短文网整理的勾股定理说课稿(精选6篇),快来看看吧,希望对您有所帮助。
勾股定理说课稿 篇1
一、勾股定理是我国古数学的一项伟大成就.勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用. 据此,制定教学目标如下:
1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解. 2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的.
3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美.
教学重点:勾股定理的应用. 教学难点:勾股定理的正确使用.
教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.
二.说教法和学法
1.以自学辅导为主,充分发挥教师的.主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程.
2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力.
3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望.
三、教学程序本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用.
勾股定理说课稿 篇2
尊敬的各位评委、老师,您们好。
我是临沂市苍山县实验中学的**。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生们热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析
教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此老师们利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程
我国的数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
第一步 情境导入 古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步 追溯历史 解密真相
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的.问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步 推陈出新 借古鼎新
教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步 取其精华 古为今用
我按照“理解—掌握—运用”的梯度设计了如下三组习题。
(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用
第五步 温故反思 任务后延
在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
四、教学评价
在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。
五、设计说明
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。
勾股定理说课稿 篇3
一、说教材分析
本节研究的是勾股定理的探索及其应用。它从边的角度进一步对直角三角形的特征进行了刻画。 它的主要内容是探索勾股定理,验证勾股定理的正确性,在此基础上,让学生利用勾股定理来解决一些实际问题。本节课是在学生认识直角三角形的基础上,在了解正方形和等腰直角三角形以后进行学习的,它是前面所学知识的延伸和拓展,又是后面学习勾股定理逆定理的基础,具有承上启下的作用。
二、说教学目标
教学目标的确定:教学目标是一堂课的中心任务,它只有在丰富多彩的数学活动中才能充分实现。一堂课的教学目标应全面、适度、明确、具体,便于检测。因此根据学生已有的认知基础和新课程标准,我确定了本节课教学目标为:
1、知识技能:
(1)了解勾股定理的文化背景,体验勾股定理的探索和验证过程。
(2)运用勾股定理进行简单的计算和解释生活中的实际问题。
(3)运用勾股定理会在数轴上画出表示无理数的点。
2、数学思考:
在勾股定理的探索、从实际问题抽象出直角三角形和在数轴上画出表示无理数的点的过程中,发展合情推理能力,初步体会、掌握转化和数形结合的思想方法。
3、解决问题:
通过拼图、探究活动,体验数学思维的严谨性,发展形象思维。学会与人合作并能与他人交流思维的过程和探究的结果。能够运用勾股定理解决直角三角形,在数轴上画出表示无理数的点等有关实际问题。
4、情感态度:
(1)通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值,感受数学文化,激发学习热情。
(2)通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(3)通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质。
三、说教学重、难点
教学重、难点的确定:关注学生是否能与同伴进行有效的合作交流;关注学生是否积极的进行思考;关注学生能否探索出解决问题的方法。
重点:通过探索、拼图验证勾股定理及勾股定理的应用过程,使学生获得一些研究问题与合作交流的方法经验。
难点:利用数形结合的方法探索发现、验证勾股定理及其在实际生活中的应用。
四、知识反映出来的技能、能力、方法、德育等因素
本节知识通过 “ 探索发现---拼图实践—探索验证—分析结果—运用定理 ” 等活动过程,使学生进一步理解勾股定理,并从中学会思考,学会探索,学会运用,学会交流,体会知识反映出来的丰富的文化内涵,指导学生认识现实世界中蕴涵着的数学信息。
五、教学方法
数学知识、数学思想和方法必须由学生在现实的数学活动实践中理解和发展;教学中,以学生为本位,充分挖掘教材的空间,为学生搭建动手实践、自主探索、合作交流的平台;
注重让学生经历数学知识的形成过程,充分调动学生的学习积极性,并通过这个过程,使学生体验学习成功的乐趣,在积极的思维中获取知识,发展能力。
六、教学程序设计:
为充分发挥学生的主体性和教师的主导辅助作用,设计了以下几个环节:
(1)创设情境,引入新课
问题
某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?
师生行为:教师出示照片及图片,并提出问题,学生观察图片发表见解。
设计意图:从现实生活中提出勾股定理,为学生能够积极主动的投入到探索活动创设情景,激发学生学习热情。同时为探索勾股定理提供背景材料。达到引入新课的目的。
(1)独立探究,合作交流。
讲述数学家毕达哥拉斯的故事
问题
A、B、C的.面积有什么关系?
SA+SB=SC
直角三角形三边有什么关系?
两直边的平方和等于斜边的平方
设计意图:问题是思维的起点,通过激发学生好奇、探究和主动学习的欲望。利用面积相等法,让学生发现以直角三角形两直角边为边长的正方形的面积,以斜边为边长的正方形的面积之间的关系。降低学生学习难度,从(3)自主实践,探索验证
《课程标准》指出:“数学教学是数学活动的教学。”要求学生分学习小组,动手实践,积极思考,获得技能与解决问题的方法。关注学生动手实践,关注学生主动探索与合作,关注学生积极思考,给学生思维表达的时间、空间,让学生经历探索知识的过程,并在这个过程中得到发展.。
两种拼图方案
1、2、
师生行为:教师演示动画和图片,同时提出问题,学生在独立思考的基础上以小组为单位,动手拼接,教师深入小组活动倾听学生的交流,帮助、指导学生完成拼图活动。学生展示分割、拼接的过程。
设计意图:通过观察、拼图、探究活动,给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性,充分调动学生思维的积极性,发展形象思维,使学生对定理更加深刻,通过这一教学过程来达到突破难点的目的。
(4)应用定理,解决问题
数学源于实践,运用于实践;开放性处理教材,鼓励学生充分地发表意见,表现自我,让学生在教师营造的“创新土壤”中成为主人;给学生思维以广阔的空间,培养学生从多角度运用所学知识寻求解决问题的能力.
勾股定理说课稿 篇4
尊敬的各位领导、各位老师,大家好:
我叫李朝红,是第十四中学的一名教师。我今天说课的题目《勾股定理的逆定理》,选自人教课标实验版教科书数学八年级下册第十八章第二节,本节课共分两个课时,我今天分析的是第一个课时,下面我将从教材、教法学法、教学过程、教学反思四个方面进行阐述。
一、教材分析
1、教材的地位和作用:
在学习本节课之前学生已经学习了勾股定理,全等三角形的判定等相关知识,为本节课的学习打好了基础,学习好本节课不但可以巩固学生已有的知识,而且为后面利用勾股定理的逆定理判断一个三角形是否直角三角形等相关知识的学习做好了铺垫。
2、教学目标
教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标
知识与技能:掌握勾股定理的逆定理,会用勾股定理的逆定理判断一个三角形是否直角三角形。
过程与方法:通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成
过程,体会数形结合和由特殊到一般的数学思想,进一步提高学生分析问题、解决问题的能力。
情感、态度、价值观:在探究勾股定理的逆定理的活动中,渗透与他人交流、合作的意识和探究精神.
3、重点难点
本着课程标准,在吃透教材的.基础上,我确立了如下的教学重、难点
重点:理解并掌握勾股定理的逆定理,并会应用。
难点:理解勾股定理的逆定理的推导。
二、教法学法分析
八年级学生的特点是思维比较活跃,喜欢发表自己的见解,善于进行小组合作学习,所以我将采用启发教学与诱导教学相结合的方法,老师为主导,学生为主体,充分调动学生的学习积极性,让学生动手操作,动脑思考,动口表达,积极参与到本节课的教学过程中来,在锻炼学生思考、观察、实践能力的同时,使其科学文化修养与思想道德修养进一步提升。
教法学法分析完毕,我再来分析一下教学过程,这是我本次说课的重点。
三、教学过程分析:
(一)创设情景,引入新课
1、展示图片:古埃及人制作直角的方法
2、让学生试一试用一根绳子确定直角
设计意图:通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性 ,同时也使学生感受到几何来源于生活,服务于生活的道理,体会数学的价值。
(二)动手检测,提出假设
在本环节中通过情境中的问题,引导学生分别用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm
上面三组线段为边画出三角形,猜测验证出其形状。
再引导启发诱导学生从上面的活动中归纳思考:如果一个三角形的三边a,b,c满足a2+b2=c2,那这个三角形是直角三角形吗?在整个过程的活动中,尽量给学生足够的时间和空间,以平等身份参与到学生活动中来,对其实践活动予以指导。让学生通过作图、测量等实践活动,给出合理的假设与猜测。整个环节通过设置的问题串,引导学生动手、动脑、动口相结合,激活学生的思维,培养学生严谨的科学态度,合理的推测能力,严密的逻辑思维能力和灵活的动手实践能力。
(三) 探索归纳,证明假设:
勾股定理逆定理的证明与以往不同,需要构造直角三角形才能完成,如何构造直角三角形就成为解决问题的关键。如果直接将问题抛给学生证明,他们定会无从下手,所以为了解决这一问题,突破这个难点,我先
1、 让学生画了一个三边长度为3cm,4cm,5cm的三角形和一个以3cm,4cm为直角边的直角三角形,剪下其中的直角三角形放在另一个三角形上看出现了什么情况?并请学生简单说明理由。通过操作验证两三角形全等,从而显示了符合条件的三角形是直角三角形,
2、 然后在黑板上画一个三边长为a、b、c,且满足 a2+b2=c2的△ABC,与一个以a、b为直角边的直角三角形,让学生观察它们之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。
在这个过程中,首先让学生从特殊的实例中动手操作到证明,学生自然地联想到了全等三角形的判定,进而由特殊到一般发现三边长为a、b、c,且满足 a2+b2=c2的△ABC与以a、b为直角边的直角三角形的关系。
设计意图:让学生从特殊的实例动手到证明,进而由特殊到一般,顺利地利用构建法证明了勾股定理的逆定理,整个过程自然、无神秘感,实现从直观印象向抽象思维的转化,同时学生亲身体会了“操作——观察——猜测——探索——论证”的过程,体验了“特殊到一般,个性到共性”的伟大数学思想在实际中的应用。
这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
(四)学以致用、巩固提升
本着由浅入深的原则,安排了三个题。第一题比较简单,判断由a,b,c组成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.让学生仿照课本上的例题,独立完成,教师提醒书写格式。并说明像15,8,17能够成为直角三角形的三条边长的正整数,我们称为勾股数。第二题我改变题的形式,把一些符合a+b=c的三角形放入网格中让学生运用勾股定理及其逆定理来说明理由。第三题是求一个不规则四边形的面积,让学生思考如何添加辅助线,把它分成一个直角三角形和一个非直角但能判定是直角的三角形,让学生运用勾股定理及其逆定理证明并求解。
设计意图:采用启发教学与诱导教学方法相结合的方法分层练习,由浅入深地逐步提高学生解决实际问题的能力,达到巩固知识,学以致用的目的
(五)回顾总结,强化认知
课堂小结以填空体的形式检测、归纳总结
设计意图:让学生以填空题的形式进行总结,不仅能够起到检测的目的,而且帮助学生理清知识脉络,起到重点强调,产生高度重视的效果。
(六)作业布置
教材33页练习
设计意图:加强学生对勾股定理逆定理的理解,使学生的练习范围拓展到多个题型。
教学反思:本节课以学生为主体、教师为主导,通过启发与诱导,使学生动手操作、动脑思考、动口表达,让学生在实践与探究中发挥自我,充分调动了学生的自主性与积极性,整个过程注重了学生课上知识的形成与巩固,以及学生各方面素质的培养。总之本节课的知识目标基本达成,能力目标基本实现,情感目标基本落实。
以上是我对本节课的理解,还望各位老师指正。
勾股定理说课稿 篇5
说教材
本课时是北师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:
1。知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2。过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。 3。情感与态度目标:感受数学在生活中的应用,感受数学定理的美。 教学重点:勾股定理的应用。 教学难点:勾股定理的正确使用。 教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
说教法和学法
1。以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2。切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3。通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
教学程序
本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 一。回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。 二。新授课例1。如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的`A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14。2。1)
①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短? ②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗? ③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?
思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2。(课本P58图14。2。3) 思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0。8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出CD= = =0。6,CH=0。6+2。3=2。9>2。5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。 三。课堂小练 1。课本P58练习第1,2题。 2。探究: 一门框的尺寸如图所示,一块长3米,宽2。2米的薄木板是否能从门框内通过?为什么?
四。小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。
勾股定理说课稿 篇6
尊敬的各位考官:
大家好,我是X号考生,今天我说课的题目是《勾股定理的逆定理》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先来谈一谈我对教材的理解。
本节课选自人教版初中数学八年级下册第十七章第二节《勾股定理的逆定理》,它是在学生掌握勾股定理及一般三角形性质的基础上进行教学的。应用前面学习的勾股定理及三角形全等证明逆定理是本节课的关键步骤,同时本节课又丰富了三角形的性质,是后面几何问题的基础理论性知识。
二、说学情
接下来谈谈学生的实际情况。本阶段的学生已经掌握了一定的基础知识,处于由几何内容的初级向高级行进的过程。他们的几何思维正在逐步形成和发展,对几何题目具有一定的分析、想象、概括能力,具有对未知事物的新鲜感和探求欲。同时也要注意到学生能力的不成熟,教学中鼓励与引导并重。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下教学目标:
(一)知识与技能
理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。
(二)过程与方法
经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。
(三)情感、态度与价值观
体会事物之间的联系,感受几何的魅力。
四、说教学重难点
在教学目标的实现过程中,教学重点是勾股定理的逆定理及其证明,教学难点是勾股定理的逆定理的证明。
五、说教法学法
为了突破重点,解决难点,顺利达成教学目标,教学中我将主要采用小组讨论、自主探究的'教学方法,辅以适量的教师讲解和引导,把课堂还给学生。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
课堂伊始,我采用复习旧知与创设情境相结合的导入方式。首先我会带领学生复习勾股定理并明确其题设和结论,为后面提出逆命题、逆定理做铺垫。接着提问学生如何画直角三角形,学生很容易想到用三角尺或量角器。此时我会要求学生不能用绳子以外的工具,借助学生的困惑,给出古埃及人利用等长的3、4、5个绳结间距画直角三角形的情境。以古埃及人所用方法中蕴含何道理为切入点引出课题。
通过这样的导入方式,能够带领学生回顾上节课的内容,为本节课奠定好基础,同时用情境激发学生的好奇心和求知欲,更好地展开教学。
(二)讲解新知
接下来是最重要的新授环节。
请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确
出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。
学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。
在得到肯定结论后,引导学生基于以上例子大胆猜想得出命题。
