《圆的面积》说课稿

短文网

2026-01-21教案

短文网整理的《圆的面积》说课稿(精选6篇),快来看看吧,希望对您有所帮助。

《圆的面积》说课稿 篇1

一、把握教材,定为目标

(一)教材

《圆的面积》是义务教育课程标准试验教科书小学数学第十一册第四单元的内容,它是在学生掌握了圆的周长及三角形、长方形、平行四边形、梯形的面积计算基础上进行教学的,而像圆这样的曲线图形的面积计算,学生还是第一次接触到。引导学生运用转化的思想求圆的面积。由于让学生完全自主探索如何把圆转化成长方形是有很大难度的,教材上给了明确的提示,让学生利用学具进行操作,在此基础上,让学生自主发现圆的面积与拼成的长方形面积的关系,圆的周长、半径和长方形长、宽的关系,并推出圆的面积计算公式。之后练习中安排了已知半径、直径或圆的周长求面积的题目,还安排了一些求组合图形面积的题目,以培养学生综合运用知识的能力。

(二)目标

基于以上认识,我认为本课的教学目标应确定为:

1、知识目标:使学生理解圆面积公式的推导过程,掌握求圆面积的方法,并能正确计算;并能运用公式解答一些简单的实际问题。

2、能力目标:通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。

3、德育目标:渗透极限思想,进行辩证唯物主义观念的启蒙教育。

(三)重点、难点

本节课的重点是:正确计算圆的面积。

本节课的难点是:圆面积公式的推导。

二、选择教法,突出主体

充分利用学生已学的数学知识和数学思想方法进行教学。首先教学圆面积定义时,先让学生回忆已学过的圆形面积的含义,教学圆的面积计算公式之前,让学生体会到将一个圆形转换成已学过的图形,是一种基本的数学思想和方法,但每个图形面积公式的推导过程又有其自身的特殊性。在充分发挥多媒体课件的作用,利用它的`优势,不断把圆细分,这样拼出的图形越来越接近于长方形,效果更直观。

三、教学过程与总体评价

(一)导入新课

我们之前学过哪些图形的面积,那么圆的面积怎样计算呢?只要知道了圆的面积公式,就可以解决计算出圆的面积,这节课我们就一起来学习圆的面积。

(二)新授

1、什么是圆的面积?PPT动画展示圆的面积定义

2、回忆平行四边形的面积、圆的周长计算公式,猜想我们可不可以把求圆的面积转化成其他平面图形来推导圆的面积计算公式?

3、PPT展示将圆分成不同的(4、8、16、64...)偶数等份,按照一定的方式组合成新的图形?

4、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形。

5、转化后的长方形的长和宽与原来的圆有什么关系?

1)转化后长方形的长相当于什么?宽相当于什么?

2)你能从计算长方形的面积推导出计算圆面积的公式吗?

6、汇报讨论结果。

7、运用新知识,解决问题。r=2cm,求圆的面积

8、拓展思考

(三)总结

小结:本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。

《圆的面积》说课稿 篇2

九年义务教育六年制小学数学第十一册第94、95页及练习二十四相关练习。

说教学目标:

本课学习是在学习了圆的周长的基础上进行的,通过引导学生回忆所学三角形、梯形等面积计算的推导过程,特制定如下目标。

1.理解圆的面积的含义。

2.经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

3.培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力,收集处理简单数据的能力。

说教材内容及重点、难点:

本课教学采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形,分割的份数越多,拼得的图形就越接近于长方形,然后由长方形的面积计算公式推导出圆面积的计算公式S=πr2。

教学重点:理解和掌握圆的面积计算公式。

教学难点:经历圆的面积公式的推导过程,把圆转化成近似的长方形,然后由长方形的`面积计算公式得出圆的面积计算公式。

说教学对象:

把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形的面积时,已经用过这种方法,如求三角形面积时,是把三角形通过重合、旋转、平移之后,拼成等底等高的平行四边形,然后由平行四边形面积计算公式得出三角形面积计算公式。因此,教师在教学中首先应激发学生的学习兴趣,采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形,根据长方形的面积计算公式得出圆的面积计算公式。

说教学策略及教法:

1.根据学生的心理特征,创设问题情境,激发学生探究的欲望。

2.教师先边演示边引导学生学习“圆的面积计算公式”方法的推理过程,再让学生充分利用“几何画板”学习资源,以自主、探究、合作与交流的方式巩固所学圆的面积计算公式的推导过程及计算一些具体圆的面积。

3.教师设计并利用几何画板课件,进行例题学习过程与方法的演示,以激发学生的思维,提高学习的效果。

说网络教学环境:

本节课的网络环境为多媒体网络教室、因特网、校园网。利用因特网、校园网让学生检索圆的面积计算公式的推导过程,拓宽学生的视野,丰富学生的课外知识,设计多媒体教学软件,通过教室内部网络让学生使用,提高学生的解题能力。

说教学过程:

一、复习引入

在复习引导中我们首先让学生回想一下什么叫面积,理解平面图形的面积,然后让学生回忆长方形的面积是怎样计算的,为学习圆的面积公式作铺垫,同时回忆平行四边形、三角形和梯形等图形的面积计算公式的推导过程。

教师注意必要的复习铺垫,直观的演示,激发学生积极主动地学习。引导学生复习长方形的面积计算公式,渗透了要求圆的面积也需从转化的思想放手。

二、新知学习

1.理解圆的面积的概念。

根据前面的复习引导学生猜想一下圆的面积的概念,并指出圆的面积是指哪一部分,出示不同大小的圆,在教师的演示下让学生直观感知圆面积的大小。

2.探索圆的面积计算公式。

通过几何画板的直观演示,教师拉动圆的直径,学生进行观察,圆的面积的大小可能与它的什么有关(直径)。那与半径又有什么样的关系呢?学生进行猜想。

①出示一个正方形,并在正方形内画一个以正方形边长为直径的圆,让学生比较两个图形的面积有什么关系?(3r2<圆的面积<4r2)

②这样设计让学生观察到圆的面积与以它直径为边长的正方形面积的关系,引导学生将圆分割后拼成一个长方形。

③向学生提出问题:我们应把圆转化成一个什么样的图形呢?

学生进行自学书本有关内容,探索如何把一个圆转化成已学过的图形,并且思考圆与转化后的图形有什么关系,在这里渗透转化的思想。

④学生自学以后,探讨:这样看来为什么只能得到近似的平行四边形,能拼成一个标准的长方形吗?学生相互讨论,应该如何操作。只有分的份数越多,才能越接近长方形,此时教师演示转化的过程,学生观察。

⑤根据演示,探究圆的面积计算公式的推导过程,从而得出圆的面积计算公式:S=πr2

3.根据圆的面积计算公式,让学生想一想要求圆的面积,必须知道什么条件?(直径、半径或周长)

4.根据圆的面积计算公式,出示例3,学生进行自学,相互讨论,计算出圆的面积。

三、练习反馈

在练习反馈中设计了基本练习与综合练习。基本练习主要是完成书本练习二十四的第1—5题的有关内容,加强学生对圆面积的认识,并能熟练计算圆的面积。综合练习是培养学生的综合运用能力,让学生根据不同的条件求出阴影部分的面积,这样既培养学生的解题能力,又发展了学生的思维,提高学生的创新能力。

四、反思体验

让学生共同回忆本节课所学的内容,学生讲讲自己有什么收获?以及如何计算圆的面积?推导圆的面积公式用了什么方法。

《圆的面积》说课稿 篇3

教学目标:

1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

3、通过小组会议交流,培养学生的合作精神和创新意识。

教学重点:推导出圆的面积公式及其应用。

教学难点:圆与转化后的图形的.联系。

教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。

教学过程:

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、转化后的图形与原来的图形面积相等吗?(板书:等积)

6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)

7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。

《圆的面积》说课稿 篇4

教学内容:

教科书第67-68页。

教学目标:

1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;并能运用公式解答一些简单的实际问题。

2、通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。

德育目标:

渗透极限思想,进行辩证唯物主义观念的启蒙教育。

教学重点:

正确计算圆的面积

教学难点:

圆面积公式的推导

学具准备:

水彩笔、剪刀、附页1

教具准备:

多媒体课件

教学过程:

一、 导入新课

请看一幅图,从图中你发现了什么信息?

只要知道了圆的面积,就可以解决这个问题,这节课我们就一起来学习圆的面积。

二、新授

1、什么是圆的面积?

(1)涂出一个圆的面积

(2)用自己的话说什么是圆的面积?

2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?

3、能不能用剪、拼的方法把圆转换成我们学过的图形?

4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?

5、学生汇报后,课件演示。

6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、

7、转化后的长方形的长和宽与原来的`圆有什么关系?

小组合作学习,讨论以下两个问题:

1) 转化后长方形的长相当于什么?宽相当于什么?

2) 你能从计算长方形的面积推导出计算圆面积的公式吗?

8、汇报讨论结果,师板书

圆的面积=长方形的面积

=长×宽

=πr×r

=πr2

9、运用新知识,解决问题。

1)r=5cm,求圆的面积

2)课始主体图中的问题

3)书P703.

三、总结:

小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。

板书设计:

圆的面积

剪、拼==》转化

圆的面积=长方形的面积

=长×宽

=πr×r

=πr2

S圆=πr2

教后反思:

本课的教学首先让学生在实践中操作感知,理解圆的面积的具体含义。接着让学生回忆旧知,引导学生应用旧知类比迁移。这样,既实现了有意识地学法指导,又帮助学生找到了解决问题的策略。然后给学生提供了自主剪拼的时间,也是有意识地给学生提供了解决问题的方法和途径。然而尽管给了比较充足的时间,学生能够完成剪拼后转化成学过的其它图形的还是少数。因此运用了多媒体课件演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进而加深对圆面积公式推导过程的理解。引导学生通过实验,采用转化的方法,小组合作学习,利用等积变形把圆面积转化为近似的长方形,讨论推导圆面积计算公式。最后安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。

《圆的面积》说课稿 篇5

今天我说课的内容是北师大版小学数学六年级上册第四单元《圆的面积》。下面我对本课做以简要的说明。

一、说教材

1、教材分析

本课从一个喷水头转动可以浇灌多大面积的农田的实例出发,结合学生的生活经验引出圆的面积知识。

在此之前,学生已经学过了圆的周长等有关概念、公式,在这个基础上,学好本节课,掌握圆的面积公式和有关计算,可为学生今后学习和圆有关的图形的面积奠定基础。特别是在圆的面积的推导过程中,可对学生进行极限思想的渗透。

2、教学目标

素质教育背景下的数学教学应以学生发展为根本,培养学习能力为重点,同时要强化应用意识,所以本节课确定如下教学目标:

﹙1﹚了解圆的面积的含义,经历圆面积公式的推导过程,掌握圆面积计算公式。

﹙2﹚能正确运用公式计算圆的面积,并能运用圆面积知识解决一些简单的实际问题。

﹙3﹚在“估一估”和探究圆面积公式的过程中,体会“化曲为直”的极限思想。

3、重点与难点

重点:能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

难点:“化曲为直”的极限思想的理解。

二、说教法、学法

1、教法分析

针对学生年龄特点和心理特征,以及他们现在的知识水平,采用启发式、小组合作等教学方法,让尽可能多的学生主动参与到学习中来。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”,一起思考问题,一同体验成功的喜悦,创造一个轻松、高效的学习氛围。

2、学法指导

通过实例引入,引导学生关注身边的数学;在借助长方形面积公式来推导圆的面积公式的过程中,让学生通过观察、归纳、联想、转化等学习方法,动口、动手,动脑,培养学生学习的主动性和积极性。

3、教学手段

为了更好地展示数学的魅力,我结合多媒体辅助手段,充分地调动学生的感官,增加学习的形象感与趣味性,并且给学生留有足够的思考和交流的时间和空间,使学生成为课堂的主人。

三、说教学过程

1、创设问题情景,引入课题。

出示课件让学生观察并说说从图中能发现什么数学信息,使学生在具体情境中了解圆面积的含义,体会到研究圆面积的必要性。

2、探究思考,解决问题:估计圆的面积有多大。

通过探究和思考使学生进一步体会到面积度量的含义,感受“化曲为直”的思想,同时培养学生的估计意识。

3、旧知引入,探索新知。

从已学过的知识入手让学生思考:平行四边形面积可以转化成长方形面积,那么圆的面积计算是否也可以转化成长方形面积来解决呢?引导学生利用准备好的圆片转化成为长方形,通过实际操作活动使学生体会“化曲为直”的思想。然后进行动画展示,让学生闭起眼睛想一想是不是分得的份数越多,拼成的图形越接近于长方形。启发学生思考:既然圆的面积无限接近于长方形,那么我们如何根据长方形的面积来推导圆的面积公式?长方形的长、宽与圆有什么关系呢?接下来再次播放动画,师生共同总结圆的面积公式。在这个过程中,运用多媒体演示动画,可以揭示出数学知识的内在规律的.科学美,激发学生探求知识奥秘的欲望,消除学生学习时产生的疲劳感,提高学习效率。

4、实际应用。

鼓励学生运用所学公式进行计算,解决生活中的一些实际问题。这样既注重对基本技能的训练,又关注学生的思考;既引导学生运用探索结果解决问题,又引发学生对探索过程的关注。

5、归纳小结。

为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从几方面进行小结,学生回答后教师归纳总结,充分发挥学生的主体作用。

四、说板书设计

在板书设计上,力求简洁扼要,突出重点,帮助学生理解和建构新的知识。

纵观整节课的教学,学生一直处于探索之中,从提出问题合理猜想到主动探索、推导结论,都在“圆的面积与长方形面积有什么关系”这一主线的引领下前后融为一体,又互为验证。整个过程不仅是一个知识再创造的过程,更是一个科学发现的过程。

《圆的面积》说课稿 篇6

说课内容:冀教版六年级数学上册圆的面积(87—89页)

教材分析:本课是在认识了圆,探索并掌握了长方形、平行四边形、三角形、梯形等面积计算公式的基础上学习的。

通过本课的学习,让学生经历探索圆的面积公式的全过程。

学情分析:学生已经初步认识了圆,掌握了长方形、平行四边形、三角形、梯形等面积计算公式,经历过将平行四边形、三角形、梯形等转化成学过的图形推导面积公式的过程。但对极限思想缺乏认识。

教学目标:

1、知识技能:经历估算、小组合作操作、讨论等探索圆的面积公式的过程。

2、数学思考:在观察、猜想、验证等活动中,体会转化思想和极限思想。

3、问题解决:理解并掌握圆的面积公式,能运用公式解答一些简单的实际问题。

4、情感态度:体验圆面积公式推导的探索性和结论的确定性。

教学重点:掌握圆的面积公式,能运用公式进行计算。

教学难点:圆面积公式的推导过程。

教具准备:课件、平均分成16等份的圆形纸片。

教学流程:

一、创设情境 ,揭示课题。

二、动手操作 ,探索公式。

三、解决问题 ,巩固提高。

四、回馈总结 ,形成体系。

教学过程:

一、创设情境 ,揭示课题。

1、出示飞标板让学生观察:说一说发现了什么?

(飞标板被平均分成了20份,每份都像一个小三角形。)

2、“如果r=10cm,你能利用我们学过的知识估算飞标板的面积吗?”让学生讨论。

3、交流、汇报估算的方法和结果。

(把飞标板看作由20个小三角形组成的,每个小三角形的底约是圆周长的1/20,高近似看作圆的半径。先求出一个三角形的面积,再求出20个小三角形的面积。)

4、飞标板是圆形的,刚才我们估算了它的面积,既麻烦也不一定准确。我们能否推导出圆的面积公式来解决这样的实际问题呢?揭示课题。(圆的面积)

二、动手操作 ,探索公式。

(一)猜想。

1、回忆以前学过图形面积是利用什么方法推导的?

(利用“割补法”把平行四边形转化成长方形;把两个完全一样的三角形、梯形拼成平行四边形……把没学过的图形转化成我们学过的图形推导出来的。)

(设计意图:让学生回忆旧知,引导学生应用旧知类比迁移。这样既实现了有意识的学法指导,又帮助学生找到了解决问题的策略。)

2、猜想:圆能转化成什么图形?(长方形、平行四边形、三角形、梯形)

(二)验证。

1、小组合作:把圆形纸片剪拼、转化成学过的图形。

(设计意图:给学生提供了自主剪拼的.时空,也有意识地给学生提供了解决问题的方法和途径。分组操作,更能有效地激发小组成员的干劲,促进不同层次的学生在原有水平上得到提高和发展)

2、展示学生作品。

3、寻求联系:同学们把圆形转化成了学过的平行四边形、梯形、三角形,不管转化成哪种图形,什么是始终不变的?(面积)

4、今天我们就以拼成的平行四边形为例,来探讨圆的面积公式。

“如果我们把这个圆继续分下去,32等份、80等份、400等份……拼成的图形又会怎么样?”

(课件展示)得出结论:平均分的份数越多,拼出的图形就越接近长方形;当平均分的份数无限多时,拼出的图形就是长方形。(渗透极限思想)

(三)总结。

1、小组讨论:拼成的长方形的长和宽与原来圆有什么联系?

2、交流汇报,总结概括圆的面积公式。

3、同学们通过猜想、验证、自己发现了面积公式,真了不起!课后同学们还可以继续研究把圆转化成梯形、三角形的情况,看看谁能推导出圆面积的计算公式呢?

(设计意图:在这个探索过程中,学生不仅体会了转化思想还认识了极限思想,拓展延伸给学生思维的发展留下了足够的空间。)

(四)应用。

上课伊始我们估算了飞标板的面积,现在请同学们利用圆面积公式,计算飞标板的面积。

(设计意图:利用公式计算,体会用公式计算的准确与便捷。)

三、 解决问题 ,巩固提高。

1、数学诊所:

(1)半径是2厘米的圆,它的周长和面积相等。( )

(2)()X2=2X*( )

(3)圆的半径扩大到原来的3倍,圆的面积也扩大原来的3倍。( )

2、“练一练”第1题,计算下列圆的面积。

3、练一练第2题。学生自己读题并解答。

一个圆形旋转展台,台面半径为3米,台面的面积是多少平方米?

四、回馈总结,形成体系。

1、通过本节课的学习有哪些收获?你是怎样学到这些知识的?

2、教师小结:今天我们一起研究了圆的面积,成功地推导出了圆的面积公式,并学会了应用。希望同学们在今后的学习中能更好的地运用转化、极限的思想方法去学习更多的数学知识。

(设计意图:小结体现学法指导,使学生有“学会”转化为“会学”,促使学生实现认知上得飞跃。)

大家都在看