短文网整理的乘法分配律的教案(精选6篇),快来看看吧,希望对您有所帮助。
乘法分配律的教案 篇1
教学说明:
乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。
一、 观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。
二、 讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。
三、 练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。
四、 简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的`困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。
教学内容:乘法分配律 P28-29 例1、例2
教学目标:
1、知道乘法分配律的字母表达式。
2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。
3、会用乘法分配律使一些计算简便。
教学重点:理解掌握乘法分配律。
教学难点:乘法分配律的得出及其运用。
教学安排:
一、 观察与思考:
1、 出示例1:(1)看下图计算,有多少个小正方体?
A、用实物演示引出两种算法。
(5+3)2=16(个) 52+32=16(个)
B、观察以上两式得到:(5+3)2=52+32
2、 出示生活实例:
①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?
引导学生用两种方法解答,然后通过计算观察得出:
(30+20)4=200(元) 304+204=200(元)
即:(30+20)4=304+204
②2角硬币和5角硬币各6枚,一共有多少钱?
请学生同桌说说两种计算方法,然后汇报结果。
(2+5)6=42(角) 26+56=42(角)
即:(2+5)6=26+56
3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?
(前后两式是相等的、先算和再算积与先算积再算和是一样的)
这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率
二、 讨论与归纳:
1、 出示问题,读读想想。
A、 以上三组算式分别先算什么?再算什么?
B、 它们之间有什么联系?
先小组讨论,再派代表汇报交流。
得出乘法分配律的正确说法。
看书,齐读乘法分配律。
2、 质疑。
为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?
(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)
3、 用字母表示乘法分配律。
(A+B)C=AC+BC
三、 练习:
1、 根据乘法分配律填上适当的数或运算符号。
(8+6)3=8○3○6○3
(25+9)40= 40+ 40
(56+ )3=56 +8
2、 判断:
13(4+8)=134+8 ( )
13(4+8)=138+48 ( )
13(4+8)=134+138 ( )
四、 简便运算:
1、 出示例2:(125+70)8
请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。
算好后同桌观察讨论:怎样算比较好?为什么?
教师总结:用乘法分配律能使一些计算简便。
2、 选择题:
1624+8424的简便算法是( )。
A、(16+24)84 B、(16+84)24 C、(1684)24
3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)
(25+9)8 29175+2529 48128-2848 7599+75
4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)
41□+5923 □□+6328
五、 小结:
1、 乘法分配律及字母表达式。
2、 运用乘法分配律应注意什么?
①运算符号 ②分配合理
乘法分配律的教案 篇2
一、教材分析
(一)教学内容在教材中的地位和作用
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
(二)教学重点、难点的确定
教学重点:理解、应用乘法分配律。
教学难点:乘法分配律的逆运算。
(三)《大纲》要求
让学生从正、反两方面正确理解乘法分配律。
(四)学情分析
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习“乘法分配律”不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
二、教学目标的确定
根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:
使学生理解和掌握乘法分配律,会应用乘法分配律进行简便运算。
(二)智能目标:
培养学生的分析、比较、综合能力以及初步的抽象概括能力。
(三)情感目标:
通过学生的自主学习,激发学生学习数学的兴趣。
三、教法与学法分析
(一)教学方法
在设计乘法分配律的教学时,依据学生的认知发展水平和已有的知识经验。采用自主学习、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。
(二)学法指导
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练。积极参与教学的整个过程。
(三)教学准备
多媒体课件。
教学过程分析
一、创设情境,激趣引入。
第一步我用课件出示口算题: 125 × 8 25 × 4
25 × 6 × 4 7 × 8 × 5 2 × 3 × 50
课件设计可以使学生看得更清楚。也是为了让学生想说、敢说、抢着说,激发他们早点进入学习状态。
第二步创设情境,师生比赛。出示一组题从中选取两道,谁能看一眼题目就能说出得数。
( 40+4 )× 25 37 × 45+55 × 37
68 × 32+68 × 68 ( 80+8 )× 125
比赛的结果:老师算得快学生算得慢。学生心里就会想:老师怎么你算得那么快?这 时 老师导入:刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,你们想知道吗?此时同学们一定很想知道,学生的求知欲望达到了高潮。老师告诉学生乘法的又一法宝就是乘法分配律。板书课题,进入新知。
二、出示学习目标,自学新知。
本环节先用幻灯片出示学习目标:
1 、什么叫乘法分配律?用字母如何表示 ?
2 、应用乘法分配律有什么用?
3 、什么地方用乘法分配律?
4 、例 7 的两道计算题有什么特点?如何计算?
学生依据学习目标 , 自学课本 64 — 65 页的内容。要求学生用 6 、 7 分钟的时间掌握学习目标中的内容。学生欲望值高,所以学生会发挥自己的潜能。想尽办法去记忆新知识。在学生的自学过程中,老师要巡视指导,帮助个别学生掌握新知识。此环节即使有个别同学不理解课本中的知识,可他为了在测验环节中取得较理想的'成绩,也会用心的去掌握乘法分配律。
三、互相交流,加强记忆。
老师相信,经过自主学习,同学们已经掌握了乘法分配律。下面同学们就根据学习目标把自己认识的乘法分配律为大家介绍一番。
由于上一环节学生学会了乘法分配律,这时他一定会特别想把自己的看法、见解告诉大家。这时就要为学生提供展示自我的平台。让学生自由发言,谈谈自己对乘法分配律的认识。师生间、生生间互相交流,合作学习,加强记忆。
四、当堂测验,检验学习效果。(幻灯片出示下面各题)
在巩固练习阶段,还给学生学习的自主权,还给学生自我展示的空间。并通过比较,感悟计算方法的灵活多样,培养学生灵活运用所学知识解决生活中遇到的问题。在设计练习时,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”基本教学理念。
附:板书设计
乘法分配律
(a+b) × c = a × c+b × c
乘法分配律的教案 篇3
教学内容:教科书第54页得例题和第55页的“想想做做”。
教学目标:
1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2、使学生在观察、比较、猜测、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨和简洁。
3、使学生在数学活动过程中获得成功的.体验,进一步增强数学学习的兴趣和自信心。
教学重点、难点:发现并理解乘法分配律
教学过程:
一、 铺垫孕伏
1口算
125×53×8 25×44
指名说出运用什么方法使计算简便
2出示两组算式
(6+4)×7 6×7+4×7
20×(5+2) 20×5+20×2
(10+25)×4 10×4+25×4
先口算,再说说每一组算式有什么关系?(结果相同)
所以我们可以用什么符号连接这两个算式?(等号)
谈话导入:
上学期我们学习了乘法的交换律和结合律。今天我们要学习乘法的另一个定律。
二、 探究新知
1、谈话:同学们,学校马上要进行广播操比赛了,体育老师准备给比赛的同学每人买一套服装,我们一看。
出示课件:(课本第54页例题情景图)
2、 提问:从图上你获得了哪些信息?
(每件短袖32元 每条裤子45元 每件夹克衫65元)
3、 提问:
体育老师买5件夹克衫和5条裤子,一共要付多少元?你能自己列综合等式解决这个问题吗?
4、 学生试做
5、教师巡视,让用(65+45)×5和65×5+45×5两种不同方法解答的学生分别口答。
教师板书:(65+45)×5=110×5=550(元)
65×5+45×5=325+225=550(元)
6、指名学生说说自己列的算式和思路
解法一:先算买一套衣服用多少元
解法二:先算买夹克衫和买裤子各用多少元
7提问:
这道题的两种算法不同,比较一下他们的结果。你发现了什么?(结果相同)
8谈话:结果相同的两个算式,可以用等号相连接
板书:(65+45)×5=65×5+45×5
9照上面的等式,你还能再说出一个吗?
课件出示(—+-)×-=-×-+-×-
10谈话:这样的等式有很多,今天我们一起来研究这样等式的规律。
三、 概括定律
1提问:
观察例题这两个算式,等号左边先算什么,再算什么?右边呢?
学生回答后(65+45)×5是用65与45的和同5相乘;65×5+45×5是把65和45分别同5相乘。
2提问:谁能用一句话把等号左边算式的特点概括出来?右边呢?
板书:两个数的和同另一个数相乘
两个数分别同一个数相乘,再把两个积相加
3提问:
既然等式两边计算结果相同,我们可以得到什么?
:两个数的和同另一个数相乘等于这两个数分别与另一个数相乘再相加
4同桌把乘法分配律完整地说一遍
5谈话:大家说得很好,你们发现的这个规律就是乘法分配律。(板书课题)
6练习
(1)、(42+35)×2=————
(2)、27×12+43×12=————
7、提问:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢?(3个)
8、谁会用字母a、b、c表示乘法分配律
板书:(a+b)×c=a×c+b×c
四、 巩固练习
1根据乘法分配律,填出另一道算式
15×26+15×14=□○(□○□)
72×(30+6)=□○□○□○□
2课本第55页“想想做做”第2题
(1)学生用手势判断
(2)谈话:第三题意见不统一,你是怎么判断的,不能确定时可以用什么方法?(计算)
提问:
怎么改算式,让同学们一看就知道他们相等?
(74可以写成74×1)
(3)提问:
第4题的两个算式为什么不相等?怎样改写可以使它们相等?
3选择题
24×(49+51)与下面的————式相等
(1)24×51+24×49
(2)(24+49)×(24+51)
(3)24×49×51
4拓展题:
把例题中的问题改成5件夹克衫比5条裤子多多少元,可以怎么做?学生试做后发现:两个数的差与一个数相乘,也可以用这两个数分别与这个数相乘,再把它们的积相减,这也是乘法分配律。
乘法分配律的教案 篇4
教学内容:
教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。
教学目的:
使学生理解并掌握乘法分配律,培养学生的分析推理能力。
教学重难点:
乘法分配律
教具、学具准备:
教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。
教学过程:
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1.教学例6。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的算式写在黑板上。
还有别的'算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5十3)4 54十34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一起来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:
这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5十3)4=54十34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18十7)6 186十76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。
这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15十9) 20__十209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。
教师:如果用 表示三个数,乘法分配律可以写成下面的形式:
(a+b) c=ac+bc
等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)
等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1.这个算式中是哪两个数的和乘以哪个数?
根据乘法分配律,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?
2.做第64页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?
根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?
第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)
第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)
四、作业
练习十四的第1、2题。
乘法分配律的教案 篇5
教材简析:
能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。
教学目标:
1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。
2、让学生学习应用估算的方法判断计算结果的合理性。
3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。
教学过程:
一、讲解学生作业错得较多的题目
1、99×37+37=37×(□○□)
指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”
2、把左右两边相等的算式用线连起来
11×58+49×11 12×77+8×77
(12+8)×77 36×25+4×25
(58+12)×14 27×21+27×29
27×(21+29) 11×(58+49)
(36×4)×25 58×14+12
先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?
(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。
(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。
二、学习例题
1、出示例题图
说说例题的信息和问题,说说相关的数量关系式。
2、列式并估算等:32×102≈3200(元)
说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。
还可以怎么算?(用竖式算)
3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?
(加上2件),这2件是多少元呢?总共是多少元?
怎么把这个过程完整地用算式表达出来呢?
板书:32×102
=32×(100+2)
=32×100+32×2
=3200+64
=3264(元)
指出:利用乘法分配律,我们可以把这类题目进行简便计算。
学生完成书上的例题剩下部分。
4、完成试一试:用简便方法计算46×12+54×12
观察算式特点,并完成简便计算。交流:=(46+54)×12
=100×12
=1200
比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的`?
(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)
三、完成想想做做
1、在□里填上合适的数,在○里填上运算符号(题略)
学生独立完成,再校对。
2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)
学生说出口算的过程,体会也是运用了乘法分配律。
3、读第5、6题,观察数据的特点,说说怎么算才更简便?
四、探索思考题
99×99+199○100×100
观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?
在交流过程中完成板书
99×99+199
=99×99+99×1+100
=99×(99+1)+100
=99×100+100×1
=100×(99+1)
=100×100
学生自己尝试完成算式:999×999+1999的探索过程
发现规律,直接完成算式:9999×9999+19999=( )×( )
五、布置作业
p.57第2、4、5、6题
乘法分配律的教案 篇6
教学目标:
1、通过探索乘法分配律的活动,进一步掌握探索问题的程序。
2、在经历探索的过程中,发现乘法分配律。
3、会用乘法分配律使一些特殊的算式计算简便。
教学重难点:
让学生在活动的过程中发现问题、提出假设、举例验证、建立模型。所以,教学的重点仍应放在探索过程的指导上。
活动过程:
一、谈话引入。
同学们,我们已经学习了乘法的交换律和结合律。今天,希望同学们能探究发现乘法的又一个新知识。
二、联系实际,探究规律。
1、出示:学校购买校服。每件35元,每条25元。买这样3套校服,一共要多少元?
独立计算,指名回答教师板演。
2、分析比较:仔细观察两种方法,比较一下有什么不同?
3、结论:两个算式的结果如何?用什么符号连接?
买同样的东西,计算价钱的方法不同,但用的`钱数是一样的,也就是两个算式的计算结果相同。这时可以用等号将这两个算式连接起来。
板书:(35+25)×3=35×3+25×3
4、出示:小强摆圆片,每行摆6个绿圆片,8个红圆片,共摆了5行。
师:小强一共摆了多少个圆片?你能用几种方法解答?
学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:
(6+8)×5;6×5+8×5
虽然用的方法不一样,但是结果却一样,所以我们也可以用等号将这两个算式连接起来
5、从上面的算式中你有没有发现什么规律?(设疑)
6、你们真的发现了这些算式中隐含着的规律,请与你的同桌交流一下,好吗?(同桌互相交流)。
7、从大家的神态和脸部表情中,老师知道你们一定觉得自己发现了什么规律。同学们,你们发现了什么,我能猜到。不过,你们所看到的也许只是一种偶然现象,是一种猜想而已。你们能再举些例子对自己的猜想进行验证吗?
学生在练习本上写一写,指名汇报。
8、从同学们举的大量的例子中,可以确定你们的发现是正确的。你们发现的这个规律,叫做乘法分配律。什么叫乘法分配律?你能用语言来描述吗?请同桌再交流一下。
生1:把括号里的两个数加起来后乘以一个数,等于把括号里的两个数都去乘以一个数,再把乘出来的积加起来。
生2:乘法分配律是:左边把两个数加起来乘以乘数,等于括号里的一个加数乘以乘数加上括号里的另一个加数乘以乘数。
师:你们想表达的是这样的意思吗?(教师板书:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。)
这叫做乘法分配律。
能用字母来表示乘法分配律吗?(结合学生回答,教师板书:(a+b)×c=a×c+b×c。对于乘法分配律,用字母来表示,感觉怎样--(稍等)简洁、明了。这就是数学的美。
三、应用规律,尝试练习。
1、请运用乘法运算定律,回答下面各题。(练一练第1题)
2、同学们已经掌握了乘法分配律,它对我们的学习有什么用处呢?(简算)那同学们会不会运用乘法运算定律进行简算呢?
完成“试一试”。
3、我是计算小能手。
同学们真是利害,能够学以致用。
下面我们来一个比赛,看看谁最能灵活运用我们学过的知识来使我们的计算又对又快。
出示:(20+4)×5(75+25)×435×37+65×3720×5+24×5
别急,先观察题目的特点。
指名板演。你发现了什么?
重点在解决先让学生观察题目的特点灵活运用运算定律。
