解方程教案

短文网

2026-01-10教案

短文网整理的解方程教案(精选6篇),快来看看吧,希望对您有所帮助。

解方程教案 篇1

一、目的要求

使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程 7x-2=6x-4

时,用移项可直接得到 7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x; (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程当中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到 x=5+7,

x=12。

又如方程 7x=6x-4

的两边都减去6x,就可以得到 7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程。

利用移项解前面提到的方程 3x-2=2x+l

解:移项,得 3x-2x=1+2。①

合并,得 x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,

所以x=3是原方程的解。

在上面解的`过程当中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页 练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2。1 P73 复习巩固

解方程教案 篇2

教学内容:

教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。

教学目标:

1.使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。

2.使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。

教学重点:

理解等式的两边同时加上或减去同一个数,所得结果仍然是等式。

教学难点:

会用等式的这一性质解简单的方程。

教学过程:

一、教学例3

1.谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的知识。请同学们看这里的.天平图,你能根据图意写出一个等式吗?

提问:现在的天平是平衡的,如果将天平的一边加上一个10克的砝码,这时天平会怎样?

谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?

2.出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?

3.出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?

谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?

启发:这两组等式是怎样变化的?她们的变化有什么共同特点?

4.提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?

5.做练一练的第1题

二、教学例4

1.出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?

2.讲解:要求出方程中未知数的值,要先写解,要注意把等号对齐。

3.完成试一试

4.完成练一练

提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。

三、巩固练习

1. 做练习一的第3题

2.做练习一的第4题

3.做练习一的第5题

四、全课小结

提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?

五、作业

完成补充习题。

板书设计:

等式性质和解方程

等式的性质 解方程

50=50 50+10=50+10 解: X+10=50

x+a=50+a 50+a-a =50+a-a X-10=50-10

X=40

检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。

解方程教案 篇3

教学目标

1、会正确找出一元一次方程中存在的相等关系

2、通过列方程解应用题,提高学生分析问题与解决问题的能力

重点、难点、关键点

重点:找出应用题中存在的相等关系

难点:正确分析应用题中的条件

关键:理解题意,并能正确找出应用题中的量与量之间的关系

教 学 过 程

时间分配

1、列一元一次方程解应用题题的步骤

2、例题探究

师:列一元一次方程解应用题的'步骤有哪些?

师:出示例题

已知某电视机厂生产 三种不同型号的电视 机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,应用题,初中数学教案《应用题》。某商场根据市场调查花9万元从该厂购进两种不同型号的电视机50台。请你分析一下是哪两种型号的电视机?

(教师引导,由学生自己解题过程)

生:思考议论回答

找等量关系

设未知数

列一元一次方程

解方程

写出答案

生:讨论

该问题需要分类讨论,有三种可能的情况

可能购买的是甲、乙两种型号的电视机,也可 能是乙丙或甲丙。

8分

20分

A组:

16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?

B组:

一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间 ?

教后札记

解方程教案 篇4

教学内容

解方程:教材P69例4、例5。

教学目标

1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

2.进一步掌握解方程的书写格式和写法。

3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点

理解在解方程过程中,把一个式子看作一个整体。

教学难点

理解解方程的方法。

教学过程

一、导入新课

我们上节课学习了解方程,这节课我们来继续学习。

二、新课教学

1.教学例4。

师:(出示教材第69页例4情境图)你看到了什么?

生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

师:你能根据图列一个方程吗?

生:3x+4=40。

师:你是怎么想的?

生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

师:说得好,你能解这个方程吗?

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的'困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

生:先算出3个铅笔盒一共多少支,再加上外面的4支。

师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

2.教学例5。

师:(出示教材第69页例5)你能够解这个方程吗?

生1:我们可以参照例4的方法,先把x-16看作一个整体。

学生解方程得x=20。

生2:我们也可以用运算定律来解。

师:2x-32=8运用了什么运算定律?

生:运用了乘法分配律。然后把2x

看作一个整体。

学生解方程得x=20。

师:你的解法正确吗?你如何检验方程是否正确?

生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

三、巩固练习

教材第69页“做一做”第1、2题。

第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

四、课堂小结

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、布置作业

教材第71页“练习十五”第6、8、9.题。

解方程教案 篇5

教案设计

设计说明

本节课是在学生学习了用字母表示数和认识方程的基础上进行教学的。学生已经通过天平初步掌握了有关等式、方程的意义,基于上述情况,本节教学设计关注了下面两点:

1.关注教具的合理运用。

本节课再次利用直观教具——天平,使学生深入了解等式的性质,并在理解的基础上解简单的方程。

2.注重动手操作,让学生在实践中学习。

在教学中,注重为学生提供动手操作、实践以及小组合作、讨论的机会,并且在教学的过程中重点突出了“等式的性质”,使大部分学生都能灵活地运用此规律来解方程,充分体现了“课堂学习要以学生为主”的这一教学理念。

课前准备

教师准备 PPT课件 天平

教学过程

⊙复习旧知,导入新课

1.看图列方程。

2.在括号里填上合适的数。

6+8=14 2×6=12

6+8-8=14-( )

2×6×3=12×( )

6+8+2=14+( )

2×6÷3=12÷( )

说说你为什么这么填。

今天,我们就用这个道理来学习解方程![板书课题:解方程(一)]

设计意图:从学生的经验出发,通过复习,使学生的兴趣和思维进入到课堂学习中。

⊙操作观察,感知规律

(课件出示摆有砝码的天平)

实验操作、发现规律。

(1)师:今天我们要在天平上做游戏,通过游戏我们将发现一些规律。现在我在天平的左侧放一个5克砝码,右侧也放一个5克砝码,这时天平的指针指向中间,说明什么?用等式怎样表示?

说明天平平衡,等式:5=5。

(2)如果在天平的左侧再加上一个2克砝码,天平会怎么样?要使天平恢复平衡,可以怎么办?你还能用一个等式来表示吗?

学生仔细观察,说出自己看到的现象,写出等式:5+2=5+2。

(3)在天平左侧放的砝码的质量用x表示,右侧放一个10克砝码,天平两侧平衡。用等式表示天平两侧平衡的`状况。(学生在纸上写一写)

学生汇报。

(4)如果在天平的左侧再加上一个5克砝码,右侧也加上一个5克砝码,你们发现了什么?用一个方程来表示。(学生在纸上写一写,指名汇报)

(5)如果在两侧都加上一个10克砝码呢?会出现什么情况?怎样用方程表示?如果都加上一个12克砝码呢?

(6)通过上面的游戏,你发现了什么?

(同桌之间互相研究一下)

(7)引导学生发现:等式的两边都加上同一个数,等式仍然成立。

设计意图:在游戏中,利用课件演示,不仅让学生清楚地看到天平两侧的变化,更加深了学生对“等式”的理解,还能帮助学生体会等式变化的规律,为学生更好地总结规律埋下伏笔。

解方程教案 篇6

教学目标

(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(4)重视良好学教学重、难点:(1) “方程的解”和“解方程”之间的联系和区别。 (2)利用天平平衡的道理理解比较简单的方程的方法。

教学过程

一.揭示课题,复师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。生:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学二.探究新知,理解归纳

(1)概念教学:认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150师:黎明同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

(课件显示:100+X-100=250-100)

师:这时天平表示未知数X的值是多少?生:X=150(课件显示:X=150)

师:是的,黎明同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。把掌声送给他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。师:(课件显示X=150的)指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的.解)

师:100+X=250 100+X-100=250-100说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)

师:同时还要注意“=”对齐。师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的? (学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学精神。]

(2)教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。师:怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。(教师随着学生的回答演示课件)

师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:验算:方程的左边=6+3=9方程的右边=9

方程的左边=方程的右边所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的解方程:3x=18?

[学生独立思考,再在小组内交流。]

汇报交流,指生说,然后课件演示。

方程两边同时除以一个不等于0的数,左右两边仍然相等。

做一做:

身高问题

小明去年的身高+比去年长高的8cm=今年的身高

小明今年的身高-小明去年的身高=8cm

小明今年的身高-8cm=小明去年的身高

小红高165cm,比小华高10cm,小华高多少cm?

我们用桶接水接了30分钟水,一共接了1.8KG,每分钟接水多少克?

三、巩固应用

1、填空。

(1)使方程左右两边相等的( )叫做方程的解。

(2)求方程的解的过程叫做( )。

(3)比x多5的数是10。列方程为( )

(4)8与x的和是56。方程为( )

(5)比x少1.06的数是21.5。列方程为( )。

2、你能说出下列方程的解是多少吗?

X+19=21 x-24=15

5x=10 x÷2=4

3、用含有字母的式子表示下列数量关系。

(1).比x多3的数。

(2).X的1.5倍。

(3).每枝铅笔x元,买30枝铅笔需要多少钱?

(4).小明13岁,比小红小x岁,小红多少岁?

4、练小结:解含有加法方程的步骤。(口述过程)

四、拓展延伸。

1、挑战501 -- 502

五年级参加科技小组的人数是34人,比参加文艺小组的人数的2倍少6人,参加文艺小组人数有多少人?(写出数量关系式,列方程解)

师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?

生:敢。

师:谁愿意读读这个方程? [学生都争着读这个方程,可激烈了]

师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。

(指名王欣同学到黑板板演,其他同学在单行纸完成) [学生试着解方程并进行口头验算] 2、集体交流、评价、明确方法。

师:王欣同学做对了吗?生:对。

师:方程左右两边为什么同时加几?

生:方程左右两边同时加6,使方程左边只剩2X,方程左右两边相等......(由板演

王欣同学面向大家回答)

3 、提炼升华

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

4、全课小结,评价深化

通过今天的学以小组为单位自评或互评课堂表现,发扬优点、改正缺点。

对老师的表现进行评价。

[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学总结失败原因,发扬成功经验,培养良好的学习习惯。]

[板书设计]解方程例1:书本图X+3=9验算:X-2=15解:X+3-3 =9-3方程左边= 6+3=9解:X-2+2=15+2 X=6方程右边= 9 X=17方程左边=方程右边所以,X=6是方程的解。

大家都在看