方程教学反思

短文网

2026-01-29教案

短文网整理的方程教学反思(精选6篇),快来看看吧,希望对您有所帮助。

方程教学反思 篇1

方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。一元一次方程是最简单、最基本的代数方程,它不仅在实际中有广泛的应用,而且是学习二元一次方程组、一元二次方程、分式方程等等知识的基础。解方程既是本章的重点,也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。

本节课的整体过程是这样的:先利用等式的.性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。

总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。由于时间的关系,本节课这一点做得还不够完善,可从学生的课堂练习中反应出来。再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

总的来说,虽然课堂上同学们总结错误点总结得不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

我始终遵照“坚持启发式,反对注入式”的教学原则。即在课堂上,凡是学生自己努力能解的方程都应由学生自己解决完成。

解方程是重点,要求人人过关。通过实验教学,达到预期满意效果。不仅有利于学生的学习,更有利于教师的发展。

方程教学反思 篇2

本节课是等式与方程的第一课时,就单单等式和方程的概念,学生很容易理解,本节课需要克服的难点是让学生充分理解方程和等式的关系,从而理解方程的意义。这是一个由浅及深的过程,首先,学生先接触方程的概念,从概念中发现方程是等式,再通过比较发现所有的方程都是等式,但有些等式却不是方程。再通过集合图的形式让学生真正发现方程和等式的关系。

这时回过去细细品味方程的含义:含有未知数的等式叫方程。应该可以对方程有更深刻的理解:等式里可以都是数字,也可以有字母,那不管是有字母(未知数)还是只有数字,这些都是等式;但在这其中,只有含有字母(未知数)的等式才叫作方程。我们平时教学,为了简单易懂,往往会让学生记简单的方法,比如看有等号的就是等式,有等号又有字母的`就是方程。这是将方程和等式关系的割裂,不利于学生形成知识的联系。要想构建方程的含义就必须从等式来看,由此反看本课的教学设计,如何体现等式到方程这样一个知识变化的过程用几张静态的图片是不行的。

它割裂了事物的变化过程,因此我觉得采用实物的天平来变化地演示,可以让学生将等式更合理地迁移到方程,仔细观察,其实课本也是这样子地安排,只是限于表现形式,让老师误以为是几张图片。第二张图片是将第一张图片中地鸡蛋换成木块(未知数),第三张图片是将第二张图片右边加上50g,第四张图片是将右边再加上50g,最后一张图片是将左侧地50g换成木块(未知数)。在通过例1认识了等式以后很快我们便能找到这些含有字母地等式,从而明确:等式中可以都是数字也可以有数字和字母(未知数)。

接着,自然而然地介绍:但含有未知数的这些等式又有个特殊地名字——方程。这个时候方程的含义就呼之欲出了。通过这样子的教学,我觉得知识是生长的,有联系的;而不是割裂和碎片化的。

方程教学反思 篇3

直线与方程是解析几何的起点,是与初中一次函数直线紧密联系,也就是数形结合思想突出的重要一章,所以学好这一章非常有必要。

直线与方程这一章体现了数形结合思想,直线方程的五种形式需要学生的灵活应用。但许多学生在做题中用斜截式较多,可能是学生在初中已经学习了一次函数。所以我们在学习直线的方程时,要不断强化学生对其他直线方程的'应用。学生在做题中通常会忽略K的存在性,这需要不断加强,还有就是各个方程运用的限定条件。数形结合是本模块重要的数学思想,这不仅是因为解析几何本身就是数形结合的典范,而且在研究几何图形的性质时,也充分体现“形”的直观性和“数”的严谨性。教学过程应“接头续尾,注重过程”。教材中求直线方程采取先特殊后一般的逻辑方式,几种特殊形式的方程:斜截式、点斜式、两点式、截距式的几何特征明显,但各有其局限性。而一般形式的方程虽无任何限制,但几何特征却不明显。通过引导,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由“形”问题转化为“数”问题研究,同时数形结合的思想,还应包含构造“形”来体会问题本质,开拓思路,进而解决“数”的问题。

总之,在直线与方程这一节中,我们以后的教学更应该注重学生能力的培养,让学生自己推导公式,在推导的过程中认识公式,使学生理解公式,从而认识解析法的数学魅力,正确运用解析法,而不是把公式当做是记忆的东西,一味的死记硬背,而忘掉条件限制。

方程教学反思 篇4

在教现行人教版九年制义务教育小学数学第九册《简易方程》时,发现现行教材与以往版本不同:

以往的教法是利用“两个加数相加,求一个加数就用和减去另一个加数,即:加数=和-加数;两个因数相乘,求一个因数就用积除以另一个因数,即:因数=积÷因数”;

现行的教法和初中类似,即:解方程时利用方程两边同时加上或减去一个数或同时乘以或除以一个不为零的数方程两边的值不变,但具体解题中与初中不同的是不提移项与合并同类项,思想方法却是相同的。

在教学中发现小学生对这种方法掌握较困难,主要表现在:

第一,用字母表示数不好接受,不易理解,也不习惯;

第二,用代数式表示一个得数或结果不理解;

第三,字母与数,字母与字母之间的简单运算不理解,例如:a2=a×a,2a=a+a,用x-5表示一个数。

我们知道算式思维与方程思维是两种不同的.思考方法,在一些复杂的问题中用算式很难解出,用方程却简单的多,现行小学教材中有提升方程教学的意思,旨在培养学生的思考能力,便于与初中衔接。

教学实践中我们发现通过练习学生还是可以掌握的很好的。

方程教学反思 篇5

《式与方程》这节课的内容有两点,一是用字母表示数,二是列方程解决简单问题。目标有三点:一是经历回顾和整理式与方程有关知识的过程;二是会用解决简单问题;三是感受式与方程在解决问题中的价值,培养初步的代数思想。教学中为避免学生的这种厌烦情绪,我对这节课每一个环节都进行了精心的设计,以调动学生的`积极性。

课前布置学生预习作业:1、什么是方程?什么是等式?2、等式与方程有什么关系?3、用字母表示数时应该注意点什么?4、列方程解应用题的解题步骤有哪些?这些纯粹是概念性的叙述,让学生在课前整理罗列并做简单的记忆,目的在于防止课堂上出现学习障碍。

在复习“用字母表示数”中,结合课前预习,发挥学生的主体作用,以小组比赛形式,通过一些填空及判断、选择题的练习,复习检测学生这部分内容的掌握程度。进一步对这些知识进行查漏补缺。从课堂情况来看学生的参与性广,积极性高,而且对这部分内容掌握不错。

重点我放在了“方程”上,在复习“方程”时,除了复习方程的意义、等式的性质和解方程、列方程解决实际问题外,还在解方程时突出检验的重要性,在列方程解决问题时突出书写格式和检验方法,并结合教材提供的列方程解决实际问题帮助学生了解一般哪些实际问题适合列方程解答。并且补充了很多较实用的配套练习,不过由于习题量有点多,课上时间没有完成,这是在以后教学中应注意的一点,练习不但要形式多样,而且要精炼。

方程教学反思 篇6

实际问题与方程紧跟在用等式的性质解方程的后面,是在学生会简单的运用解方程,而去把实际问题抽象成方程的过程。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。

例1,相对而言比较简单,但是对于学生却仍旧是一个不容易接受的难点,他们能够清楚的知道用4.21-0.06=4.15(m),但是却没办法把这样的式子用方程抽象概括出来。

例1的教学,我是按照“求谁设谁”的思路来讲的。

第一步,看一看求的是谁?学生很明显的就能够知道求的是原跳远记录,而求得是它,我们就把它设成x,而这个时候,我便教授了未知量,即我们不知道的量就是未知量,所以求谁,谁就是未知量。

第二步,找关系。找的关系就是题目中告诉我们的。比原纪录多,在数学上就用到了四则运算的加,也就能够得到数学关系上的原纪录+超出部分=小明的成绩。

最后列式,则把具体的数字带进去,原纪录是x,超出部分0.06,小明成绩4.21,列的式子也就变成了x+0.06=4.21.

将实际问题与方程的解法来分步的教给学生,学生学起来明显的变得轻松,但是找未知量对学生而言还存在着一些困难。

例如做一做中的“我们拿桶接了半小时,共接了1.8kg的`水,求每分钟浪费多少水?”明明我们看来很简单的问题,学生却找不到未知量应该是什么,只有极少的同学能够知道要把每分钟浪费的水设成未知数x。

这就让我意识到了,在方程里,有很多变化的问题,学生不能够把握,因此在设计下一节课的时候,我在一开始就让未知量在条件中变没了,组织学生根据之前积累的知识去寻找关系,具体设置的题目有这样差不多的几个:

1、长方形的长是6m,面积是24平方米,宽是多少?

2、小明走了半个小时,走了120m,小明每分钟走多少m?

3、小红买了5只钢笔,花了24元,每支钢笔多少元?

像这样的,未知量在问题中的,让学生直接去问题里面看,这个时候,考验学生的就变成了学生的积累情况了。

1、考验的是面积的计算公式

2、考验的是速度=路程÷时间

3、考验的是单价=总价÷数量

而对于题目中的“比去年高”、“超过原纪录”、“二倍”、“二倍少”……学生根据题意用加减乘除列式,学生掌握的情况则比较好。

用方程解决生活中的实际问题,就是让学生找准未知数,读懂题目中的数量关系,而日常规律的积累也占据着十分重要的位置。

所以,在做方程联系实际的时候,要加强学生对题意的理解,也要加强学生日常规律的积累,而找到关系去解方程更是要不断的去加强练习。

大家都在看