短文网整理的一元一次方程说课稿(精选6篇),快来看看吧,希望对您有所帮助。
一元一次方程说课稿 篇1
一、说教材
方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。
本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也对今后学习其他方程、不等式及函数具有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。
1、教学目标
(1)知识目标:
1、掌握解一元一次方程中“去分母”的方法,并能解这种类型的方程。
2、了解一元一次方程解法的一般步骤
(2)、能力目标:
经历“把实际问题抽象为方程”的过程,发展用方程方法分析问题、解决问题的能力,
(3)、情感目标:
1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望
2、通过埃及古题的情境感受数学文明
2、教学重点:通过“去分母”解一元一次方程
3、教学难点:探究通过“去分母”的方法解一元一次方程
二、说教法:
在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。
我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
我的教学设计的指导思想是:
1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。
2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的'思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。
三、说学法
教学活动流程图
活动1列方程解决实际问题
活动内容和目的:创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一。
活动2解含有分母的一元一次方程
活动内容和目的:以学生已有的关于等式性质的数学知识基础,探索利用“去分母”的方法解一元一次方程。
活动3“去分母”的方法解一元一次方程
活动内容和目的:用“去分母”的方法解一元一次方程,掌握“去分母”的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤。
活动4小结
活动内容和目的:总结本节收获
活动1、创设问题情境:
引言:这件珍贵的文物是纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了,在文书中记载了许多有关数学的问题。
问题一:
一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。
(1)能不能用方程解决这个问题?
(2)能尝试解这个方程吗?
(3)不同的解法有什么各自的特点?
设计意图:
1、利用列方程、解方程解决实际问题,再一次让
学生感受方程的优越性,提高学生主动使用方程的意识。
2、经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是“去分母”这一步骤的必要性;同时,让学生认同“去分母”是科学的、可行的,明确为什么能去分母,这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现“方程两边同时乘以所有分母的最小公倍数”这一方法,也首次由学生自行突破了难点。
3、通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高学生的语言表达能力。
活动2、下面方程(见第96页中间)可以怎样求解?
观察方程,回答教师提出的问题并对学生的回答进行总结:
先去分母,
怎样去分母?
解去掉分母后的这个方程
归纳总结去分母的方法:
在方程两边同时乘以所有分母的最小公倍数;依据是等式的性质2,即“等式两边同时乘同一个数,结果仍相等”呈现不同学生的解题过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点。巩固了学生对解方程的透彻理解。这样做的目的不仅培养了学生的学习自主性和团体协作精神,还对与重、难点知识的突破起到了一定的促进作用。
通过对错例的辨析,加深学生对“去分母”的认识,避免解方程时出现类似错误。
去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决,通过在解方程过程中“去分母”这一步骤体会转化思想。
活动3、解方程(见第97页例题3(2))
设计意图:
用实践来加深对“去分母”的方法解一元一次方程的认识。
结合本题思考,能总结解这种方程的一般操作过程吗?
巩固所学的一元一次方程的解法,同时说明解方程的步骤是程序化的,但不能生搬硬套,每个步骤要不要使用、何时使用都应视方程的特征而定。了解对方程的每一次变形都是为了将方程最终化归为x=a的形式。解题时应根据题目特点,合理选择解题步骤。
小结活动4总结
(1)学生能否总结本节的知识,是否理解去分母的作用、依据,是否掌握去分母的具体做法;
(2)学生是否掌握了一元一次方程解法的一般步骤;;
(3)学生是否能准确表达自己的观点;
最后复习、巩固本节的知识,学会总结反思。
四、评价分析
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成功的喜悦,从而激发学生的学习动力。本节数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异;这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益;通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。
一元一次方程说课稿 篇2
一、教材分析
1、教材地位和作用
本节课是预初第二学期第六章《一元一次方程及其解法》中第一节课的内容。是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解。并在前一章刚学过有理数的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标
综上分析及教学大纲要求,本课时教学目标制定如下:
⒈会运用等式的两条基本性质对等式进行变形;运用等式的性质和移项法则解一元一次方程;
⒉会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念.
⒊体会解决问题的一种重要的思想方法----尝试检验法.
3、情感目标:
培养学生由算术解法过渡到代数解法的解方程的基本能力,渗透化未知为已知的重要数学思想。
4、教学重点和难点
1.运用等式的基本性质对等式进行变形.
2.移项法则及方程解的'检验.
二、教法与学法分析
教法方法与手段:
本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:
根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
三、教学设计
根据以上综合分析,这节课的教学流程为:
联系实际,创设情境——观察归纳,建构新知——交流对话,自我探索——理解性质,应用巩固——总结反思,布置作业。
一元一次方程说课稿 篇3
一、本质、地位、作用分析:
《新课程标准》要求:能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。由课标要求我们可以看出:列方程解决实际问题这是贯穿一元一次方程全章教学的主旋律。本节是新课程下的概念课,融入了广阔的生活背景,凸显应用意识,这就要求在教学中选取贴近学生生活实际的丰富实例,调动学生积极思考列出方程,让概念教学充满生活气息,在此基础上通过观察、比较,提炼概括出本质属性,让概念的发现过程是一个探究之旅。
方程是应用广泛的数学工具,是代数学的核心内容。《一元一次方程》承接小学学习的简易方程和刚刚学习的整式的加减(包括列代数式),又是后续学习其它代数方程的重要基础。本节作为《一元一次方程》全章的起始课,这对于激发学生学习方程的兴趣,获得解决实际问题的基本方法具有十分重要的作用。
同时方程的悠久历史具有十分深刻的思想教育内涵,早在多年前,我国人民就总结出了关于方程的著作《九章算术》;在公元1248年,元朝数学家李治撰写的《侧圆海镜》是世界上最早的用符号代替文字表示方程的著作。这些充分体现了中华民族的聪明才智,对于激发学生的民族自豪感,从小树立振兴中华的远大理想都有着十分重要的意义。
二、教学目标分析:
人教版《一元一次方程》全章将用方程解决实际问题贯穿全章始终。本节内容是《一元一次方程》的起始课,是一节概念课,教材首先通过解决一个行程问题,体会由算术到方程是数学的一大进步,接着通过用方程解决三个实际问题,在此基础上得出一元一次方程的概念,并总结用方程解决实际问题的一般步骤。
知识与技能:了解一元一次方程的有关概念。体会由算式到方程是数学的一大进步。
数学思考:经历列方程表示实际问题的相等关系的过程,体会数学化的思想方法。
解决问题:通过画示意图、列表格等方法分析实际问题中数量关系,会用方程表示简单实际问题的相等关系。
情感与态度:结合具体的问题情境,激发学生学习数学的兴趣。结合数学史的知识,激发学生的民族自豪感。
教学重点:结合问题情境抽象一元一次方程概念
一元一次方程的学习对于后续学习其它方程有着指导意义,同时也蕴涵着深厚的文化价值。因此将结合问题情境抽象一元一次方程概念作为本节教学的重点。
教学难点:实际问题的数学化过程
同时本节是新课程背景下的概念课,一元一次方程的概念与实际问题密切联系在一起,因此将实际问题的数学化过程作为本节教学的难点。
三、教学问题诊断:
普通农村中学学生数学合格率不高,有相当一部分学生对数学学科不感兴趣,基本数学知识与技能不达标。从生命的高度关注全体学生,提高全体学生的数学水平,磨练学生永不放弃的意志有着十分重要的意义.所以在教学中应通过多种手段激励全体学生努力向上。
七年级学生正处于感性认识向理性认识过渡的时期,抽象思维能力有待提高。对于一元一次方程的概念教学要选取具体的问题情境,逐步抽象。
七年级学生对于方程已经具备了一定的知识基础,但是对于方程的还比较肤浅、模糊,还处于感性层面,缺乏理性的认识和把握。
对于本节教学的重点——结合问题情境抽象一元一次方程概念。《数学课程标准》明确指出:抽象数学概念的.教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。在概念教学中如何激发学生的学习兴趣?一方面要挖掘概念在生活中的源头活水,选取贴近学生实际的生活问题。另一方面通过教师启发、师生问答明确概念的内涵和外延,让概念的形成过程是一个充满探索的发现之旅,让学生体验到探索成功的喜悦。
对于本节教学的难点——实际问题的数学化过程。新课标指出:“要关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展。”为了突破实际问题中数量关系的分析这一难点,通过示意图将生活问题抽象为数学问题,通过列表格将数学问题分解为表示数量关系问题,渗透用方程表示实际问题相等关系的数学建模思想,采用“教师引路—自主探路—合作修路—共同走路”的探究线路,为不同层次的学生提供思考锻炼的机会,从而实现不同的人在数学上得到不同的发展。
四、本节课的教法特点:
为了激发学生的探究兴趣,培养学生的自主探究能力,有效达成教学目标,我采用如下教法和学法:
情境教学法:
情绪心理学研究表明,个体的情感对认知活动有动力、强化、调节等功能。借助多媒体演示创设贴近学生生活的问题情境,引发学生积极健康的情感体验;利用启发式教学引导学生在自主探究、合作交流中发现新知、解决问题,逐步培养能力。
五、预期效果分析:
面对当前农村初中数学学生合格率低,学习兴趣不浓等现状,针对教材和学情,在本课中进行了如下探索:
一、让数学散发魅力
张奠宙教授曾经提出:数学教学的目标之一是要把数学知识的学术形态转化为教育形态,通过数学知识的教育形态散发出数学的巨大魅力,体现数学的价值,揭示数学的本质,感染学生,激励学生,让数学“冰冷的美丽”唤发学生“火热的思考”。设计贴近学生生活的实际问题;对“天元术”历史背景的挖掘;极具挑战的登山作业;关注生命价值的教师寄语。学生积极思考,兴趣浓厚,强烈感受到原来数学也如此美丽!
二、让收获激励前行
在数学课堂上如何照顾不同层次的学生?一节课还要选取重点内容进行分层探究,让不同层次的学生都有收获,从而激发他们学好数学的信心。本节课中在解决行程问题时就采取了“教师引路—自主探路—合作修路—共同走路”探究线路,实现了不同层次的学生都得到了发展。
三、让数学磨练意志
学习数学对于学生将来走向社会不单单是要用到知识,其实更为重要的是在学习数学过程中形成的意志品质。学生在面对学习困难时的态度和勇气,克服学习困难的毅力和方法对于学生的将来至关重要。本节课设计的挑战珠峰登山作业目的是培养全体学生永不放弃、努力向上的优秀品质。
四、让思想指引未来
教学的终极目标决不仅仅是为了考试,更为重要的是培养思想远大、担负民族复兴重任的建设者。数学课堂上如何实现这一目标?通过具体可感、打动学生内心世界的活动才能实现,本课中用“天元术”解决现实问题,具有人生高度的教师寄语,极具挑战的登山作业都收到了较好的教育效果。
采取以上措施力图“让数学课堂彰显生命的色彩!”
一元一次方程说课稿 篇4
在过去的几年中,开展素质教育已取得了一定的成绩,众多教育工作者对教学方法、教学结构、教学评价等问题作出了深刻的反思和改革尤其是xx年6月份召开的第三次全国教育工作会议,中共中央、国务院颁发了《关于深化教育改革,全面推进素质教育的决定》,进一步明确了教育改革的实质,并赋予了素质教育时代的特征和新的内涵素质教育的核心是创新教育和学生实践能力的培养
新的九年义务教育全日制初级中学《数学教学大纲》明确指出,“能够解决实际问题”是指:能够解决有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题;能够使用数学语言表达问题、展示交流,形成用数学的意识
又增设“初中数学中要培养的创新意识”主要在是指:对自然界和社会中的现象具有好奇心,不断追求新知、独立思考,会从数学的角度发现问题和提出问题,并用数学方法加以探索、研究和解决
要在学校教育过程中,贯彻这一精神课堂教育就必须有创新的情景和学生主动参与学习的积极诱因也就是说,课堂教育必须创设一个符合学生身心发展特点的、适合教育规律的和生动活泼,让学生积极主动发展的情境
因此,近期我们不断探索新形势下的课堂教学,下面就让我通过“一元一次方程的应用——追及问题”的教学设计,展示我们对问题的思考和实践,向在座的领导、专家请教,并衷心的希望你们给我提出宝贵的意见,改进我们的教学,进一步提高教学效益
我们这堂课主要有五个特色:
1、学而时习之
2、新课当旧课上
3、重视引导学生再创造,再发现
4、突出学习和强度,角度和反思
5、创设情景,让学生主动积极参与
一、学而时习之
“学而时习之”就是说,通过反复地、多次地进行对知识的复习、巩固,提高学习能力,使知识学习呈螺旋式结构这是符合人的认知规律的这里我们具体设置了三种类型的题目
(1)、对知识进行系统的复习例如课前训练一中的1-6题与13-15题,作业部分的1-5题,通过对以往学习的知识进行系统复习,使基本技能再形成
(2)、过去学生经常出错,疑难的重要知识点进行析疑、再次理解例如:课前训练一,第7-10题和作业第6-10题,我们有意设计一些隐藏错误或缺漏的题目让学生养成质疑的习惯和能力,对自己学习严格要求,并时常进行反思,这也是创造性思维的发展的基础
(3)、练题例如课前训练11-12题,作业11-15题,都是以大题小做的形式出现,让学生了解哪一些是关键之处,通过局部训练提高学生学习的强度
有些老师认为训练题的题量不少,学生在课堂上完成吗?但我们在求学生定时不定量目的是为不同层次学生提供了更多的空间在教学实践,不少教师都埋怨学习学生的知识遗忘率大,学习的内容有章节性和阶段性,针对这些问题,我们采用学而时习之的思想但不是说要在3分钟过后,我们不论学生完成实践了多少都让学生必须进入课堂训练二的部分
二、新课当旧课上
这里具体体现在课前训练二上,这里遵循了从人的学习规律而设计的古人云:“温故而知新”因此,把新课当旧课上,让学生在教师创设的情境下,完成一组递[进的变式的训练课让学生在不知不觉中学习了新课另外,把现代数学手段引进课室,通过电脑的声、色、象等功能,把动态与静态的结合起来,使不能完整看到的现实问题,再次呈现眼前
第1题是相遇问题,通过电脑模拟情境,让学生进一步对相遇问题的本质有深刻的理解,并复习解应用题的一般思维习惯与解题步骤,强化学生的实践路和找相等关系的能力,为本节学习打下坚实的基础
问题1在第1题中改变条件,产生了不同于相遇问题的新情况,重点是让学生知道追是及有一定条件下的
问题2在问题1的基础上改变了条件从不同角度、不同方向去同向追及问题作全面的正确的分析,通过电脑模拟,直观地反映两种情况的数量关系和本质第一种,随着时间增加,距离越越大,也不能追及第二种,随着时间的增加,距离越来越短,有可能追及然后再与问题1结合在一起,通过对比向学生交待一个追及问题必须具备的三个条件:1、速度不同;2、快者追慢者;3、同方向让学生观察模拟后,加以想象、分析,先画出线略图再完成局部训练题,弄清追及问题的数量关系
而问题3,实质是问题2中的追及问题,不同的只是甲、乙两人的距离,不是本身固有的,是通过先后出发而产生的.也就是说;“把两人相距40千米“用“让乙早出发12分钟“代替,其实,还是将问题3回复到问题2上
在这里我们对本节例题作适当的处理,把原例题放入A组练习中,使学生在不知不觉中解决了本几节的问题打破了传统教学中例题一定在讲解的习惯整个训练二,以一题多变化作为新课当旧课上的切入点,创设一个让人学得轻松,学得容易,学有所得的氛围
三、重视引导学生再创造、再发现
为了发挥分层教学的优势,我们设计了两种层次的题目,定时不定量要求各层次的学生完成从而使学生在一节课内,不同趣点,不同在求地在原有基础上得到巩固和发展,让学生有收获感、满足感,提高对学习的兴趣
A组训练题是本节知识的直接运用,面向全身学生,要求每个学生都掌握本节基本技能的方法
第1、2题用填直线型示意图和填表的形式让学生弄清已知与未知之间的关系,把实际问题建立抽象的,科学的数学模型
B组训练题较A组灵活,适用于学有余力的学生
(1)-(3)题是通过对A组题目进行变成训练形成的因为是通过题型多样化,让学生从多角度去思考问题而后用局部与全过程相结合,多渠道拓展学生的视野
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性
第(5)题,把常规的追及问题变为一个人,自身追及问题,这题比较注重思维训练,目的是培养学生“发现问题、提出问题”的能力,并注重联系实际,注重应用数学,保证了数学成为再创造、再发现的教学从而使学生从定势思维过渡到发散性思维从不同角度地让学生分析问题,充分体现了学习的强度,让学生始终处于一个主动参与的状态
同样这里也是限时20分钟,但并不是说,在20分钟学生必须全部完成,学生因应自己的情况,有选择的进行练习
以上不同起点的练习设置,不但照顾了差生,解放了优生,同时也调动了中层学生的积极性,达到抓两头,促中间的效果
四、突出学习的速度、角度、强度和反思
在当今的社会,人必须有时间观念、竞争意识和社会责任感,而学习就必须有速度和强度所以我们设置了限时训练和反馈卡目的是为了让学生对自己的事负责,促使他们有一个时间观念从而提高解题速度,并与其他的同学产生一种竞争意识,形成一个良好的学习环境和学习风气
俗语说:“授人以鱼,不如授之以渔”所以教师在教学过程中,要让学生从“学会”到“会学”就必须在教学中体现学习的角度也就是说,必须培养学生思考和解决问题要从多角度进行,强化联系,强化转换所以我们在引入训练时运用变式,分类讨论的形式目的是培养学生分析、思考的角度性在练习的设计上,通过局部训练,填图或填表弄清题目的已知与未知的关系,培养学生审题的角度而B组题主要是培养学生思维的角度,使优生有更多的空间去提高解题能力,学会多角度去思考问题通过更高层次的要求,锻炼了优生思考问题的零活性
在教学过程中要体现学习的强度,就必须在课内利用一切的时间,对本课内容进行多次的、反复的训练,以达到熟练和应用自如的强度,具体表现在本节重点和难点的反复,大容量的局部训练和具有层次安排的题组训练上
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的
又如:练习中的局部训练在一堂课,只有45分钟,时间是有限的,老师不能面面区到的为学生讲解全部知识,只能有针对性的集中解决本节的重点和难点,这就要求通过局部训练来强化学生的基本技能的形成进一步体现在教学过程中“生为主体,师为主导”的指导思想
另外,我们设计了强化A组题,在学生完成A组训练题后,可以自由选择是进入强化A组题还是进入B组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在A组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学
“学问”的意义就是在学习过程中必然有问题存在,并且要主动的通过多种渠道解决问题,扫除成长中的障碍
作业中反思的设计,是培养学生对自己严格要求,通过对所学知识的回顾、反省,并不断好问、好思的解决问题,从而培养学生的质疑能力
五、创设情境,让学生主动积极参与
学生学习最好的动力是对素材的兴趣所以,我们在整个教学过程中为学生创设了情境,把数学问题溶入到一个与他们密切相关的生活问题中,使学生形成浓厚的学习兴趣和求知欲望
以上就是我们根据当前教育的新要求,进行的具体的改革和实践谨请各位领导、专家指导
一元一次方程说课稿 篇5
尊敬的各位评委:
大家好,我今天说课的课题是人教版数学七年级上册第三章第四节《实际问题与一元一次方程》。下面我将从教材分析、学情分析、教法与学法、教学过程和板书设计五个方面对本节课的设计进行说明。
首先我们来看教材分析,教材分析包括3部分。
一、教材分析
1、教材的地位和作用
本节课是在学习了解一元一次方程的基础上,进一步探究如何找出实际问题中的相等关系,学习如何用一元一次方程解决实际问题,是实际问题与一元一次方程的第一课时,示范性强,同时也为下节课探究问题做铺垫,在本章中起着承上启下的作用。
根据新课标素质培养的要求通过本节课的学习,我认为应该达到以下教学目标
2、教学目标
(1)知识目标:
分析实际问题,寻找相等关系,建立方程模型,并根据问题的实际背景进行检验。
(2)能力目标:
培养学生分析问题,解决实际问题,归纳整理的能力。
(3)情感目标:
培养学生勤于思考、乐于探究的学习习惯,体会数学的应用价值,激发学生学习兴趣,培养学生的爱国情怀和自强不息的精神。
3、教学的重点及难点
本着课程标准,在吃透教材的基础上,我认为本节课的重点为
重点:列出一元一次方程解决实际问题
在列方程解应用题的时候找出最正确的等量关系式十分重要,因此本节课的难点为
难点:找出问题中的相等关系
下面再从学情分析谈一谈
二、学情分析
七年级学生初学列方程解决实际问题时,往往弄不清解题步骤,不设未知数就直接进行列方程,我认为学生可能存在两方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
还可能存在分析问题思路不同,列出方程不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
(基于以上我对教材和学情的分析,我采用了以下教学方法,和学法指导)
三、教法与学法
教法:
教学过程中坚持启发式教学的原则,采用讲练结合、探索发现法进行教学,引导学生从实际生活中抽象出数学问题,充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。
学法:让学生经历由简单到复杂的学习过程,教师设疑提问,学生自己体会解决实际问题的过程并鼓励学生自己归纳总结。
通过以上我对教材、学情、教法与学法的分析,我设计了下面的教学过程:
四、教学过程
1、创设情境,引入新课
本节课开始我将讲解华罗庚的生平,引入新课,这样可以更好地激发学生的学习兴趣
国际数学家华罗庚,1910年出生于江苏金坛县,被誉为中国现代数学之父。初中毕业后因交不起学费而中途退学,但经过顽强自学完成了高中和大学的全部课程,20岁时进入清华大学工作,6年后前往剑桥大学,他一生的1/5的时间在国外学习。此后,他毅然放弃了美国的优厚待遇,将余生的34年献给了祖国。
(1)提出问题
你能算出华罗庚活了多少岁吗?
(2)探究问题
a.他的一生分为几个重要阶段?
b.如果设他活了x岁,各个阶段如何表示?
c.你能根据题意找出相等的关系吗?
(3)解决问题
他的一生分为了三个阶段:
国内求学工作+出国学习+归国工作=他的一生
学生经历提出问题、探究问题、解决问题的过程,体会用一元一次方程解决简单实际问题的步骤,让学生从大段文字中提取有用的数学信息,培养学生的分析问题、寻找相等关系、解决问题和提取信息的能力,并且我认为可以趁此机会对学生进行爱国主义和自强不息的精神教育,这样可以实现情感目标,更好的体现新课标的教学理念。这就是本节课要学习的实际问题与一元一次方程问题,接下来我将对例题进行讲解,例1是配套问题,
2、例题讲解
例1、某车间有22名工人,每人每天可以生产1200个螺钉或20xx个螺母。1个螺钉需要配2个螺母。为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人个多少名?分析:
每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套。
螺母的`数量=螺钉数量的2倍是本题中特有的相等关系,是解决本例题的重点所在。
每天每人的工作效率x人数=每天的工作量(产品数量),是工作问题中的基本相等关系,上述两者结合起来就能列出方程。本题有两个未知数,在此可以鼓励学生勤于思考,设其中哪个为x都可以。
通过对例1的讲解学习,可以使学生自己寻找问题中的基本相等关系,引导学生体验用一元一次方程解决实际问题的基本过程,让学生突破找相等关系的难点。
为了加深学生对解题过程的理解及自我分析问题能力的提高,下面安排了例2。我认为例2可以采取教师引导,学生为主体自己写出分析过程,从而师生共同解决实际问题。
例2、整理一批图书,由一个人做需要40 h完成。现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作。假设这些人的工作效率相同,具体应先安排多少人工作?根据我对本课的理解,我认为此题关键在于以下三个问题
1、引导学生自己找出正确的基本相等关系两时段的工作量之和=总工作量
2、使学生理解在工程问题中把全部工作量简单表示为1,那么人均效率是个平均值,它
表示平均每人每单位时间完成的工作量
3、工作量=人均效率X人数X时间
解决了以上3个问题,题目自然迎刃而解,通过对稍微增加难度的例2的学习探究,可以更进一步提高学生寻找相等关系的能力以及分析解决问题的能力,再次经历设、列、解、检、答的过程,以便下一步的过程归纳
下面让学生由以上三道题的过程,自己试着总结出用一元一次方程解决实际问题的基本过程。
3、归纳总结
这样设计,可以让学生自己讨论,自己归纳,从而提高学生的归纳概括能力
4、巩固练习
接下来通过巩固练习,让学生自己练习两道问题,第一题是例1的配套问题,第二题是例2的工程问题,检查学生对本节课的掌握情况,以便我可以及时进行补充,也起到了加深理解,巩固知识的作用。(检查学生对本节课的掌握情况,对学生易错点进行纠正,并再次强调如何列一元一次方程,提高学生解题能力)
5、小结反思
通过以上的学习,我认为可以让学生自己总结本节课的学习内容,进一步提高学生的归纳概括能力。
6、布置作业
让学生举一反三,熟练掌握本节课的知识。
五、板书设计
下面是我的板书设计,呈现给大家的是本节课的主要内容,通过板书的直观形象可以再次加深学生对知识的理解和记忆
我的说课到此结束,谢谢大家!
使学生能在更加贴近实际生活的问题情境中运用所学数学知识,提高分析问题和解决问题的能力。
一元一次方程说课稿 篇6
各位老师你们好!今天我要为大家讲的课题是人教版七年级(上)第三章第四节《实际问题与一元一次方程》的第三课时。首先,我对本节教材进行一些分析:
一、教材分析:
1、 教材所处的地位和作用:
本节内容在全书及章节的地位是:《实际问题与一元一次方程》是数学教材七年级(上)第三章第三节内容。在此之前,在学生已学习了由实际问题抽象出一元一次方程模型和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。以方程为工具分析问题、解决问题(即建立方程模型)是全章的'重点,同时也是难点。本节内容一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高。可以说本节是一元一次方程应用的延伸与拓广。同时也为后继学习二元一次方程组埋下伏笔。
2、 学情分析:
七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。
二、教学目标:
1、知识目标:
(1)建立实际问题的方程模型,运用一元一次方程分析和解决实际问题。
(2)根据问题的实际背景进行检验,利用方程进行简单推理判断。
2、能力目标:
在具体的情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析和解决问题的能力。
3、情感态度与价值观:培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值.
三、教学重点、难点:
根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:
重点:建立实际问题的方程模型,运用一元一次方程分析和解决实际问题。
难点:正确地建立方程。
