《分数的意义》教案

短文网

2026-01-28教案

短文网整理的《分数的意义》教案(精选6篇),快来看看吧,希望对您有所帮助。

《分数的意义》教案 篇1

设计说明

“分数的产生和意义”这节课是在学生对分数有了初步认识的基础上,进一步对分数的学习和探究,是一节抽象的概念课。针对这一点,在设计此课时主要突出以下两点:

1.动手操作,帮助学生理解分数的意义。

动手操作是学生获取知识的一种直观且有效的学习手段,也是《数学课程标准》中提倡的学习方式。在探究分数意义的过程中,让学生通过动手分一分、折一折、涂一涂等操作活动理解单位“1”,感受并理解分数的意义。

2.充分利用现代化教学手段,帮助学生建立单位“1”的表象。

利用直观演示,有利于学生理解抽象的数学概念。本设计通过多媒体教学设备进行直观演示,让学生充分感知分数及单位“1”的意义,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,从而深入理解分数的意义。

课前准备

教师准备 PPT课件 彩带 米尺 苹果

学生准备 正方形纸片和圆形纸片 8个小正方形

教学过程

⊙了解分数的产生

1.测量。

师生合作测量一条彩带的长度,发现用米尺量了几次后还剩一段,这一段不够一米。

提出问题:如果用“米”作单位能用整数表示吗?(不能)

2.分物。

(教师拿出一个苹果)把这个苹果平均分给2人,每人可以分得多少个?每人分得的部分能用整数表示吗?(不能)

3.引入新课。

人们在实际生产和生活中进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

设计意图:在具体情境中理解分数产生的'必要性,感受分数就在我们身边,从而对分数产生亲切感,激发学生进一步学习分数的兴趣。

⊙探究分数的意义

(一)分数的意义。

1.动手操作。

拿出课前准备的圆形纸片和正方形纸片折一折、涂一涂,表示出,并说出的意义。

2.把一条线段平均分成4份,说出的意义。

3.课件出示教材46页香蕉和面包图片。

(1)说一说,每根香蕉是这把香蕉的几分之几?

(2)同桌合作分一分这盘面包(用小正方形代替面包),看看有几种分法。

预设

生1:把8个面包看作一个整体,平均分成4份,每份是这盘面包的。

生2:把8个面包看作一个整体,平均分成2份,每份是这盘面包的。

生3:把8个面包看作一个整体,平均分成8份,每份是这盘面包的,7份是这盘面包的。

4.认识单位“1”。

一个物体、一个计量单位或是一些物体等都可以看作一个整体。一个整体可以用自然数1来表示,通常把它叫做单位“1”。

5.总结分数的意义。

把单位“1”平均分成若干份,表示其中的一份或几份的数,叫做分数。

《分数的意义》教案 篇2

学习内容:

教材第69页例1、例2,以及70页“做一做”。

学习目标:

1.我能理解真分数和假分数的意义。

2.我能掌握真分数和假分数的特点。

学习重点:

理解真分数和假分数的`意义。

学习难点:

掌握真分数和假分数的特点,掌握假分数与整数的互化。

学习过程:

一、导入新课

二、合作探究、检查独学

1.小组内检查独学部分的题目完成情况,质疑探讨。

2.思考:(1)理解真分数和假分数的意义,说一说自己的思维过程。

我的想法:________________________________。

(2)哪些假分数可以化成整数?哪些假分数不能化成整数?

我的想法:________________________________。

3.小组代表展示、汇报

4.总结升华:

我认识了________________的特征,真分数的分子比分母________,真分数____1;假分数的分子比分母________或分子和分数________,假分数____1。

5.我能行:完成课本第70页“做一做”。

(1)下列分数哪些是真分数,哪些是假分数?

真分数:( );

假分数:( )。

(2)完成第70页“做一做”第2题。(做在书上)

《分数的意义》教案 篇3

教学目标:

1、通过教学使学生理解单位“1”不仅是一个物体,也可以是一些物体。

2、学生能掌握单位“1”平均分成若干份,表示其中一份或几份的数叫分数。

3、学生知道单位“1”的几分之几是多少,某一个量是整体的几分之几。

4、理解并掌握分数单位。

教学重点难点:

认识单位“1”,知道一些物体也可以看成是一个整体。

教学流程预设:

一、复习引入

1、出示3/4,“认识它吗?”

2、介绍分数的出现:当人们在测量、分物或计算中不能刚好得到整数结果时,常常用分数来表示.

3、分数相关知识回顾:大家都了解分数的哪些知识?

(1)、怎样读分数

(2)、分数各部分名称(分子、分母、分数线)

(3)、怎样写分数:请同学们在草稿纸上写一个你喜欢的分数,写完后同桌间互相读一读,并说说其各部分的名称。

师:今天,我们继续来深入的了解分数。

二、新授

(一)、探索分数的意义

师:首先,让我们来创造几个分数吧!请你用课前准备好的材料来表示一个分数,独立完成后组内成员互相说一说(每个人都必须说):

(1)、你创造了哪个分数?(2)、这个分数表示什么含义?

(学生交流,教师参与)

1、班内讨论交流

师:谁愿意来介绍你所创造的分数?

生:若干,介绍。

(教师提问:一个物体:

①你创造了哪个分数?表示什么含义?

②分子、分母分别表示什么含义?

③空白部分可以用什么分数来表示?

一些物体:

①同“一个物体”的3个问题

②取其中的5份可以用什么分数表示?5/6是几枚扣子?

③3枚扣子可以用哪些分数来表示,分别说说它们的意义。)

2、例子分类,总结

师:大家说的都很不错。刚才我们创造了很多分数,下面我们来给这些物品分分类。

生:一个物体;一些物体。(教师引导:老师是这么分的,谁能看出我分类的依据?)

师:刚才大家在展示的时候,很多同学在用到一些物体的.时候,用彩笔把所有物体都圈起来了,那为什么只有一个物体的时候我们一般都不圈呢?

生:把它们看作是一个整体。

师:我们发现,无论是一个物体或一些物体,都可以看成是一个整体。把这个整体平均分成若干份,其中的一份或几份就可以用分数来表示。

(教师慢慢出示,考虑到学生的接受能力)

这就是分数的意义,也是这节课重点要学习的内容。

(揭题,全班齐读)

师:一个整体可以用自然数“1”表示,通常叫做单位“1”。因此,分数的意义也可以表示成“把单位“1”平均分成若干份,其中的一份或几份就可以用分数来表示。”

师:我们思考一下,刚才同学们举的这些例子,分别都把什么看作单位“1”?

生:......

师:在我们身边的一些物品中,可以把什么看作是单位“1”?

生:......

师:所以说,单位“1”可以是一个物体,也可以是一些物体。

3、练习

课本P62做一做(本题把什么看作是单位“1”?)

(二)、分数单位

1、阅读“课本P62做一做”下面一段话,并回答其提出的问题。

2、什么叫分数单位。

3、“课本P62做一做”中所出现分数的分数单位,其包含了几个这样的分数单位。

4、同桌间互相说说上课一开始所写分数的分数单位,以及其包含了几个这样的分数单位。

三、练习巩固

课本P631、2、3

(1、说说这个分数的意义?

(2、把什么看作单位“1”?

(3、分数单位是什么,其包含了几个这样的分数单位?

(4、3/8表示几个月饼?4个月饼可以用什么分数来表示?

四、课堂小结

师:今天我们又学习了关于分数的哪些知识?

生:......

板书:分数的意义

把一个整体(单位“1”)平均分成若干份,其中的一份或几份,用分数表示。

一个长方形433/4

一个圆211/2

5支铅笔522/5

12枚回形针622/6(1/3)

6枚扣子655/6

把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

《分数的意义》教案 篇4

教学目标:

使学生能比较熟练地把低级单位的名数聚成高级单位的名数,正确地解答求一个数是另一个数的几分之几的.应用题。能比较熟练地比较两个分数的大小。

教学过程:

一、基本练习

1.复习有关单位的进率。(长度、面积、体积、质量等)

2.P80,1

3.说一说比较两个或三个分数的大小的方法。

4.P80,2,3看清要求,分清大小。

二、应用练习

1.怎样求一个数是另一个数的几分之几?要注意什么?和求一个数是另一个数的几倍有什么相同和不同的地方?

2.P81,4—6

三、巩固提高

1.选条件编应用题:苹果有5箱,梨有10箱,桃有20箱。

2.根据自己的实际编一道求一个数是另一个数的几分之几的应用题。

3.小结。

《分数的意义》教案 篇5

教学目标

1.理解单位“1”,进一步理解分数的意义。

2.知道分数各部分的名称,理解分子、分母表示的实际意义。

3.使学生受到“事物之间是普遍联系、发展变化”的辩证唯物主义观点的启蒙教育。

教学流程:

一、 复习引入

1.以前我们已经认识了简单的分数

你已经知道了分数的哪些知识?

2. 练习十三第3题。

3. 动手操作

老师提供了三样材料:正方形纸片一张、画有一分米长的线段的纸条一个、6个三角形。我们动手给它们平均分,看看你能找到哪些分数?

配合讲解,实物展示。

① 动手折一折,涂上阴影并标出分数。

你得到了什么分数?这个分数表示什么?

② 在线段上标出分数。

“一分米长的线段”同①(顺势学习分子分母表示的实际意义)

二、教学分数的意义

1.像这样,把一个物体、一个计量单位(板书:一个物体 一个计量单位)平均分成了若干份,其中的一份或几份的数还能用整数表示吗?这样就产生了分数。

2.(紧接着上面两个操作)6个三角形,你能给它平均分成几份?又得到了什么分数?动手试试看。

你还能给6个三角形怎样平均分,又找到了什么分数?大家动手再试试看。

3.刚才我们把许多物体看成一个整体,把一个整体平均分成若干份,这样的一份或几份的数也可以用分数表示。

做第74页上面的两道题和练一练的第二题。(注意辨析)

4.不管一个物体,一个计量单位,还是许多物体组成的一个整体,都可以用自然数1表示,通常我们把它叫做单位“1”。

把一个物体,一个计量单位,一个整体平均分,也可以说成把_平均分。刚才的分数都把谁看作了单位“1”?

生活中,你还想把什么看作单位“1”?(学生举例)

5.老师这里有一个分数-,你猜猜看,老师把谁看作了单位“1”,也就是把_平均分成了2份,取这样的1份?

你能说得与别人不同吗?能说得更有新意吗?

6.谁来说说 表示什么?〖根据板书,揭示意义。〗

7.让某一小组站出来2名学生,老师也站进去,问:2名学生占我们3人的几分之几?你能用不同的分数来表示吗?

为什么同样是2名学生,却可以用不同的分数来表示?

三、巩固拓展

1. 说出下面各分数表示的意义。

我国人口数约占全世界人口总数的.,耕地面积仅占全世界耕地总面积的。

①想:把_看作单位“1”,平均分成_份,_表示这样的_份。

②读完这段话,你有什么感想?

2. 分一分

① 动手分一分:有10根小棒,取出它的。怎么取?说说你是怎么分的?呢?

② 智力大冲浪:老师口袋里有一些小棒,拿出它的正好是4根,口袋里原来有多少根小棒?你是怎么想的?

3.用分数表示阴影部分。(图略)

③ 为什么不平均分的也能用分数表示呢?

④ (板书=)我们继续探究这个等式,还可以揭开其它的数学奥秘呢。期待课后大家有精彩的发现!

四、全课总结

通过这节课的学习,你对分数又有了哪些新的认识?

(认识了单位“1”;知道了分数的意义;知道了分母分子表示的意义。)

《分数的意义》教案 篇6

课题一:(一)

教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

教学重点 理解。

教学用具 教材第84~85页有关的投影片、线段图等。

教学过程

一、创设情境

1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

3.揭示课题

在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

二、探索研究

1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

2、进一步认识单位1。

以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

(3)练习:说出下图中涂色的部分各占整体的几分之几。

● ●

●○○○○○ ● ●

●○○○○○ ● ●

● ○

● ○

● ○

3.揭示。

(1)观察以上教学过程 所形成的板书。

一个物体

计量单位 单位1

一些物体

告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

(2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

(3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

4.练习。练习十八第1、2、3题。

5.教学分数各部分名称、分数单位。分数的读、写法。

(1)教师任意写出几个分数,让学生说出分数各部分的名称。

(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

(3)认识分数单位,初步了解分数单位的特点。

练习:① 的分数单位是,它有个 。

② 的分数单位是,它有个 。

③个 是。

④ 是个 。

(4)想一想:读、写分数的方法是怎样的?

读作 ,表示 个 。

读作 ,表示有 个 。

三、课堂实践

1. 表示把平均分成份,表示这样的份的数。

2. 读作,分数单位是,再添上个这样的单位是整数1。

四、课堂小结

1、什么叫做分数?如何理解单位1?

2、什么是分数单位?分数单位有什么特点?

五、课堂作业

练习十八第5、6题。

课题二:(二)

教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

教学重点 理解。

教学过程

一、 创设情境

1.用分数表示图中阴影部分。

▲▲ ▲▲

△△ ▲▲

2.口答:什么是分数?如何理解单位1?

3.填空。

是个 。 的分数单位是

7个 是。 的分数单位是

二、揭示课题

出示学习内容及学习目标。板书课题:。

三、探索研究

1.认识用直线上的点表示分数。

分数也是一个数,也可以用直线(数轴)上的点来表示。

(1)认识用直线上的点表示分数的方法。

①画一条水平直线,在直线上画出等长的距离表示0、1、2。

②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

0 1 2

(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

①先画什么?再画什么?

②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

③ 应用直线上的哪一个点来表示?

(3)如果要在这条直线上表示分母是10的分数,该怎么办?

这条直线上0~1之间的第七个点表示的分数是多少?

2.练习。

(1)教材第87页下面做一做的第2题。

(2)用直线上的点表示 、 、 、 。

3.教学例1。

(1)指名读题,帮助学生理解题意。

(2)出示讨论题,同桌讨论。

①这题中把什么看作单位1?

②1人占这个整体的几分之几?

③5人占这个整体的几分之几?

(3)汇报讨论结果,板书答语。

(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

4、练习。教材第88页的'做一做。

四、课堂实践

1.教材第87页的做一做。

2.用直线上的点表示 下面的分数: 、 、 、 、 。

3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

五、课堂小结

1.用直线上的点表示分数的方法是怎样的?

2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

六、课堂作业

练习十八第4、7、8题。

课题三:分数与除法的关系

教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

教学重点 理解和掌握分数与除法的关系。

教学用具 投影片(教材第89页的饼图)

教学过程

一、创设情境

1.填空。

(1) 表示。

(2) 的分数单位是,它有个这样的分数单位。

2.计算。(1)58 (2)49

二、揭示课题

我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

三、探索研究

1.教学例2

(1)读题后,指导学生根据整数除法的意义列出算式。板书:

13=

(2)讨论:1 除以3结果是多少?你是怎样想的?

(3)教师画出线段示意图,帮助学生理解。

1米

通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

(3)写出答语。

2.教学例3。

(1)读题后,引导学生列出算式:34。

(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

34=(块)。

由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

3、认识分数与除法的关系。

(1)引导学生观察13=、34=这两道算式,想一想:

①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?

②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

③分数与除法的关系是怎样的?

(2)教师总结,学生发言,归纳出以下三点:

①分数可以表示整数除法的商;

②在表示整数除法的商时,要用除数作分母、被除数作分子;

③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

分数与除法的关系可以表示成下面的形式:

板书:被除数除数=

(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

板书:ab=(b0)

(4)想一想:这里的b能为0吗?为什么?

启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

(5)再想一想:分数与除法有区别吗?区别在哪里?

着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

4、学生阅读教材,质疑问难。

四、课堂实践

教材第91页中间的做一做。

五、课堂小结。

引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

六、课堂作业 。练习十九第1~3题。

课题四:分数与除法关系的应用

教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

教学重点 求一个数是另一个数的几分之几的应用题。。

教学过程

一、创设情境

1.口答:30分米=米 180分=时

练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

2.说一说:分数与除法的关系?

3.用分数表示下面各算式的商。

(1)79(2)47(3)815(4)5吨8吨

二、揭示课题

这节课学习分数与除法关系的应用。(板书课题)

三、探索研究

1.出示例4。

(1)出示例4并审题。

(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

让全体学生尝试练习。

(3)集体订正。订正时让学生说说是怎样想的?

(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

重点说明当两数相除得不到整数商时,其结果可以用分数表示。

2.练习教材第91页下面的做一做。

3.教学例5 。

(1)出示教材第92页复习题,让学生独立列式解答。

集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

板书:3010=3

答:鸡的只数是鸭的3倍。

(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

讨论后师生共同评价,主要有两种方法:

①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

(3)比较复习题与例5异同点。

通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

4、练习。教材第92页做一做第1、2题。

四、课堂实践

1.在括号里填上适当的分数。

8厘米=米 146千克=吨 23时=日

41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

2.五(1)班有女生25人,比男生多4人。

(1)男生占全班人数的几分之几?

(2)女生占全班人数的几分之几?

(3)男生人数是女生人数的几分之几?

五、课堂小结

1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

2、求一个数是另一个数的几分之几应用题的解答方法是什么?

六、课堂作业

练习十九第4~7题。

七、思考题。

练习十九第8题及思考题。

课题五:分数大小的比较

教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

教学重点 掌握比较分数大小的方法。

教学用具 投影片(教材例6、例7直观图)

教学过程

一、创设情境

1.教材第93页复习题,请一名学生口答。

2.看图写分数,并比较分数的大小。

0 1

二、揭示课题

以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

三、探索研究

1.同分母分数的大小比较。

(1)比较 和 的大小。

出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

如果没有直观图,该怎样比较 与 的大小呢?

因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

(2)用类似的方法引导学生比较 和 的大小。

(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

板书:分母相同的两个分数,分子大的分数比较大。

2.练习:教材第93页做一做。

3.同分子分数的大小比较。

(1)比较 和 的大小。

①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

(2)比较 和 的大小。

用类似的方法进行比较并得出结论: < 。

(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

板书:分子相同的两个分数,分母小的分数比较大。

4、练习:教材第95页的做一做。

四、课堂小结

比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

五、课堂实践

1.练习二十第1题。

2.练习二十第3题。

六、课堂作业

练习二十第2、4题。

七、思考练习

在括号里填上合适的数

< < < > >

大家都在看