八年级数学教案

短文网

2026-02-16教案

短文网整理的八年级数学教案(精选6篇),快来看看吧,希望对您有所帮助。

八年级数学教案 篇1

一、教学目标

1、认识中位数和众数,并会求出一组数据中的众数和中位数。

2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3、会利用中位数、众数分析数据信息做出决策。

二、重点、难点和难点的突破方法:

1、重点:认识中位数、众数这两种数据代表

2、难点:利用中位数、众数分析数据信息做出决策。

3、难点的突破方法:

首先应交待清楚中位数和众数意义和作用:

中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。

教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。

在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。

三、例习题的意图分析

1、教材P143的例4的意图

(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的.研究结论去估计总体的情况。

(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)

(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

2、教材P145例5的意图

(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。

(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)

(3)、例5也反映了众数是数据代表的一种。

四、课堂引入

严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

五、例习题的分析

教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

六、随堂练习

1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)

1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

求这15个销售员该月销量的中位数和众数。

假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。

2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:

1匹1.2匹1.5匹2匹

3月12台20台8台4台

4月16台30台14台8台

根据表格回答问题:

商店出售的各种规格空调中,众数是多少?

假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?

答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。

2. (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。

七、课后练习

1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是

2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.

3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( )

A.97、96 B.96、96.4 C.96、97 D.98、97

4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )

A.24、25 B.23、24 C.25、25 D.23、25

5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:

温度(℃) -8 -1 7 15 21 24 30

天数3 5 5 7 6 2 2

请你根据上述数据回答问题:

(1).该组数据的中位数是什么?

(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?

答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天

八年级数学教案 篇2

一、内容和内容解析

1.内容

三角形中相关元素的概念、按边分类及三角形的三边关系.

2.内容解析

三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

本节课的教学重点:三角形中的相关概念和三角形三边关系.

本节课的教学难点:三角形的三边关系.

二、目标和目标解析

1.教学目标

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

(2)理解并且灵活应用三角形三边关系.

2.教学目标解析

(1)结合具体图形,识三角形的概念及其基本元素.

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

三、教学问题诊断分析

在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

四、教学过程设计

1.创设情境,提出问题

问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

2.抽象概括,形成概念

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的.图形叫做三角形.

【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.

补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

3.概念辨析,应用巩固

如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

1.以AB为一边的三角形有哪些?

2.以∠D为一个内角的三角形有哪些?

3.以E为一个顶点的三角形有哪些?

4.说出ΔBCD的三个角.

师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

4.拓广延伸,探究分类

我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

八年级数学教案 篇3

教学建议

知识结构

重难点分析

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的.情况对比有一定的难度.

教法建议

1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

教学设计示例

一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5. 通过一题多解,培养学生对数学的兴趣

二、教学设计

画图测量,猜想讨论,启发引导.

三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点:三角形中位线定理的证明.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

【引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

2.三角形中位线性质

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DE到F,使 ,连结CF,由 可得AD FC.

(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

(证明过程略)

例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

证明:连结AC.

∴ (三角形中位线定理).

同理,

∴GH EF

∴四边形EFGH是平行四边形.

【小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

七、布置作业

教材P188中1(2)、4、7

八年级数学教案 篇4

教学目标:

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

二、导入新课:

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式 =a (x0)中,规定x = .

2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。

4、例1 求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

三、练习

P69练习 1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的`方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

P75习题13.1活动第1、2、3题

八年级数学教案 篇5

●教学目标

(一)教学知识点

1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似.

2.能根据相似比进行计 算.

(二)能力训练要求

1.能根据定义判断两个三角形是否相似,训练 学生的判断能力.

2.能根据相似比求长度和角度,培养学生的运用能力.

(三)情感与价值观要求

通过与相似多边形有关概念的类比,渗透类比的`教学思想,并领会特殊与一般的关系.

●教学重点 相似三角形的定义及运用.

●教学难点 根据定义求线段长或角的度数.

●教学过程

Ⅰ.创设问题情境,引入新课

今天, 我们就来研究相似三角形.

Ⅱ.新课讲解

1.相似三角形的定义及记法

三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF

其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.

2.想一想

如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢?

所以 D、E、F. .

3.议一议,学生讨论

(1)两个全等三角形一定相似吗?为什么?

(2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么?

(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?

结论:两 个全等三角形一定相似.

两个 等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.

4.例题

例1、有一块呈三角形形状 的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度.

例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

ACB=40,求(1)AED和ADE的度数。(2)DE的长.

5.想一想

在例2的条件下,图中有哪些线段成比例?

Ⅲ.课堂练习 P129

Ⅳ.课时小结

相似三角形的 判定方法定义法.

Ⅴ.课后作业

八年级数学教案 篇6

【教学目标】

一、教学知识点

1.命题的组成.

2.命题真假的判断。

二、能力训练要求:

1.使学生能够分清命题的条件和结论,能判断命题的真假

2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

三、情感与价值观要求:

1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

【教学重点】准确的找出命题的条件和结论

【教学难点】理解判断一个真命题需要证明

【教学方】探讨、合作交流

【教具准备】投影片

【教学过程】

一、情景创设、引入新课

师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

新课:

(1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

4.如果一个四边形的对角线相等,那么这个四边形是矩形。

5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

二、例题讲解:

例1:师:下列命题的条件是什么?结论是什么?

1.如果两个角相等,那么他们是对顶角;

2.如果a>b,b>c,那么a=c;

3.两角和其中一角的对边对应相等的两个三角形全等;

4.菱形的四条边都相等;

5.全等三角形的面积相等。

例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

2:有的命题的.描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

三、思维拓展:

拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

(1)首先给学生介绍欧几里得的《原本》

(2)引出概念:公理、定理,证明

(3)启发学生,现在如何证实一个命题的正确性

(4)给出本套教材所选用如下6个命题作为公理

(5)等式性质、不等式有关性质,等量代换也看作定理。

拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

练习书p197习题6.31

四、问题式总结

师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

作业:书p197习题6.32、3

板书设计:

定义与命题

课时2

条件

1.命题的结构特征

结论

1.假命题——可以举反例

2.命题真假的判别

2.真命题——需要证明 学生活动一——

探索命题的结构特征

学生观察、分组讨论,得出结论:

(1)这五个命题都是用“如果……那么……”形式叙述的

(2)这五个命题都是由已知得到结论

(3)这五个命题都有条件和结论

学生活动二——

探索命题的条件和结论

生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

学生活动三

探索命题的真假——如何判断假命题

生:可以举一个例子,说明命题1是不正确的,如图:

已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

生:由此说明:命题1、2是不正确的

生:命题3、4、5是正确的

学生活动四

探索命题的真假——如何证实一个命题是真命题

学生交流:

生:用我们以前学过的观察、实验、验证特例等方法

生:这些方法往往并不可靠

生:能够根据已知道的真命题证实呢?

生:那已经知道的真命题又是如何证实的?

生:那可怎么办呢?

生:可通过证明的方法

学生分小组讨论得出结论

生:命题的结构特征:条件和结论

生:命题有真假之分

生:可以通过举反例的方法判断假命题

生:可通过证明的方法证实真命题

大家都在看