短文网整理的高二的数学教学计划(精选6篇),快来看看吧,希望对您有所帮助。
高二的数学教学计划 篇1
一、教材分析。
1、教材地位、作用。
本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析。
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标。
1、知识与技能目标。
(1)理解等可能事件的概念及概率计算公式。
(2)能够准确计算等可能事件的概率。
2、过程与方法。
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观。
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点。
1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程。
1、创设情境,提出问题。
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维。形成概念、
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:
(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
(让学生交流讨论,教师再加以总结、概括)
让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
____________________________________________________________________________________。
由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;
②每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解。
试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。
4、观察比较,推导公式。
师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)
生:试验二中,出现各个点的概率相等,即
P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)
由概率的加法公式,得
P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1
因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,
P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==
P(“出现偶数点”)=?=
师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?
生:_________________________________________________________________。
学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高。
例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:
探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:
P(“答对”)=1/15
解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
例3:同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
(教师先让学生独立完成,再抽两位不同答案的学生回答)
学生1:
①所有可能的结果是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。
②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。
③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得
学生2:
①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。
由表中可知同时掷两个骰子的结果共有36种。
②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。
③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)
生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。
师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。
本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理,课堂小结。
(1)本节课你学习到了哪些知识?
(2)本节课渗透了哪些数学思想方法?
7、作业布置。
(1)阅读本节教材内容
(2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题
(3)选做题课本134页习题B组第1题
8、教学反思。
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。
本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
高二的数学教学计划 篇2
一,教学内容
这学期按照教育局教研室的要求,教学任务比较重。选修1-1,第三章《导数》,根据教研室的计划,应该安排在春节前。鉴于期末考试临近,这一章没有学习,所以这学期的教学内容有以下几个部分:选修1-1 《导数》,选修1-2,共四章《统计案例》,《推理与证明》,《数系的扩充与复数的引入》。
二,教学策略
根据年山东省高考数学(文科)大纲的要求,应及时调整教学计划,切实重视学生学习的实施,让学生的学习成为有效的劳动。精心备课,精心指导,针对目标学生不放松,努力使目标学生数学成绩有效,积极交流,提高教学水平,同时认真学习《框图》,学习新课程,应用新课程。
第三,具体措施
这学期我主要从以下几个方面做好教学工作:
1、注重学习计划指导学习,善用好学案例。注重研究老师如何说话,就是注重研究学生如何学习。
2.尽量分层次做作业,尤其是加餐,提高尖子生的学习成绩。
3.特别注意学生作业的落实,不定时查看学生的集锦和作业本。
4.组织单位通过,做好试卷讲评工作。
5.积极沟通目标学生的想法和感受
高二的数学教学计划 篇3
一、指导思想
1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
3、使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、目的要求
1。深入钻研教材,以教材为核心,“以纲为纲,以本为本”深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。
2。因材施教,以学生为学习的主体,构建新的认知体系,营造有利于学生学习的氛围。
3。加强课堂教学研究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量。
三、具体措施
1。不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整。
2。学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解。
3。以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用。
4。协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战” ,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率。
5。周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。
6。多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
新的学期是新的起点,新的希望。通过上面的计划,我相信自己在本学期一定能够将两个班的数学成绩带上去,我相信,我能行。
高二的数学教学计划 篇4
一、本课教学内容的本质、地位、作用分析
(一)教材所处的地位和前后联系
本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.
(二)教学重点
①简单随机抽样的概念,
②常用实施方法:抽签法和随机数表法
(三)教学难点
对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.
二、教学目标分析
1、知识目标
(1)理解并掌握简单随机抽样的概念、特点和步骤.
(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.
2、能力目标
(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.
(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学 问题的现象,加强观察问题、分析问题和解决问题的能力培养.
3、情感、态度目标
(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.
(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.
三、教学问题诊断
本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.
如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。
1、创设情境,揭示课题
用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题: 如何收集数据? 请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)
2、学法指导,研探新知
思考1:
从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?
一般地,从N个个体中任意抽取一个,则每个个体被抽到的概率是多少?
思考2:
从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?
一般地,从N个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?
规律总结:
一般的,如果用简单随机抽样,个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。 .
3 实际运用,巩固升华
简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?
①抽签法
提出问题学校要进行庆典,每个班到主会场观看节目有6个名额,高二(24)班共有57人,怎样分这6个名额? 要求:每个学生获得名额的概率相等小组讨论设计操作步骤。
. 学生很容易联想到抽签法这时我又抛出一个问题:那如何实施抽签法?学生能根据生活中的经验来实施抽签法引导学生从解决这个问题的方法得出抽签法的一般步骤:
先将总体中的所有个体(共有N个)编号(号码可从1到N)并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.
②随机数表法
请你设计分配方案:
5·12特大地震后,都江堰某地区198户地震损毁户需要搬进安居房,规模创造了全国之最.近期首批20套安居房准备发放.要求:每户首批获得安居房的概率相同 ,从而提出随机数表法的概念
随机数表法:为了简化制签过程,我们借助计算机来取代人工制签,由计算机制作一个随机数表,我们只需要按照一定的规则,到随机数表中选取在编号范围内的数码就可以,这种抽样方法就是随机数表法。
步骤:
(1)将总体中的所有个体编号(每个号码位数一致)
(2)在随机数表中任取一个数作为开始。
(3)从选定的数开始按一定的方向(或规则)读下去,得到的号码若不在编号中,则跳过;若在编号中则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止。
(4)根据选定的号码抽取样本。
4、动手操作,合作交流
学生亲自动手进行抽签,体会抽签的公平性。
5、承上启下,留下悬念
回到开篇提到的实际问题,引出抽样还有其他方法。
四、教法分析和学法指导
(一)教法分析
1、讨论法与自学法相结合
改变传统的把学生看作是接受知识的“容器”的现象.让学生参与到教学活动的全过程中来,体现学生参与的主体地位,使学生手、脑、口并用,主动地获取知识,允许学生争论,在讨论中加深学生对知识的理解与掌握.如在解决“整个抽样过程中每个个体被抽到的概率是相等的”时组织学生讨论,在讨论的过程中使学生对这一难点有一个清楚的认识;又如在学习随机数表法时组织学生自学,既提高了学生独立学习、主动获取知识的能力又能满足学生在自学的过程中获得的成就感从而培养了自信心.
2、指导法
结合一些具体事件,如对用抽签法解决问题等事件进行分析,从而使学生对简单随机抽样过程有一个清楚的认识,加深对简单随机抽样方法的理解.
3、利用多媒体辅助教学
(二)学法指导
(1)通过丰富的例子引入数学知识,引导学生应用数学知识解决实际问题,教会学生从生活中发现数学,学习数学,如学生从生活的实例发现问题得出简单随机抽样方法就是从生活
中发现数学,用数学解决实际问题.
(2)教会学生独立思考、自主探索、动手实践、合作交流的学习数学的方式,体现在整个教学过程中,如“研探新知”、“实际运用”等.
五、预期效果
学生能够用简单随机抽样方法,解决部分实际问题。
高二的数学教学计划 篇5
一、教学目标
(一)知识与技能
1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.
2.理解并掌握几何概型的概念.
3.掌握几何概型的概率公式,会进行简单的几何概率计算.
(二)过程与方法
1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.
2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.
(三)情感、态度、价值观
1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.
2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.
二、教学重点与难点
教学重点:了解几何概型的基本特点及进行简单的几何概率计算.
教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.
三、教学方法与教学手段
教学方法:“自主、合作、探究”教学法
教学手段: 电子白板、实物投影、多媒体课件辅助
四、教学过程
五、板书:几何概型的概念:设D是一个可度量的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点。
这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比。
我们把满足这样条件的概率模型称几何概型.
板书:几何概型的概率计算公式:
高二的数学教学计划 篇6
一、 指导思想:
坚持以“学生发展为本,基于学生发展,关注学生发展,为了学生的发展”为教育课程改革的核心理念。不断研究课程标准。在教学中,要突出培养学生的创新和实践能力,收集处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流协作的能力,发展学生对自然和社会的责任感。从而实现全体学生的发展,以及学生个体的全面发展。为此,教师要发挥自己课程建设中的能动作用,要变“教教材”为“用教材教”,要变“经师”为“人师”,通过创造性地实施新课程,在知识、技能的传授过程中实现学生情感态度价值观的目标,实现育人的功效。
二、合理安排本学期教学进度,扎扎实实完成教学任务:
本学期授课时间约为17周,约102课时,本学期的教学任务第一学段:数学必修5约42课时;第二学段:必修3约46课时,保证完成教学任务。
三、认真备课工作,保证质量:
备课做到既备教材又备学生,认真学习新课标,钻研教材,掌握教材知识结构,重点,难点,并与学生原有知识加以联系,做到有的放矢。
四、精选例题和作业:
为提高学生学习的主动性、积极性,培养学生的创新意识。在教学中既要照顾中、下层学生,也要注意培养优生,因此,例题和课外作业的选取一定要有梯度,结合教材,可适度增减例题。课外作业分层要求:A组题要求学生都要完成;B组题要求学生有选择地完成;练习册上的题目经教师精选的必做,其他选做。
五、信息共享,发挥集体智慧的作用:
为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,要积极借助网络信息收集和筛选资料存库,发挥集体智慧,及时应用到具体教学中。
六、认真抓好落实,全面提高:
认真做好学困生的工作,对他们的学习加以督促,对他们的不良习惯加以纠正,争取 不让一个学生掉队,大面积提高教学质量,为使提高高二学生的数学成绩而努力奋斗。
1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、 建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
