短文网整理的八年级数学教学反思(精选6篇),快来看看吧,希望对您有所帮助。
八年级数学教学反思 篇1
本周在学校的教学要求下,我重新调整了数学教学的课堂学习模式,学生从自己到小组,有一定的提高,特别是整体的班级合作学习的意识及状态。
另外,本周,在学校的组织下,我又听取郭永田老师的公开课。俗话说,当局者迷旁观者清,通过听课,我充分感受到,在平常的教学过程中,教师的课堂上的引导、组织,学生的整体学习状态,是一节课,能否成功的关键。一个班级的学习氛围也成为在这个班级能否上好公开课的.关键。所以,下一步我的工作重心就是最大程度的调整班级工作策略,使学生形成比学赶帮超的氛围。,将数学教学的合作探究,共同进步应用到每节课堂里,让学生始终处在一个积极向上的学习环境中。相信这样一定能更好的达到学校教学的改革目标。
八年级数学教学反思 篇2
一、要创造性地使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的`解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
二、相信学生并为学生提供充分展示自己的机会
学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。
三、注意改进的地方
讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。
八年级数学教学反思 篇3
初二上学期很快就要过去了,回顾一学期的数学教学,没有多少成功感,期间我们取得了一些成绩,也吸取了很多的教训。下面具体谈谈我们的一些工作方法以及我们的困惑。
一、本学期的教学时间较长,期中考试却只有两章内容而期末考试却有四章内容,教材的不足和问题大大的增加了我们初二教师的工作量,降低了我们的工作效率。而且本教材不适合学生自学,它的知识点循环上升,本意是好的,但对学生的基础要求太高,如整式的乘法中,学生对整式的加法一点不会,他们的无心向学与教材的安排有很大的关系。本教材的许多重要的知识点内容和时间不够,因式分解2个课时这种好像简单的,实际上是学生学的最差的,4节课才能解决问题的。
二、重视教学交流。好方法大家资源共享,难题困难大家一起解决。每个人上完课后都会找机会谈谈自己这节课是否达到了预期效果;学生们有没有什么特别好或不好的反应;出现了哪些新问题,是怎么解决的,大家再商量着还有没有更好的讲解方式,以便让还没上这课的.其他老师能吸取经验,更好地把握教材,这是我们的核心工作,每天必做。碰到特别难以把握的问题,我们会向其他有经验的老师们请教。有时设想的教学方法和现实的教学效果会有很大差异,这时我们会做一下教学实验,就是大家讨论一种认为比较可行的教学方式。在每次听课中,我们都综合学生们的反应、授课老师的自我评课、听课老师们的意见再加以完善,其他老师再上时,争取达到最理想的效果。这样的教学实验我们做的很多,效果还不错,大家都觉得收益非浅。在教学中也有很棘手的地方。尽管我们在想方设法地让学生喜欢数学、主动学习数学,但时下的学生厌学情绪很浓,而且学生间的层次拉得很大,一群后进生的教学成为一个难点。怎样缩小差距,让每个学生都学到有价值的数学,能获得必要的数学,不同的学生在数学上得到不同的发展,这些都成为我们工作的瓶颈。不过我们相信事在人为,没有跨不过的坎,只要我们不断学习、不断总结、不断反思,在领导和老师们的帮助下,一定可以携手走过数学的沼泽,到达了一片数学的绿洲。
八年级数学教学反思 篇4
下面是我在教学中的几点体会:
一、教学中的发现
(1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:
1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;
2.增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;
(3)列分式方程错误百出。
针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。
二、教学后的反思
通过这节课的教学及课后几位专家的'点评,这节课的教学目的基本达到,不足之处本节课的容量较大,如果能采用多媒体教学效果会更好;在以后的教学中我将继续努力,提高自己的教学水平。
八年级数学教学反思 篇5
《分式》教学中,通过对教材的研读与操作,我觉得,教学应当根据学情对教材灵活应用,不必拘泥于教材,按部就班,甚至死板硬套,造成学生理解、应用的困难。
(一)适度添加“移号法则”。利用对比的方法认识了分式的基本性质以后,课本的编排是约分、通分,可在相关的例题训练中都不同程度的涉及到了“移号”的问题,而“移号法则”在新教材中有删略,仅仅体现在习题P9 第5题“不改变分式的值,使分式的分子、分母中都不含”-”号”,显然,教材的'编写者试图淡化这一重要变形,仅仅从有理数的除法则方面再次加以提醒,这其实是远远不够的。基于此,我在引导学生完成粉饰的基本性质以后,对本题进行了深入探究:通过本题,你发现了什么?----通过提炼总结,得出了“分式、分式的分子、分式的分母中,改变其中两项的符号,分式的值不变(移号法则)”的结论。这样,通过铺垫,学生在完成P6 例3(1)、P11 例1(2)、例2(2)等问题时,困难就迎刃而解了。
(二)对整数指数幂点的处理。当前,教材倾向于“数学从实践中来”的理念的践行,很多知识点要从实际问题中反映出来,然后加以研讨,而就整数指数幂而言,似乎完全不必:数学是一门有严密的逻辑体系的学科,从原有的“正整数指数幂”的基础上构建,其实更符合数学科的特点。因此,在具体的教学中不妨引导学生从数的发展史方面进行类比教学,使学生的知识体系有一个渐进的完善过程,更有利于其对整个体系的构建。
(三)对列分式方程解应用题方面,是本章的教学难点,也是学生(何止是学生?)颇感头疼的部分。解决这个问题的关键是正确审题。学生依据已有的生活、知识经验对问题进行解读,提取、整合相关信息,找出相等关系(等量关系),抓住这个突破口,列方程也就顺理成章了,故而在这一部分的教学中,应当充分让学生身体,准确理解题意,这才是关键环节,教材的设计顺应了学生的常规思路,可让学生在预习时充分利用,课堂教学时应着力找出相等关系。
八年级数学教学反思 篇6
结合一次函数的教学谈谈自己的几点肤浅感受、几处遗憾之点!
“一次函数”这一章的重点是一次函数的概念、图象和性质,由于学生初次接触函数的有关内容,因此,教科书对一次函数的讨论比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握二次函数、反比例函数的学习方法。学习这一章后,我对新教材有了一些更深的认识。
纵观整章内容,一次函数的实际问题比较多,备课时我头一直很痛:想不通学生刚刚接触函数为什么就有这么多实际问题呢?而且教材对一次函数的解析式与图象之间的关系讲解较少,例如k体现了图像的什么特征?除了增减性外还有没有别的体现,在实际问题中的实际意义是什么?b体现在什么方面等等。
在实际的教学中的确遇到了以上困难,教学内容十分不好处理,课时又比较少,我还是附加了很多内容进去,否则有些题目真的不会做!说是素质教育,但学生还是要考试的呀。
下面我就把平时遇到的困难大体呈现一下:
1.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲:
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的图象与y轴的交点在:
(4)当b>0时,这时函数的图象与y轴的交点在:
要让学生学会化一次函数的草图,不但平时分析题目有好处,对中考中的许多问题都有用。例如(1)y=2x+3不过第象限;(2)函数y=kx中y随x的增大而减小,那么y=kx+k不过第象限等等。
2.图像的'平移问题:
(1)将直线y=3x向下平移2个单位,得到直线_____________________;
(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.
现在学生就只能通过草图来研究,很浪费时间。实际上在后面我们会学到图象平移的规律,与多位教师讨论后,我们用草图再结合b的意义来解决,让学生多一点感性认识,少一点理论上的结论,这正是新课程对学生自主动手推导能力培养的一种体现!
3.实际问题中k的意义:
这个要根据具体的行程问题,销售问题等总结出来:k在时间、路程的图像中指速度,速度越大图像越陡,速度越小图像越缓。在销售件数、销售金额图像中指单价,单价越贵直线越陡,单价越便宜直线越缓。这对中考中的最后一题选择题是很有好处的,具体列举几个实例:
(1)为鼓励居民节约用水,某区将出台新的居民用水收费标准:1若每月每户居民用水不超过4立方米,则按每立方米2元计算;2若每月每户居民用水量超过4立方米则超过部分按每立方米4.5元计算。现假设该市某户居民某月用水x立方米,水费为y元,则y关于x的函数图像表示正确的是()
