数学六年级下册教案

短文网

2026-01-29教案

短文网整理的数学六年级下册教案(精选6篇),快来看看吧,希望对您有所帮助。

数学六年级下册教案 篇1

教学内容:

课本第78——79页例2和“练一练”,练习十三第1、2题。

教学目标:

1、让学生用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用的意识。

2、发展思维、提高分析问题、解决问题的能力,进一步体会数学知识之间的'内在联系。

教学重难点:

用分数乘法和减法解决一些稍复杂的实际问题。

课前准备:

课件

教学过程:

一、谈话导入

谈话,并出示例题。

学生自由读题,了解题意。

二、探索新知

1、出示例2,问:从题中你知道了什么?要我们解决什么问题?

说出题目的已知条件和所求问题。

谈话:为了使已知条件之间、条件和问题之间的关系更清楚,可以先画线段图。

教师一边讲解一边示范画线段图的过程,学生和教师一起操作,完善线段图。

2、问:要求女运动员有多少人,可以先算什么?在图上指出来。

各自列式解答,指名板演,期于学生同时列式解答。

集体评讲。

探讨其他算法

设问:想一想还可以怎样算?

学生思考后交流。教师适当评讲。

三、巩固深化

1、完成“练一练”第1题。

让学生先说出自己的想法,然后再列式解答。

集体评讲。

2、完成“练一练”第2、3题。

学生弄清题意后独立解答。(要求学生画出线段图)

集体评讲。

四、课堂总结

通过今天的学习,你有什么收获呢?

五.布置作业

练习十三第1、2题。

教学反思:

数学六年级下册教案 篇2

教学内容:

苏教版小学数学六年级下册第二单元信息窗一《圆柱和圆锥的认识》(P15-P18)

教材分析:

《圆柱和圆锥的认识》一课是在学生掌握了长方体和正方体以及圆的相关知识基础上进行教学的,是小学阶段几何知识的最后一部分内容的起始课,是以后进一步学习几何知识的基础。本节课的学习会使学生对立体图形的认识更深入、更全面,有利于进一步发展学生的空间观念。

教学目标:

1、在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握他们的特征。

2、经历探索圆柱、圆锥有关知识的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证,交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

教学重点、难点:

重点:圆柱圆锥的特征。

难点:认识圆柱和圆锥的高。

教具、学具准备:多媒体课件、剪刀,圆柱、圆锥实物等。

教学过程:

一、创设情境,提供素材。

1、观察情境图中的物体,形成直观表象。

2、寻找生活中的圆柱和圆锥,积累感性认识。

3、由实物抽象出几何图形,发展空间观念。

4、提出问题,培养问题意识。

5、揭示课题。

谈话:通常我们先研究圆柱和圆锥的特征,然后再研究它们的表面积、体积等。随机板书课题:《圆柱和圆锥的认识》。

设计意图:兴趣是学习成功的动力,通过实物图形,引起学生的学习兴趣,让学生感知生活中处处有圆柱、圆锥。通过分类、举例,使学生对圆柱、圆锥整体上认识,形成初步的表象,在此基础上抽象出几何图形,由物到形,由生活走向数学,引导学生对照模型想图形,在头脑中形成圆柱和圆锥的表象,帮助学生形成空间观念。让学生提问题,激发学生的探究欲望,进一步培养学生的问题意识。

二、分析素材,理解概念。

1、观察圆柱,发现特征。

2、学生动手操作,教师巡视。

3、全班交流,探究特征。

4、研究圆柱的高。

5、总结圆柱的特征:刚才我们研究圆柱时,由表及里,运用先看,再比一比、量一量、摸一摸等方法,知道圆柱的特征。

6、研究圆锥的特征。

7、让学生完整的说一说圆锥的特征。

设计意图:放手让学生自主探究圆柱的特征,通过课件演示,学生看一看、摸一摸、比一比、量一量、议一议等活动,让学生亲身经历知识的形成过程,进一步整体感知圆柱,加深对圆柱的认识,培养学生的空间观念,建立对圆柱的表象的认识;通过举例认识高,将抽象的数学知识形象化,便于理解;通过小组合作,交流认识、动手操作,培养了学生的合作能力。

前面有了对圆柱的特点的学习,圆锥的学习全部放手,让学生不仅受获“渔”,而且要学会运用“渔”进行“捕鱼”,同时,体验获取成功的喜悦,提高学生的学习能力。

三、借助素材,总结概念。

1、比较异同。

让学生对比观察,圆柱和圆锥有什么相同和不同?

预设一:相同处。它们的底面都是圆形;侧面都是曲的;都有高。

预设二:不同处。圆柱有2个底面,圆锥有1个底面;圆柱有无数条高,圆锥只有一条高。

2、想象拓展,建立联系。

让学生想象一下:如果从圆柱的.底面开始,把上底面缩小,再缩小,再缩小(手势表示)最后会变成一个什么图形?

小结:从这看出,圆柱和圆锥也有着密切的联系。

设计意图:通过比较圆柱和圆锥的异同,使学生深化认识圆柱和圆锥的特点。让学生想象,培养学生的空间想象力,加强了圆柱和圆锥的联系,为后面学习圆柱和圆锥的体积关系作铺垫。

四、巩固拓展,应用概念。

1、下面物体的形状,哪些是圆柱?哪些是圆锥?

(1)先指出图形让学生说是什么图形,个别的说说原因。

(2)上边一行左数第四个、下边一行左数第二个,让学生说说为什么既不是圆柱又不是圆锥,进一步明确圆柱和圆锥的特征。

2、圆柱的侧面展开图:让学生沿着侧面上的一条高剪开(教师指圆柱上的一条高),猜想一下展开后会是什么图形,再让学生动手剪一下看看是什么图形。

预设一:得到的是一个长方形

预设二:得到一个正方形。

引:展开后的这个图形与原来的圆柱有什么关系?指学生多说,并大屏幕展示。

圆锥的侧面展开图:沿着圆锥的顶点和底面任意一点的连线斜着剪开会得到一个什么样的图形,先想一下,再指生剪演示。

拓展作业:如果圆柱也这样斜着剪,会得到一个什么样的图形?有兴趣的同学可以回去剪剪看。

3、将如下图所示的长方形、半圆形、梯形和三角形小旗快速旋转。想象一下,小旗旋转一周能形成什么图形?

(1)教师先让学生想象转动后的图形。

(2)课件演示旋转后的图形。

设计意图:通过多个不同层次的练习,目地是让学生在练习中加深对圆柱圆锥的认识,提高学生思维的深刻性和灵活性,体现数学知识“有用”。而第三小题的出现,为进一步培养学生的空间想象能力起了推动作用。

五、回顾梳理,总结提升。

通过这节课的学习,你有什么收获?你能试着从以下三个方面说吗?

1、你学到了什么知识?

2、你学到了哪些方法?

3、你有什么感受?

设计意图:学生自主回顾、梳理所学新知,进一步提高了学生的思维能力和语言表达能力及概括能力。

板书设计:

圆柱和圆锥的认识

数学六年级下册教案 篇3

教学目标

1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

3.培养学生分析、解决问题的能力,以及知识迁移的能力。

4.培养学生良好的审题习惯。

教学重点和难点

1.会分析数量关系,掌握解题思路,正确解答。

2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

教学过程

导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

(一)复习铺垫

1.说图意填空。(投影)

问:谁是单位1?

2.说图意回答问题。(投影)

问:①谁和谁比,谁是单位1?

3.准备题:

(做在练习本上,画图列式计算,一个学生到黑板板演。)

教师订正讲评。

提问:①谁是单位1?

③要求用去多少吨就是求什么?

少。)

④根据什么用乘法计算?

(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

(二)学习新课

1.学习例4。

(1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

(2)分析数量关系。(同桌互相说。)

提问:单位1变了吗?单位1是谁?

请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

学生汇报结果,让学生说解题思路,老师一边把图补充完整。

=2500-1500

=1000(吨)

答:还剩1000吨。

生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

师追问:求用去多少吨你是怎么想的?

答:还剩1000吨。

生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

相同点:两种解法都是经过两步计算。

不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

(4)练习做一做(1):

昆虫标本有多少件?

(做完让学生说解题思路、投影订正。)

2.学习例5。

六月份捕鱼多少吨?

(1)读题找出条件、问题。

(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

问:①谁和谁比,谁是单位1?

(3)列式解答。

师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

学生汇报结果。(老师板书列式)

答:六月份捕鱼3000吨。

师追问:你是怎么想的?

生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

师再追问:怎样求六月份比五月份多捕的吨数?

捕的吨数。

答:六月份捕鱼3000吨。

师追问:怎么想的?

生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

师问:这两种解法有什么联系和区别?

(联系:两种解法都利用了分数乘法的意义求已知数的'几分之几。区别:解题思路不同。)

(4)练习做一做(2)。

答。

(三)巩固练习

1.补充问题并列式解答。(复合投影片)

________?

2.选择正确答案的序号填在( )里。

包?列式是

[ ]

[ ]

A.乙队修了多少米?

B.乙队比甲队多修多少米?

C.甲队比乙队多修多少米?

D.乙队比甲队少修多少米?

(3)根据条件和问题列出算式。

已知一袋大米重40千克。

(四)课堂总结

今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

课堂教学设计说明

(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

数学六年级下册教案 篇4

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

4.介绍放大比例尺

出示图例2

“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“

学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

相同点:都表示图上距离与实际距离的比。

不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

5、总结

比例尺书写特征。

(1)观察:比例尺1:100000000

比例尺1/5000000

比例尺2:1

(2)看一看,比例尺书写形式有什么特征。

为了计算方便,通常把比例尺写成前项或后项是1的比。

6、比例尺的化简和转化

“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

“现在单位统一了,是多少比多少,怎样化简?”

图上距离:实际距离=1:5000000

教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

三、巩固练习

1、做一做。

过程要求

(1)学生独立完成。(要求写出数值比例尺)

(2)同学之间互相交流。

(3)汇报交流结果。

2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

四、课堂小结

(本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)

教学目标:

1、理解比例的意义,会根据比例的意义组成比例。

2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。

3、感受生活中处处有数学,激发学习数学的兴趣。

教学重、难点:理解比例的意义。

教学方法:自主合作,讨论交流。

教学过程:

一、复习旧知,目标展示。

1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的.名称。

2、今天,我们要在比的基础上学习一个新知识(板书:比例)。

3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?

【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】

4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。

二、合作交流,探究新知。

〈一〉教学比例的意义。

1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)

2、自主探究,初步形成印象。

(1)两个比相等可以用等号连接吗?

(2)你能在练习本上写出两个可以有用等号连接的比吗?

(3)和你小组内同学交流你写出的式子,并说明理由。

(4)学生汇报。

3、形成概念。

(1)像黑板上我们所列出的这些式子叫做比例。

(2)你能用自己的话说说什么是比例吗?

(3)老师小结:表示两个比相等的式子叫做比例。

4、深化概念,巩固练习。

(1)你认为组成比例的关键是什么吗?(两个比的比值相等)

(2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)

〈二〉教学比例各部分的名称。

1、比例各部分有自己的名称?你知道吗?

(预设:学生如果不清楚的话,教师说明比例各部分的名称)

2、找出黑板上这几个比例的内、外项。

3、比可以写成分数的形式,比例也可以写成分数形式。

(1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)

(2)找出它们的内、外项。

(3)你发现什么规律了吗?

〈三〉比和比例的区别。

1、小组讨论、交流。

2、全班交流。

3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。

三、巩固练习。

1、填空。

(1)、表示()的式子叫做比例。

(2)、判断两个比能否组成比例,要看它们的()是不是相等。

(3)、写出比值是的两个比():()和():(),写成比例是()。

(4)、选取48的4个因数组成一个比例是()。

2、课本32页国旗尺寸成比例吗?

3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)

(1)学生独立思考后,小组交流。

(2)全班交流。

(3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。

数学六年级下册教案 篇5

教学目的:

1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。

教学重点:

掌握用转化的策略解决分数问题的方法,增强策略意识。

教学难点:

根据具体问题,确定转化后要实现的目标和转化的具体方法。

教学过程:

一、看谁的联想最多?

出示:男生人数是女生的2/3 看到含有分率的句子,你能想到些什么?

学生可能说:

(1)把女生人数看作“1” ——找单位“1”

(2)男生人数有这样的2份,女生人数有这样的3份。

(3)一共有这样的5份

(4)女生比男生多1份 ——份数

(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5

(6)女生是男生的3/2 ——分数

小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。

二、新授

1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”

2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。

3、学生独立完成,教师巡视指导。

4、指名交流解题思路。

5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?

6、学生独立完成,小组交流。指名交流。

学生可能想到:

(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”

50÷(3+2)=10(人) 10×3=30(人)

(二)将关键句转化成分数来理解“女生占全班人数的3/5”

50×3/5=30(人)

7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的.信息。

8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)

三、巩固练习

1、练一练:学校美术组有35人,是合唱组人数的 5/8 。学校合唱组有多少人?

(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)

(2)反思:为什么把美术组人数是合唱组的 5/8转化为合唱组的人数是美术组的8/5。

(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。

板书:问题转化成已知条件的几分之几。

2、练习十四5:

(1)看图填空。

绿彩带

红彩带

绿彩带比红彩带短 2/7 ,红彩带比绿彩带长 ()/() 。

(2)一杯果汁,已经喝了 2/5 ,喝掉的是剩下的 ()/() ,剩下的是喝掉的 ()/() 。

3、练习十四6

(1)白兔和黑兔共有40只,黑兔的只数是白兔的 3/5 。黑兔有多少只?

黑兔只数占白兔、黑兔总只数的 ()/() 。

(2) 小明看一本故事书,已经看了全书的 3/7 ,还有48页没有看。 小明已经看了多少页?

已经看的页数是没有看的页数的 ()/() 。

4、只列式,不计算。(说说你是怎样转化的)

(1)修一条长30千米的路,已经修的占剩下的 2/3 ,已经修了多少千米?

(2)山羊有120只,比绵羊少 1/6 ,绵羊有多少只?

(3)甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙三数的和是180,甲、乙、丙三个数各是多少?

5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有 1/3是白子。这三堆棋子一共有白子多少枚?

6、思考题:

有两枝蜡烛。当第一枝燃去4/5 ,第二枝燃去 2/3 时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。

全课小结:今天这节课,我们学习了什么知识?你有哪些收获?

板书设计:

用转化思路解答分数除法应用题

繁 简

用方程解答: 用乘法解答:

解:设女生有x人。

x+2/3 x=35

5/3x=35 35×3/5=21(人)

x=21

答:女生有21人

数学六年级下册教案 篇6

教学目标

1.使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质。

2.能够正确地运用比的基本性质把比化成最简单的整数比。

3.通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

教学重点和难点

1.理解比的基本性质。

2.正确运用比的基本性质把比化成最简单的整数比。

教学过程设计

(一)复习准备

1.复习商不变的性质。

(1)谁能很快地直接说出 4125的商?

(2)说一说,你是怎样想的?(4125=(414)(254)=164100=16.4)

(3)你这样做根据的是什么?(商不变的性质)它的内容是什么?

2.复习分数的基本性质。

(1)把下面各分数约分:

(2)通分练习:

(3)我们进行约分和通分根据的是什么?(分数的基本性质)它的内容是什么?

3.求比值的练习。

8∶4= 48∶12= 16∶8=

24∶18= 40∶16= 15∶5=

(二)学习新课

1.导入新课。

我们以前学过商不变的性质和分数的基本性质,联系这两个性质想一想:在比中又有什么规律可循?下面,我们就一起研究研究。

2.概括比的基本性质。

(1)创设情境。

2∶4根据比与除法的'关系可以写成2∶4=24,再想想,2∶4等于4∶8吗?你是怎么想的?(2∶4=24=(22)∶(42)=48=4∶8)

(2)概括比的基本性质。

①小组讨论:看看上面的两个例子,想一想:在比中有什么样的规律?

②概括出比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

强调同时、相同、0除外这几个重点的关键词语。

(3)出示课题,这就是比的基本性质。(板书课题:比的基本性质。)

3.应用比的基本性质化简比。

(1)引出比的基本性质的作用。

例 一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?

请同学回答:有的同学说是45∶40,有的同学把45∶40化简成9∶8。

讨论:一年级和二年级学生人数的比是写成45∶40好呢,还是写成9∶8好?(写成9∶8能使数量间的关系更加简明。)

(2)解释什么是最简单的整数比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

(3)化简比。

应用比的基本性质可以把比化成最简单的整数比。

例1 把下面各比化成最简单的整数比。

这是一个整数比,但不是最简单的整数比,请你在练习本上把它化成最简单的整数比。

讨论:化简整数比的方法是什么?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止。)

这个比的前、后项是什么数?(分数)

18)这里为什么要同乘以18?(使学生清楚地认识到,只要把比的前后项都乘以它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化成最简单的整数比。)

讨论概括:怎样把分数比化成最简单的整数比?(一般先把比的前、后项同时乘以两个分数的分母的最小公倍数,转化为整数比,再化简成最简单的整数比)。

请把1.25∶2化成最简单的整数比。

讨论:如何把小数比化简成最简单的整数比?

④小结;应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?(第一步都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。)

(4)区别化简比和求比值。

①出示练习题:化简下面各比,并求出比值。

填表之后用投影进行订正。

讨论:由于化简比的方法和求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,如8∶12,化简比和求比值的结果都

比值就是求商,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)

(三)巩固反馈

1.完成第57页的做一做。

把下面各比化成最简单的整数比。

请学生在练习本上独立完成,用投影仪集体订正。

2.完成第59页第6题。

声音在空气中每秒传播340米,有一种喷气式飞机每秒最快飞行578米,写出这种飞机最快的速度同声音速度的比,并化简。

578∶340=17∶10

3.填空:(口答)

(1)85∶51=(85( ))∶(51( ))=5∶3

(四)课堂总结

通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

(五)布置作业

第58页第5题,第59页第7,8题。

课堂教学设计说明

复习准备中,从复习商不变的性质及分数的基本性质入手,启发学生类推出比的基本性质,这样不仅使学生很快地理解并概括出比的基本性质,还深深地受到了事物间存在着内在联系的辩证唯物主义启蒙教育。

对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。例1的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。

最后巩固练习中的第3题是提高题,要求学生说一说怎么想,使学生能够灵活地运用学过的知识。

大家都在看