课后小结
比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
《比例的意义》教案 篇28
【学习目标】
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。
【学习重点】
理解反比例函数的意义,确定反比例函数的解析式。
【学习难点】
反比例函数的解析式的`确定。
【学法指导】
自主、合作、探究
教学互动设计
【自主学习,基础过关】
一、自主学习:
(一)复习巩固
1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.
2.一次函数的解析式是:;当时,称为正比例函数.
3.一条直线经过点(2,3)、(4,7),求该直线的解析式.
以上这种求函数解析式的方法叫:
(二)自主探究
提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?
1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.
(1)当y1-y2=4时,求m的值;
(2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程).
26.1.2反比例函数的图象和性质:课文练习
1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的是()
A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[
B.它们的图象都是轴对称图形
C.它们的图象都是中心对称图形
D.当x>0时,两个函数的函数值都随自变量的增大而增大
《比例的意义》教案 篇29
设计说明
本节课的教学内容包含“比例的意义和比例的基本性质”两部分。本节课的内容是这个单元的起始,属于概念教学,是为以后解比例,讲解正比例、反比例做准备的。学生学好这部分的知识,不仅可以初步接触函数的思想,还可以解决日常生活中的一些具体问题。遵循“自主探索与合作交流”的《数学课程标准》理念,本节课在教学设计上有以下特点:
1.重视有效学习情境的创造。
新课伊始,通过谈话激活学生对国旗的已有认识,引出本节课要用的中国国旗的三种不同规格的相关数据,激发学生的学习兴趣,使学生在熟悉的现实情境中,情绪饱满地进入到对比例知识的探究学习中。
2.重视引导学生自主探究。
教学比例的意义时,先引导学生依据三面国旗的长与宽写出多个比,再引导学生发现它们的比值相等,可以写成一个等式,引出比例,最后引导学生通过自己的分析、思考,进行归纳总结出比例的意义。
3.重视引导学生合作交流。
《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”为此,我们在教学中,不但要引导学生进行自主探究,还要引导学生进行合作交流。以“比例的基本性质”的探究为例,在教学中,通过小组合作交流,让学生思维互补,既有利于知识的学习,又有利于学生概括能力及语言表达能力的培养。
课前准备
教师准备 PPT课件
教学过程
⊙渗透情感,导入新课
1.课件出示国旗画面,学生观察,激发爱国情操。
(天安门升国旗仪式、校园升旗仪式、教室场景)
师:这三幅不同的场景都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽分别是多少吗?
2.课件出示国旗的长和宽,并提出问题。
天安门升旗仪式上的国旗:长5 m,宽 m。
操场升旗仪式上的国旗:长2.4 m,宽1.6 m。
教室里的国旗:长60 cm,宽40 cm。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?
3.导入新课。
师:每面国旗的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合国旗的知识来学习比例的意义和基本性质。
(板书课题:比例的意义和基本性质)
设计意图:通过谈话,激发学生的爱国情感和求知欲,在加强学生对国旗知识了解的同时,有效地引入学习资源,为学生探究比例的意义和基本性质提供第一手资料。
⊙合作交流,探究新知
1.教学比例的意义。
(1)自主尝试。
课件出示教材40页主题图,根据图中给出的数据分别写出不同场景中国旗的长和宽的比,并求出比值。
(2)汇报、交流。
预设
生1:天安门升旗仪式上的国旗。
长∶宽=5∶=
生2:操场升旗仪式上的国旗。
长∶宽=2.4∶1.6=
生3:教室里的国旗。
长∶宽=60∶40=
(3)感知比例的意义。
观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?
预设
生1:可以用等号连接,因为它们的比值相等。
“2.4∶1.6=”和“60∶40=”可以写作“2.4∶1.6=60∶40”。
生2:可以用等号连接,两个比的比值相等,说明这两个比也是相等的。
生3:根据比与分数的关系,“2.4∶1.6=60∶40”
也可以写成“=”。
《比例的意义》教案 篇30
教学目标
1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.
教学重点
理解正反比例的意义,掌握正反比例的变化的规律.
教学难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
1.写出路程和时间的比并计算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 这个比值表示什么意义?
(4) 360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的'什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
教师板书:商不变
(二)成反比例的量
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.
2.教师提问
(1)计算工效和时间的乘积.
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)
3.小结:有什么规律?(板书:积不变)
(三)不成比例的量
1.出示表格
2.教师提问
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变
(四)结合三组题观察、讨论、总结变化规律.
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化
不同点:第一组商不变,第二组积不变,第三组和不变.
总结:
3.分别概括
4.强调第三组题中两种相关联的量叫做不成比例
5.教师提问
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式
三、巩固练习
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽
4.修一条路,已修的米数和剩下的米数.
四、课堂总结
今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.
五、课后作业
(一)判断下面每题中的两种量是不是成正比例,并说明理由.
1.苹果的单价一定,购买苹果的数量和总价.
2.轮船行驶的速度一定,行驶的路程和时间.
3.每小时织布米数一定,织布总米数和时间.
4.长方形的宽一定,它的面积和长.
(二)判断下面每题中的两种量是不是成反比例,并说明理由.
1.煤的总量一定,每天的烧煤量和能够烧的天数.
2.种子的总量一定,每公顷的播种量和播种的公顷数.
3.李叔叔从家到工厂,骑自行车的速度和所需时间.
4.华容做12道数学题,做完的题和没有做的题.
六、板书设计
《比例的意义》教案 篇31
教学目标:
1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:
结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学关键:
理解成正比例的两个量的意义。
教学过程:
一、复习准备:
口答
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
课件出示:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。
特点是:
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是一定的。
4、正方形的面积与边长的比是边长,是一个不确定的值。
学生在小组内练说发现的规律,初步感知正比例的判定。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。
3、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。
4、正比例关系:观察思考成正比例的量有什么特征?
小结:
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。
追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)
(2)字母表达关系式。
如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)
(3)质疑。
师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
三、巩固练习
(一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
2、根据小明和爸爸的年龄变化情况
把表填写完整。父子的年龄成正比例吗?为什么?
(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。
1、判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由
4、画一画,你会有新的发现。
彩带每米4元,购买2米、3米…彩带分别需要多少钱?
①填一填:(长度:米,价格:元)
②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?
板书:
正比例的意义
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是一定的
路程÷时间=速度(一定)总价÷数量=单价(一定)
=k(一定)
《比例的意义》教案 篇32
教学内容:
补充有关比例意义、基本性质和解比例的练习
教学目标:
1.进一步理解和掌握比例的意义,能根据比例的意义判断两个比能否组成比例。
2.进一步理解和掌握比例的基本性质,能根据比例的基本性质正确判断两个比能否组成比例,进一步掌握解比例的方法。
3.通过练习,让学生在思考、交流中培养分析、概括能力,体会数学知识之间的联系,感受数学学习的乐趣。
教学措施:
帮助学生系统整理前几节课学习的数学知识;设计一些有针对性的练习;练习过程中注重分析学生练习情况,加强课堂上对学习困难生的辅导。
教学准备:
上传补充练习
教学过程:
一、整理知识
1.提问:前几节课我们学习了比例的意义、基本性质和解比例这三部分内容。你有哪些收获?请你和同桌交流一下。
2.学生同桌之间进行交流。
3.指名学生交流,教师相机板书,将知识点进行梳理和归纳。
4.揭示课题:运用比例的意义和比例的基本性质可以解决一些数学问题。这节课我们继续学习有关内容。(板书课题)
二、基本练习
1.判断。
(1)比例是一个等式。
(2)甲数和乙数的比值是2/3,如果甲、乙两个数同时扩大3.5倍,它们的比值还是2/3。
(3)比例的两个内项减去两个外项的积,差是0。
(4)任意两个正方形的周长与边长的比都可以组成比例。
(5)如果A╳9=B╳6(A、B均不为0),那么,A与B的比是3:2。
组织学生思考、交流,鼓励学生完整地说出自己的分析推理过程。
2.根据下面的等式,写出几个不同的比例。
3╳40=8╳15
(1)现在已知的是一个等式,等式左、右两边的两个数分别是写出的比例中的什么?
(2)你能有序地写出所有的比例,既不重复也不遗漏吗?(学生独立完成) (3)学生交流思考过程,教师及时讲评:可以先把3和40作为比例的内项,写出四个比例;然后再把8和15作为内项写出另外四个比例。
3.判断四个数10.5、5/4、20/21、8能否组成比例?
(1)要判断四个数能否组成比例有哪些方法?(根据比例的意义或比例基本性质)
(2)你认为这里选择哪种方法比较方便?
(3)指名学生交流后,学生写出比例。
小结:如果给我们四个数,要让我们判断能否组成比例,一般,我们可以运用比例的基本性质来判断比较简便。基本方法是先将这四个数从大到小排列,然后用最大数乘最小数,中间两数相乘,看看乘积是否相等,最后根据比例基本性质来写出不同的比例。
4.按要求组成比例。
(1)从2、10、4.5、9、5五个数中选出四个组成一个比例。
(2)从18的所有约数中选出四个组成一个比例。
(3)把8和9作两个外项,比值是1/2的一个比例。
(4)给5、8、0.4三个数分别配上一个不同的`数,组成两个不同的比例.
逐个出示题目,学生练习之前先要弄清题目要求。
学生完成后进行交流,要求说说自己的思考过程,教师及时评价。
教师要及时关注学生存在的问题及时辅导。
5.根据比例的基本性质,在括号里填上合适的数。
15:3=( ):1 2:0.5=12:( )
0.3/4=( )/32 7/9:( )=1/2:3/5
( )/12=3/18 ( ):4.5=0.4:9
先让学生根据比例基本性质来思考并求出括号中的数,然后请学生交流思考过程。
三、解比例
25:7=X:35 514: 35= 57:x 23:X= 12:14 X:15=13: 56
2、根据下面的条件列出比例,并且解比例
a. 96和X的比等于16和5的比。
b. 45 和X的比等于25和8的比。
c. 两个外项是24和18,两个内项是X和36 。
四、全课总结
通过本节课的学习,你又有哪些收获?你还有什么问题没有弄明白吗?
四、布置作业
补充相应练习
《比例的意义》教案 篇33
教学内容:比例的意义、基本性质,比例各部分名称,组比例。
教学目标:
1. 使学生理解比例的意义,认识比例各部分的名称。
2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。
教学重点:比例的意义和基本性质。
教学难点:理解比例的基本性质。
教学过程:
一、 复习
1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。
2、 求下面各比的比值,哪些比的.比值相等?
12:16 : 4.5:2.7 10:6
二、 新授
提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。
1、 比例的意义
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
从上不中可以看到,这辆汽车:
第一次所行台的路程和时间的比是____;
第二次所行驶的路程和时间的比是____;
这两个比的比值各是多少?它们有什么关系?
(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。
板书:80:2=200:5 或 =
师:这样的式子,我们给它一个名字叫做比例。
(2) 口答
A、把复习第2题中两个比值相等的比用等号连起来。
B、用等号连接起来的式子叫做什么?
C、根据刚才的回答,你能说出什么叫比例吗?
(3) 小结。
A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。
B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。
(4) 练习,课本第10页做一做。
2、 比例的基本性质。
(1) 比例各部分的名称。
引导学生观察黑板上的例题:80:2=200:5
并自学课本
提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?
(2) 说出下面各比例的外项和内项?
6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8
(3) 计算:上面比例中的外项积与内项积。
(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?
师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?
(5)你能得出什么结论?
三、 巩固练习
1、 完成第2页的做一做。
2、 完成第3页的做一做第1题。
四、 总结
1、 比例的意义和基本性质是什么?
2、 怎样判断两个比能否组成比例?
五、 作业
1、 完成练习四的第1-3题。
《比例的意义》教案 篇34
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2、通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:理解和领会反比例函数的概念.
教学难点:领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1)
;(2)
;(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有
的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的'概念.
分析及解答:(1)
;(2)
;(3)
概念:如果两个变量x,y之间的关系可以表示成
的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1、只有xy=123是反比例函数.
2、分析:因为y是x的反比例函数,所以
,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设
,因为x=2时,y=6,所以有
解得k=12
因此
(2)把x=4代入
,得
三、巩固提高
活动5
1、已知y是x的反比例函数,并且当x=3时,y=8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2、y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
《比例的意义》教案 篇35
1、成正比例的量
教学内容:成正比例的量
教学目标:
1.使学生理解正比例的意义,会正确判断成正比例的量。
2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一揭示课题
1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二探索新知
1.教学例1
(1)出示例题情境图。
问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝24681012
体积/㎝350100150200250300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书:
教师:体积与高度的比值一定。
(2)说明正比例的意义。
①在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
②学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一,两种相关联的量;
第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三,两个量的比值一定。
(3)用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
(4)想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
2.教学例2。
(1)出示表格(见书)
(2)依据下表中的数据描点。(见书)
(3)从图中你发现了什么?
这些点都在同一条直线上。
(4)看图回答问题。
①如果杯中水的高度是7㎝,那么水的体积是多少?
生:175㎝3。
②体积是225㎝3的水,杯里水面高度是多少?
生:9㎝。
③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
生:水的体积是350㎝3,相对应的点一定在这条直线上。
(5)你还能提出什么问题?有什么体会?
通过交流使学生了解成正比例量的图像特往。
3.做一做。
过程要求:
(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
比值表示每小时行驶多少千米。
(2)表中的路程和时间成正比例吗?为什么?
成正比例。理由:
①路程随着时间的变化而变化;
②时间增加,路程也增加,时间减少,路程也随着减少;
③种程和时间的比值(速度)一定。
(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
(4)行驶120KM大约要用多少时间?
(5)你还能提出什么问题?
4.课堂小结
说一说成正比例关系的量的变化特征。
三巩固练习
完成课文练习七第1~5题。
2、成反比例的量
教学内容:成反比例的量
教学目标:
1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。
2.根据反比例的意义,正确判断两种量是否成反比例。
教学重点:反比例的意义。
教学难点:正确判断两种量是否成反比例。
教学过程:
一导入新课
1.让学生说一说成正比例的两种量的变化规律。
回答要点:
(1)两种相关联的量;
(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;
(3)两个量的比值一定。
2.举例说明。
如:每袋大米质量相同,大米的袋数与总质量成正比例。
理由:
(1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;
(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数
减少,大米的总质量也相应减少;
(3)总质量与袋数的比值一定。
所以,大米的袋数与总质量成正比例。
板书:
3.揭示课题。
今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?
板书课题:成反比例的量[ 内 容 结 束 ]
《比例的意义》教案 篇36
一、教学目标
通过具体情境,体会比例的意义。
能运用比例的意义判断两个比是否成比例。
二、教学重难点
重点:体会比例的意义并能正确判断。
难点:理解比例的意义在实际问题中的应用。
三、教学过程
创设情境
展示校园中不同形状的花坛图片,提问:这些花坛的长和宽有什么关系?
探究比例的意义
(1)计算各个花坛长与宽的比,并求出比值。
(2)观察比值,发现规律。
(3)引出比例的'意义,强调两个比相等。
实例分析
(1)给出一些实际生活中的比,如班级男女生人数比、文具价格比等,让学生判断是否能组成比例。
(2)讲解判断方法。
练习巩固
(1)完成课本上的练习题。
(2)小组讨论,互相出题判断。
总结归纳
(1)回顾比例的意义。
(2)总结判断两个比成比例的要点。
