圆的周长教案

短文网

2026-02-05教案

短文网整理的圆的周长教案(精选6篇),快来看看吧,希望对您有所帮助。

圆的周长教案 篇1

【教学内容】

义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。

【教学目标】

1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

【教学重、难点】

1、探索发现圆的周长与直径的关系;

2、运用圆周长的知识解决一些简单的实际问题。

【教具、学具准备】

1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

2、课件1:阿凡提与国王比赛A、B

课件2:圆的周长与直径的商的关系

课件3:祖冲之有关资料

【教学设计】

【教学过程 】

一、创设情境

师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。 国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

50米

师:同学们看,比赛开始了 紧张的比赛结束了。今天的比赛谁获胜了?

生:国王的小花驴获得了胜利

师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

师:说说你是怎么想的?

生:他们的小毛驴跑的路程不是一样长。

师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

生:量一量就知道了,

师:谁能说说正方形的周长和什么有关系,有怎样的关系?

生:正方形的周长和边长有关系,周长是边长的4倍,

师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?

师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

得出:围成圆的曲线的长叫圆的周长。

二 自主合作,探究新知

(1)发现测量圆的周长的不同方法

师:下面请同学们把准备的'圆拿出来,那圆的周长指的是哪一部分的长,同桌互相比画一下。

师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

师:把你的好方法在小组内交流一下。

(上台交流测量的方法)

生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。

师板:线绕、滚动、拉直 化曲为直

(2)探究发现圆周率和圆的计算公式

师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

生:不行,圆太大了,测量不出来!

师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

生:有些圆的周长没办法用绕线和滚动的方法测量出来

师: 那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

生:周长是直径的2倍, 生:他们一样长, 生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

生:动手量一量,算一算,

师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。

3、可以用科学计算器帮忙算一算周长和直径的商。

师:好,现在我们来交流一下你们的实验结果。

生:实物展台交流。

师:大家仔细观察分析,看能发现什么?

(厘米) 圆的直径

(厘米) 周长与直径的商

(保留两位小数)

生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

生:所有圆的周长都是直径的3倍多一些,

师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

生:圆不论大小,它的周长都是直径的三倍多一些。

师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)

师:关于圆周率,大家都知道什么?你说,

生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

师:老师也收集了一些有关的资料,大家想看吗?

看屏幕,这就是祖冲之,(课件介绍祖冲之 )

师:我们通过圆的周长除以直径得到了也就是圆周率(板书:Cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

生回答、师板书:Cd= C= C=d

d=2r C=2 C2=r

圆的周长教案 篇2

教学目标:

1.生经历探索已知一个圆的周长,求这个圆的直径或半径的过程,体会解题策略的多样性。

2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计:

一、教学例6。

⑴课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

⑵课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

①在小组中说说自己的'想法。

②展示自己是怎么解答的。

⑶全班展示、交流。

①根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

②直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

的关系计算。

2.习“试一试”。

二、巩固拓展

1.成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2.成练习十四第5题。

3.成练习十四第6题

4.成练习十四第7题。

5.生完成练习十四第8题。

6.成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

圆的周长教案 篇3

教学内容:教材第62-64页圆的周长。

教学目标:

1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

教学设计:

创设情境,揭示课题

创设情境,认识圆的周长。

师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

引导探究,展开新课

1.情境导入,借助教具直观感知,认识圆的周长。

(1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

(2)你知道圆的周长指的是什么吗?

让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

(3)围成圆周长的是一条什么线?

明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

2.测量圆的周长。

(1)滚动法。

拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

(2)绕绳法。

课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。

(3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

经过对比,感受滚动法和绕绳法两种测量方法的局限性。

3.操作实验,探究圆的周长和直径的'关系。

(1)观察猜想:圆的周长与它的什么有关呢?

学生猜想:可能与它的直径或半径有关。

课件演示:圆的周长随着直径或者半径的变化而变化。

(2)动手操作,找出规律。

四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

周长c(cm)直径d(cm)的比值(保留两位小数)

3.14213.14

9.533.17

12.643.15

15.853.16

31.4103.14

(3)观察表中记录的测量数据和计算结果。

①你发现周长与直径的比值有什么特点?(比值都是三点几)

②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

(4)进一步验证圆的周长总是直径的3倍多一些。

下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

(5)认识圆周率。

①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

④感受文明,激发情感。

结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

(6)总结圆的周长的计算公式。

①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

③小结:圆的周长总是它直径的π倍。

(7)进一步明确复习题答案。

结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

4.学以致用。

课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

学生读题后自己完成。让学生板演。

c=2πr

2×3.14×33=207.24(cm)≈2(m)

1km=1000m

1000÷2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

巩固练习,提升能力

1.完成教材64页1题。

2.判断。

(1)圆的周长是直径的3.14倍。( )

(2)圆的周长等于圆周率与直径的乘积。( )

(3)当半径为3cm时,圆的周长为18.84cm。( )

(4)半圆的周长是圆周长的一半。( )

3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

4.完成教材66页7、8题。

课堂总结,评价拓展

本节课你有什么收获?

布置作业,巩固新知

教材66页9、10题。

板书设计:

圆的周长

圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

圆的周长总是直径的3倍多一些。

圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

圆的周长教案 篇4

设计说明

“圆的周长”是在学生认识了圆,理解半径和直径之间关系的基础上进行教学的,是学生初步研究曲线图形的基本方法的开始。鉴于本节课教学属于计算公式的教学,在设计上突出了以下特点:

1.循序渐进,逐层展开。

教师是学生学习的组织者、引导者、合作者,根据这一理念,本教学设计遵循激、导、探、放的原则,引导学生思考、操作、概括交流,鼓励学生运用知识大胆尝试,让学生在尝试中培养自主探究、合作交流、动手操作的能力。

2.动手实践,突破关键。

《数学课程标准》指出:动手实践,自主探究,合作交流是学生学习数学的重要方式,在动手实践中亲身经历知识的产生与发展过程,有助于学生积累数学活动经验。因此,本教学设计用较多的时间组织学生动手实践来探究和认识圆周率,使学生在猜测、实验、验证、计算、交流中发现和认识圆周率,推导圆的周长计算公式。

3.重视数学文化,激发民族自豪感。

适当的数学文化知识的学习是使学生数学情感、态度、价值观健康发展的重要环节。教学中,重视数学文化,介绍我国古代数学家研究圆周率时采用的“割圆术”,并讲述圆周率的相关知识。使学生更为理性地理解圆周率,充分地感受数学文化的魅力,产生民族自豪感。

课前准备

教师准备PPT课件一端系着线的小球

学生准备硬币圆片绳子直尺计算器

教学过程

⊙创设情境,揭示课题

创设情境,认识圆的周长。

师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所跑的路程是否相等,就必须要算出各自跑道的什么?(周长)

师:对,要知道他们所跑的.路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来学习圆的周长的知识。(板书课题:圆的周长)

设计意图:创设生动的教学情境,给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

⊙引导探究,展开新课

1.情境导入,直观感知。

(1)学具演示,感知周长。

出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

①摸一摸:学生拿出圆形学具摸一摸圆的周长,感知圆的周长是一条封闭的曲线。

②指一指:学生举起自己的圆形学具,用手指出周长部分,加深理解圆的周长。

课件演示,直观理解。

课件动态演示圆的周长。

(2)师生小结,明晰概念。

明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

2.动手实践,测量周长。

(1)滚动法。

师拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺上滚动一周,用滚动的方法测量出圆的周长。

滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

小结:对于较小的圆形物体,我们可以用滚动法测出它的周长。

圆的周长教案 篇5

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用"几何画板"《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示"几何画板"《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的'周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。( )

②大圆的圆周率小于小圆圆周率。( )

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么? 2、你是怎么学到的?

圆的周长教案 篇6

教学内容:

教材62—63页。

教师准备:

课件

学生准备:

硬币、茶叶筒、易拉罐等实物

教学目标:

1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.

2.培养学生的观察、比较、分析、综合及动手操作能力.

3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.

4.结合圆周率的学习,对学生进行爱国主义教育.

教学重点:

推导并总结出圆周长的计算公式。

教学难点:

深入理解圆周率的意义。

教学过程:

一、创设情景,生成问题

小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

二、探索交流,解决问题

(一)认识周长

1.小黄狗跑的路程实际上就是正方形的`什么?什么是正方形的周长?

2.那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

(二)圆周长的测量方法

1、讨论方法:请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2、反馈:(基本情况)

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绸带缠绕实物圆一周并打开;

(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

(4)初步明确运用各种方法进行测量时应该注意的问题。

3、小结各种测量方法

4、创设冲突,体会测量局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

(三)探索圆的周长与直径的关系。

1、猜想:正方形的周长与它的边长有关,你认为圆的周长与什么有关?

2、自学提示

3、初步认识圆周率

①看了几组同学的测算结果,你有什么发现?

②虽然倍数不大一样,但周长大多是直径的几倍?

③小结:圆的周长总是直径的三倍多一些。

(四)认识圆周率,总结公式。

1、圆的周长与直径的比值叫做圆周率,用希腊字母π表示.

2、介绍祖冲之。(课件)

3、理解误差:看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

4、总结公式:如果用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

板书:C=πd 提问:圆的周长还可以怎样求?

板书:C=2πr 5、圆的周长分别是直径与半径的几倍?

(五)学习例1

学生独立解答后交流汇报,共同订正。

三、巩固应用,内化提高

1.课本64页做一做1、2题

2.判断

(1)圆周率就是圆的周长除以直径所得的商。( )

(2)圆的直径越长,圆周率越大。( )

(3)π=3.14 ( )

3.李伯伯菜园里有一个半径为3.5米的圆形水池。绕这个水池走一周,要走多少米?

四、回顾整理,反思提升

通过学习,你有什么收获?还有什么问题吗?

大家都在看