《比例的意义》教案

短文网

2026-02-05教案

短文网整理的《比例的意义》教案(精选6篇),快来看看吧,希望对您有所帮助。

《比例的意义》教案 篇1

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:

认识正比例关系的意义。

教学难点:

掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、自主探究:

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

引导学生进行讨论,得出:

(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

2.教学例2。

出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)

3.概括正比例的意义。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。

4.教学例3学生看书自学,小组讨论,集体交流。

(1)数量与时间是不是两种相关联的量?

(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?

(3)判断数量与时间是不是成正比例?

5.完成97页练一练。

三、巩固练习

1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

2.做练习十一第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。

五、家庭作业

练习十一第2~6题。

《比例的意义》教案 篇2

教学内容:

教科书第19—21页正比例的意义,练习六的1—3题。

教学目的:

1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。

2.初步培养学生用事物相互联系和发展变化的观点来分析问题。

3.初步渗透函数思想。

教具准备:

投影仪、投影片、小黑板。

教学过程:

一、复习

用,投影片逐一出示下面的题目,让学生回答。

1.已知路程和时间,怎样求速度?板书: =速度

2.已知总价和数量,怎样求单价?板书: =单价

3.己知工作总量和工作时间,怎样求工作效率?板书:

=工作效率

4,已知总产量和公顷数,怎样求公顷产量?板书: =公顷产量

二、导人新课

教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

三、新课

1.教学例1。

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:

提问:

“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)

“表中有哪几种量?”

“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”

“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60, =60…… 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。

然后教师指着 =60, =60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)

教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)

2.教学例2。

出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

让学生观察上表,并回答下面的问题:

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

当学生回答完第二个问题后,教师板书: =3.1, =3.1, =3.1……

然后进一步问:

“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

3.抽象概括正比例的意义。

教师:请同学们比较一下刚才这两个例题,回答下面的问题;

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)

接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?

最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?

学生回答后,教师板书: =K(一定)

4,教学例3。

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

“面粉的总重量和袋数是不是相关联的量?”·

“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书: =每袋面粉的重量(一定))

“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”

5.巩固练习。

让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。

四、课堂练习

完成练习六的第1—3题。

第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)

第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。

《比例的意义》教案 篇3

教学目标

知识目标:理解比例的意义。

技能目标:能正确判断两个比是否能组成比例,培养学生抽象概括能力。

情感目标:使学生初步感知事物间是相互联系、变化发展的。

教学重难点

重点:理解比例的意义。

难点:判断两个比能否组成比例。

教学工具

多媒体课件

教学过程

一、新课导入

请同学们回忆一下比的知识,比的前项、后项和比值。

二、教学过程

1.比例的意义

(1)出示P40例1

操场上和教室里两面国旗的长和宽的比值有什么关系?

2.4∶1.6=3∶2

60∶40=3∶2

2.4∶1.6=60∶40

象这样表示两个比相等的式子叫做比例。

比例也可以写成:=

做一做

1、下面那组中的两个比可以组成比例?把组成的比例写出来。

(1)6∶10和9∶15 (2)20∶5和1∶4

(3) ∶和6∶4 (4)0.6∶0.2和∶

答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2

(4)0.6∶0.2=3∶2 ∶ =3∶1

所以,只有第一组可以组成比例为6∶10=9∶15

2、用图中4个数据可以组成多少比例?

答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5

全课小结

通过这节课,我们学到了什么知识?什么是比例?

拓展延伸

用8、12四个数分别作为比例的项,你能组成几个比例?

课后小结

通过这节课,我们学到了什么知识?什么是比例?

课后习题

一、填空

1、( )叫做比例。

2、两个比的( )相等,这两个比就相等。

3、把6×8=24×2改写成四个比例。

4、把7m=8n改写成四个比例。

5、根据8×9=3×24,写出比例( )

6、如果7a=6b,那么a:b=( ):( )。

7、如果9a=5b,那么b:a=( ):( )。

二、选择

1、下面的比中能与3∶8组成比例的是( )。

A.3.5∶6 B.1.5∶4 C.6∶1.5

2、甲数除乙数的商是1.8,那么甲数与乙数的比是( )。

A.9:5 B.5:9 C.1:8

3、下面的数中,能与6、9、10组成比例的是( )。

A.7 B.5.4 C.1.5

板书

表示两个比相等的式子叫做比例。

《比例的意义》教案 篇4

教学内容:

教材第99~102页例1~例3。

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点

认识反比例关系的意义。

教学难点:

掌握成反比例量的变化规律及其特征。

教学过程:

一、铺垫孕伏:

1.正比例关

系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、自主探究:

1.教学例2。

出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

每天运的数量(吨)1020304050

所需的天数

在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例1

出示例1。

请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

3.概括反比例的意义。

(1)综合例1、例2的共同点。

提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

4.具体认识。

(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例2里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)判断。

现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例3。

出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

三、巩固练习

用刚才我们说的判断方法来做几道题。

1.做练一练。

指名学生口答,说明理由。(可以写出数量关系式看一看)

2.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

3.做练习十二第1题。

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

练习十二第2~4题。

《比例的意义》教案 篇5

一、教学目标

1.使学生理解并掌握反比例函数的概念

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

二、重、难点

1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

2.难点:理解反比例函数的概念

3.难点的突破方法:

(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

三、例题的意图分析

教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

四、课堂引入

1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

五、例习题分析

例1.见教材P47

分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

例1.(补充)下列等式中,哪些是反比例函数

(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

例2.(补充)当m取什么值时,函数是反比例函数?

分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

《比例的意义》教案 篇6

教学目标:

1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学关键:

理解成正比例的两个量的意义。

教学过程:

一、复习准备:

口答

1、已知路程和时间,怎样求速度?

2、已知总价和数量,怎样求单价?

3、已知工作总量和工作时间,怎样求工作效率?

二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

课件出示:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

特点是:

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的。

4、正方形的面积与边长的比是边长,是一个不确定的值。

学生在小组内练说发现的规律,初步感知正比例的判定。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

3、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

4、正比例关系:观察思考成正比例的量有什么特征?

小结:

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

(2)字母表达关系式。

如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

(3)质疑。

师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

三、巩固练习

(一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

2、根据小明和爸爸的年龄变化情况

把表填写完整。父子的年龄成正比例吗?为什么?

(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

1、判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

4、画一画,你会有新的发现。

彩带每米4元,购买2米、3米…彩带分别需要多少钱?

①填一填:(长度:米,价格:元)

②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

板书:

正比例的意义

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的

路程÷时间=速度(一定)总价÷数量=单价(一定)

=k(一定)

大家都在看