六年级数学下教案

短文网

2026-02-06教案

短文网整理的六年级数学下教案(精选6篇),快来看看吧,希望对您有所帮助。

六年级数学下教案 篇1

教学目标:

1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理解。

2.培养学生观察、实践能力。

3.使学生在解决实际问题中感受数学与生活的密切联系。

教学重、难点:结合实际问题运用所学的知识

教学理念:

1.数学源于生活,高于生活。

2.学生动手实践,自主学习与合作交流相结合

教学设计:

一回顾旧知:

1.圆锥的体积公式是什么? S、h各表示什么?

2.求圆锥的体积需要知道什么条件?

3.还知道哪些条件也能计算出圆锥的体积?怎样计算?

投影出示:

(1)S = 10,h = 6 V = ?

(2)r = 3,h = 10 V = ?

(3)V = 9.42,h = 3 S = ?

二运用知识,解决实际问题

1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗?怎么办呢?

2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米

(1)麦堆的底面积:__________________

(2)麦堆的体积:____________________

3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得数保留整千克数)

4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)

5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多少立方分米的木料?

(1)(出示图)什么情况下削出的圆锥是的?为什么?

(2)削去的木料占原来木料的几分之几?

(3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出的圆锥是的'呢?

三综合练习

1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。

2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的圆柱体容器中,水面的高度是( )分米

3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是圆锥的几分之几?

六年级数学下教案 篇2

教学目标:

1、通过动手操作实验,推导出圆锥体体积的计算公式。

2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

教具准备:

等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

教学过程设计:

一、复习旧知,做好铺垫。

1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)

2、口算下列圆柱的体积。

(1)底面积是5平方厘米,高6厘米,体积= ?

(2)底面半径是2分米,高10分米,体积= ?

(3)底面直径是6分米,高10分米,体积= ?

3、认识圆锥(课件演示),并说出有什么特征?

二、沟通知识、探索新知。

教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)

1、探讨圆锥的体积计算公式。

教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?

学生回答,教师板书:

圆柱------(转化)------长方体

圆柱体积计算公式--------(推导)长方体体积计算公式

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)

(学生得出:底面积相等,高也相等。)

教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?

(不行,因为圆锥体的体积小)

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验,并借助课件演示。

(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)

a、谁来汇报一下,你们组是怎样做实验的?

b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)

教师:同学们得出这个结论非常重要,其他组也是这样的吗?

学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

(板书圆锥体体积计算公式)

教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

(教师给体积公式与“等底等高”四个字上连线。)

进一步完善体积计算公式:

圆锥的体积=等底等高的圆柱体体积×1/3

=底面积×高×1/3

V = 1/3Sh

教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

课件出示:

想一想,讨论一下:?

(1)通过刚才的实验,你发现了什么?

(2)要求圆锥的体积必须知道什么?

学生后讨论回答。

三、应用求体积、解决问题。

1、口答。

(1)有一个圆柱的'体积是27立方分米,与它等底等高的圆锥体积是多少?

(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

2、出示例题,学生读题,理解题意,自己解决问题。

例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

a、学生完成后,进行小组交流。

b 、你是怎样想的和怎样解决问题的。(提问学生多人)

c 、教师板书:

1/3×19×12=76(立方厘米)

答:它的体积是76立方厘米

3 、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

4、出示例2:要求学生自己读题,理解题意。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

(1)提问:从题目中你知道了什么?

(2)学生独立完成后教师提问,并回答学生的质疑:

3.14×(4÷2)2×1.2× 1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

5、比较:例1和例2有什么不同的地方?

(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。

六年级数学下教案 篇3

第一课时《抽屉原理》

教学内容:教材第70、71页的例1、例2

教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。

3、通过操作发展学生的类推能力,形成比较抽象的数学思维。

教学重点:认识“抽屉原理”。

教学难点:灵活运用“抽屉原理”解决实际问题。

教学方法:小组合作,自主探究。

教学准备:若干根小棒,4个纸杯。

教学过程:

一、创设情境,导入新知

老师组织学生做“抢椅子”游戏( 请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。

二、自主学习,初步感知

(一)出示例1:4枝铅笔,3个文具盒。

1、观察猜测

猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?

2、自主探究

(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。

(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。

(3)交流讨论,汇报。可能如下:

第一种:枚举法。

用实物摆一摆,把所有的摆放结果都罗列出来。

第二种:假设法。

如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。

第三种:数的分解。

把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

(4)、比较优化。

请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?

师:为什么不采用枚举法来验证呢?

数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

3、引导发现

只要放的铅笔数比盒子的数量多1 ,不管怎么放,总有一个盒子里至少放进2枝铅笔。

(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书? 7本书会怎样呢?9本呢?

1、学生尝试自已探究。

2、交流探究的结果,可能如下:

1)枚举法。

共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书

2)假设法。

把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。

9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。

3、观察发现

学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

4、介绍原理。

师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

三、应用原理,解决问题

完成教材第72页 “做一做”第1题

四、全课总结,回归生活

1、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第二课时 抽取游戏

教学目标

知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。

过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。

情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重难点

1.使学生理解抽取问题中的一些基本原理。

2.找到抽屉原理问题中被分的物品。

教学过程

一、创设情境、引入新课:

师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?

学生思考、发言。

师:学习了这节课我们就能解决类似的问题了。

二、活动探究、深入了解:

(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?

1、学生提出猜想。

2、用预先准备的`学具,小组合作交流。4、小组反馈,师相机板书:

3、得出结论:把颜色看作抽屉。

有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。

(二)研究规律

师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?

分小组讨论后汇报。

再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。

小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。

三、巩固训练,促进内化

1、做一做

2、解决课前有趣的问题

3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,

(1)你至少要摸出几根才敢保证有两根筷子是同色的?

(2)至少拿几根,才能保证有两双同色的筷子?为什么?

四、全课总结,畅谈收获

1、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第三课时 节约用水

教学目标

知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力

过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。

情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。

教学重难点

所学知识的综合应用

教学过程

一、情景引入,提出问题

1、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出课题。

2、提出问题:为什么要节约用水呢?

二、问题讨论,明白道理

1、交流课前搜集的信息,畅谈有关水的认识。

2、课件展示相关资料,了解地球上水资源状况。

3、交流感想,强化体验。

三、参与活动,亲身体验

师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?

师:课前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!

1、小组交流、展示成果。(一分钟大约滴水50毫升)

2、计算统计,交流感想。

师:根据上面的滴水速度,完成下面的统计表。

一个漏水水龙头漏水情况统计表

时间 1分钟 1小时 24小时 1年

水量(升)

一个水龙头一年浪费多少水?(1立方米约重1吨)

3、评价家庭用水状况,提出节水建议。

4、(课件出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约0.2升。

A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?

B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?

C、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?

(独立分析计算、汇报计算结果,交流想法)

四、解决问题,提出方案

分组讨论一下节约用水的措施。

1、学生分组讨论,多媒体演示生活中的节水片段。

2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。

六年级数学下教案 篇4

教师准备

多媒体课件

学生准备

各种立体图形的实物图

教学过程

⊙实验导入

1、实验引出体积的概念。

将不规则的石块放入盛有水的圆柱形水杯中,水面升高。

师:谁能用数学知识解释这种现象?(揭示体积的意义)

2、明确复习内容。

师:我们学过哪些立体图形体积的计算方法?

教师结合学生的回答点出画面(四种立体图形),揭示课题。

3、出示学习目标。

(1)经历交流、讨论、合作学习的活动过程,在活动中掌握立体图形体积的计算方法。

(2)进一步提高运用所学知识解决实际问题的能力。

[板书课题:立体图形体积(容积)的计算]

⊙回顾与整理

1、体积的意义。

课件或实物出示相关的`立体图形。

提问:什么是物体的体积?什么是物体的容积?

(学生小组讨论后,小组代表发言,并借助自己手中的实物图进行说明)

教师根据学生的回答进行小结:物体所占空间的大小,叫作物体的体积。箱子等所能容纳物体的体积,通常叫作它们的容积。

2、体积(容积)的计算。

(1)再现思路。

师:这些立体图形的体积公式你们还记得吗?请和同桌交流自己知道的立体图形的体积公式。

小组交流后指名汇报。

预设

生1:长方体的体积=长×宽×高。

生2:正方体是特殊的长方体,正方体的体积=棱长×棱长×棱长。

生3:圆柱的体积=底面积×高。

生4:圆锥的体积=×底面积×高。

师:你们知道怎样计算这些物体的容积吗?

(学生交流)

师强调:物体容积的计算通常要从物体里面测量所需的数据,并用体积公式进行计算。

(2)引导学生分别说出各种立体图形体积公式的推导过程。

(先让学生小组讨论,各自说出自己的想法,然后教师指名汇报)

(3)师:结合刚才交流的内容说一说立体图形的体积公式之间有什么联系。

生:长方体、正方体和圆柱的体积公式都可以写成底面积×高的形式。

(4)字母公式。

师:你们能用字母表示这些立体图形的体积公式吗?

(学生在练习本上自主写出字母公式)

(教师板书:长方体:V=abh

正方体:V=a3

圆柱:V=Sh

圆锥:V=Sh)

(5)列表梳理。

立体图形

体积公式

联系

长方体

V=abh

①长方体、正方体、圆柱的体积公式都可以写成V=Sh。

②圆锥的体积等于和它等底等高的圆柱体积的。

正方体

V=a3

圆柱

V=Sh

圆锥

V=Sh

3、常用的体积(容积)单位及其进率。

(1)常用的体积(容积)单位有哪些?

六年级数学下教案 篇5

一、教学过程

(1)谈话导入

师:统计表的相关知识你了解多少?

预设

生1:把收集到的数据进行整理后制成表格,用来分析情况、反映问题,这种表格叫作统计表。

生2:统计表一般包括名称、项目、数量、单位等基本信息。

生3:统计表也分为单式统计表和复式统计表。

生4:制作步骤:一是收集整理数据;二是设计表格;三是填写数据。

师:我们在以前的学习中都接触过哪些统计图?(条形统计图、折线统计图、扇形统计图)

这些统计图的特点同学们还记得吗?这节课我们就来共同复习一下条形统计图的相关知识。(板书课题:条形统计图和平均数)

二、回顾与整理

1、条形统计图的特点。

提问:请同学们回忆一下,我们以前学过的条形统计图有哪些特点?

(学生小组讨论后进行汇报)

教师根据学生的汇报情况进行小结并板书

条形统计图的'特点:能够清楚地看出数量的多少。

2、条形统计图的分类。

提问:条形统计图可以分为几类?

在学生充分讨论的基础上指名回答。

预设

生1:条形统计图按照形式来分,可以分为横向条形统计图和纵向条形统计图。

生2:条形统计图按照实际需要可以绘制成单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

3、条形统计图的绘制方法。

(1)提问:同学们在制作条形统计图时应注意些什么?

(2)学生充分讨论后指名回答。

预设

生1:注意直条的宽窄应一致。

生2:要注意单位长度。

生3:还要注意美观。

生4:应先在格子图上画出纵轴和横轴,并分别标上名称。

生5:还应在横轴上确定直条的间隔,在纵轴上确定每格代表的数量。

生6:如果是复式条形统计图,不同类别要用不同的颜色或形式的直条加以区分,便于比较。

生7:还要写统计图的名称、日期、单位等。

师:下面就请同学们根据绘制条形统计图的注意事项,结合下面提供的数据信息绘制一幅条形统计图。(学生以小组为单位在方格纸上尝试完成条形统计图,教师巡视指导)

(3)课件出示数据信息:希望小学和光明小学六年级各班人数统计表。

(4)学生绘制出条形统计图后在全班展示,并说出自己的绘制方法。

(5)教师根据学生的汇报总结绘制条形统计图的方法:

①根据纸张的大小,画出两条互相垂直的射线,作为纵轴和横轴。

②在横轴上适当分配直条的位置,确定直条的宽度和间隔。

③在纵轴上确定单位长度,并标出数量和计量单位。

④用不同的图例区分两组数据。

⑤根据数据的大小,画出长短不同的直条,并标上统计图的名称、制图日期和图例。

六年级数学下教案 篇6

课前准备

教师准备:PPT课件

教学过程

⊙谈话导入

谈话:我们在小学阶段学习过哪些立体图形?如果把这些图形进行分类,可以怎样分?

明确:(1)我们学过长方体、正方体、圆柱和圆锥四种立体图形。

(2)可以把这些图形分成两类,长方体、正方体分为一类,因为它们是由平面围成的;圆柱、圆锥分为另一类,因为它们是由平面和曲面围成的。

导入:今天我们就分类来复习这些立体图形的知识。(板书课题:立体图形的认识)

⊙回顾与整理

1.长方体与正方体。

(1)长方体的特点。

①长方体的6个面都是长方形,有时有2个相对的面是正方形。

②长方体有6个面,8个顶点,12条棱。相对的面的面积相等,相对的棱的长度相等。

(2)正方体的特点。

①正方体的'6个面都是正方形,6个面的面积相等。

②正方体有12条棱,12条棱的长度都相等,有8个顶点。

③正方体可以看成是特殊的长方体。

2.圆柱与圆锥。

师:你对圆柱与圆锥有怎样的认识?(生自由回答)

预设

生1:圆柱的上、下两个面叫做底面,圆柱的两个底面是面积相等的圆。

生2:圆柱的侧面是一个曲面。圆柱两个底面之间的距离叫做高。圆柱有无数条高。

生3:圆锥的底面是一个圆,侧面是一个曲面。

生4:从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。

生5:测量圆锥的高时,先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上,竖直地量出平板和底面之间的距离,就是圆锥的高。

……

3.观察物体。

师:关于观察物体,你有哪些经验和感受?

预设

生1:把长方体或正方体放在桌面上,最多只能同时看到三个面。

生2:一个立体图形,从不同的角度看到的图形不一定相同。

⊙典型例题解析

课件出示例题。

下图是一块带有圆形空洞和方形空洞的木块。在下列物体中既能堵住圆形空洞,又能堵住方形空洞的是()。

分析这是一道具有实际意义的题。例如某处有洞漏水,我们要用器具将漏洞堵住,选择不正确将无济于事。

经观察不难发现圆柱B符合条件。它从上往下看(俯视图)是圆,从正面看(主视图)或从侧面看(左、右视图)是正方形,所以应选B。

解答B

⊙探究活动

1.出示探究内容。

有一个正方体,先将它的表面全部涂上红色,再把它切割成27个小正方体(如下图),在这些小正方体中,一面涂红色、两面涂红色、三面涂红色的各有多少个?

2.动手操作。

3.汇报操作结果。

一面涂红色的有6个,两面涂红色的有12个,三面涂红色的有8个。

4.思考:一面涂红色,两面涂红色,三面涂红色的小正方体分别在原立体图形的什么位置?

明确:(1)大正方体被切割成小正方体后,一面涂红色的是大正方体每个面中间的那一块(如A处)。

大家都在看