解一元一次方程教案

短文网

2026-01-19教案

短文网整理的解一元一次方程教案(精选6篇),快来看看吧,希望对您有所帮助。

解一元一次方程教案 篇1

教学目标

1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。

2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。

教学重、难点

重点:把方程转化为标准形式。

难点:解方程的应用。

教学过程

一激情引趣,导入新课

1解方程:9x+3=8+8x

2(1)上面解方程的过程中,每一步的依据是什么?

(2)什么叫移项?移项要注意什么?

(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?

二合作交流,探究新知

1动脑筋:

某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的和是乙班参加的人数的'3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?

观察你解方程的过程,原方程做了哪些变形?

形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

2训练

(1)解方程:①11x-2=8x-8,②

(2)下列方程求解正确的是()

A-2x=3,解得:x=,B解得:x=

C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

三应用迁移,巩固提高

1方程的转化

例1已知x=-2是方程的解,求m的值。

例2若方程2x+a=,与方程的解相同,求a的值。

2实践应用

例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?

例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊

也给我,我恰好有一百只羊”,请问这群羊有多少只?

四冲刺奥赛

例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()

A2B–2CD不存在

例6解方程:3x+=4

例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?

五课堂练习,巩固提高

P1121

六反思小结,拓展提高

1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?

解一元一次方程教案 篇2

一、学习目标

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:

解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:

(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:1)、分数线具有

2)、不含分母的项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的.学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的解;依据;

练一练:见P101练习解下列方程:(1)(2)

(3)思考:如何求方程

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:

谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

(4)=+1(5)

六、作业

P102:3,10.

解一元一次方程教案 篇3

一、教学目标:

1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2、能力目标:培养学生的运算能力与解题思路。

3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二、教学的重点与难点:

1、重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三、教学方法:

1、教 法:讲课结合法

2、学 法:看中学,讲中学,做中学

3、教学活动:讲授

四、课 型:新授课

五、课 时:第一课时

六、教学用具:彩色粉笔,小黑板,多媒体

七、教学过程

1、创设情景:

今天让我们一起做个小小的`游戏,这个游戏的名字叫:猜猜你心中的“她”

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容——解一元一次方程。

2、探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数。)

(抽同学起来回答,然后再由老师概括。)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程

叫做一元一次方程。

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次

方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可。)

3、例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2、解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)、在我们前面学过的知识中,什么知识是关于有括号的。

2)、复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号

内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

3)、问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起

来回答。

4)、问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)、一起回顾合并同类项的法则:未知数的系数相加。

6)、系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

解一元一次方程的步骤:

去括号,移项,合并同类项,系数化为1。

4、巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5小结:和同学们一起回顾我们这节课学习了什么?

解一元一次方程

概念

含括号的一元一次方程的解法

作业:

1、P12 。1

2、预习下一节课的内容,

3、复习此节课的内容,并完成一下两道思考题。

思考:

(1) 解方程:

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括

号的方法去括号,每去一层括号合并同类项一次,以简便运算。

(2) 该怎么求解?

解一元一次方程教案 篇4

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的.相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

解一元一次方程教案 篇5

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、 重点:弄清应用题题意列出方程。

2、 难点:弄清应用题题意列出方程。

教学过程

一、复习

1、 什么叫一元一次方程?

2、 解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。

分析:设应从A盘内拿出盐x,可列表帮助分析。

等量关系;A盘现有盐=B盘现有盐

完成后,可让学生反思,检验所求出的解是否合理。

(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

引导学生弄清题意,疏理已知量和未知量:

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了400块。

2.求什么?

初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=400

如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

6x+8(65-x)=400

也可以按照教科书上的列表法分析

三、巩固练习

教科书第12页练习1、2、3

第l题:可引导学生画线图分析

等量关系是:AC十CB=400

若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再

由等量关系就可列出方程:

6(65-x)+8x=400

四、小结

本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的`关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

解一元一次方程教案 篇6

知识技能

会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考

1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题

能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度

经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点

建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。

教学难点

分析实际问题中的相等关系,列出方程。

教学过程

活动一 知识回顾

解下列方程:

1. 3x+1=4

2. x-2=3

3. 2x+0.5x=-10

4. 3x-7x=2

提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?

教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)

教师追问:变形的依据是什么?

学生独立思考、回答交流。

本次活动中教师关注:

(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二 问题探究

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

教师:出示问题(投影片)

提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?

(学生尝试提问)

学生:读题,审题,独立思考,讨论交流。

1.找出问题中的已知数和已知条件。(独立回答)

2.设未知数:设这个班有x名学生。

3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)

4.找相等关系:

这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)

5.列方程:3x+20=4x-25(1)

总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?

教师提问1:这个方程与我们前面解过的方程有什么不同?

学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).

教师提问2:怎样才能使它向x=a的形式转化呢?

学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.

3x-4x=-25-20(2)

教师提问3:以上变形依据是什么?

学生回答:等式的性质1。

归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。

师生共同完成解答过程。

设问4:以上解方程中“移项”起了什么作用?

学生讨论、回答,师生共同整理:

通过移项,含未知数的.项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?

学生思考回答。

教师关注:

(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?

在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。

活动三 解法运用

例2解方程

3x+7=32-2x

教师:出示问题

提问:解这个方程时,第一步我们先干什么?

学生讲解,独立完成,板演。

提问:“移项”是注意什么?

学生:变号。

教师关注:学生“移项”时是否能够注意变号。

通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。

活动四 巩固提高

1.第91页练习(1)(2)

2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?

3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。

教师按顺序出示问题。

学生独立完成,用实物投影展示部分学而生练习。

教师关注:

1.学生在计算中可能出现的错误。

2.x系数为分数时,可用乘的办法,化系数为1。

3.用实物投影展示学困生的完成情况,进行评价、鼓励。

巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。

2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。

活动五

提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?

提问2:本节课重点利用了什么相等关系,来列的方程?

教师组织学生就本节课所学知识进行小结。

学生进行总结归纳、回答交流,相互完善补充。

教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。

引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。

布置作业:

第93页第3题

大家都在看