《组合图形的面积》教案

短文网

2026-02-17教案

短文网整理的《组合图形的面积》教案(精选6篇),快来看看吧,希望对您有所帮助。

《组合图形的面积》教案 篇1

教学目标:

1、使学生掌握计算环形的面积的方法,并能准确掌握和计算其他一些简单组合图形的面积。

2、进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。

教学过程:

一、教学例10。

1、出示圆环图形,这是什么图形?你知道吗?

2、出示例10题目,读题。

师:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

小组讨论,确立解题思路。

交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环的面积

3、学生独立操作计算。

4、组织交流解题方法,提问:有更简便的计算方法吗?

小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可以利用乘法分配率进行简便计算。

二、“试一试”

1、出示题目和图形,学生读题。

师:(1)这个组合图形是有哪些基本图形组合而成的?

(2)半圆和正方形有什么相关联的地方?确:正方形的边长就是半圆的直径。

(3)思考一下,半圆的面积该怎样计算?

2、学生独立计算。

3、交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。

小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的.。

三、巩固练习。

1、“练一练”。

思考:(1)求涂色部分的面积,需要计算哪些基本图形的面积?

(2)计算这些基本图形的面积分别需要哪些条件?

(3)第一个图形,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

学生独立完成,并全班反馈交流。

2、练习十九第6~9题。

(1)第6题。先学生独立完成,再交流。

交流重点:

a、每个组合图形需要测量图中哪些线段的长度?

b、求每个图色部分面积时,方法是怎样的?

c、计算中有没有注意运用简便的方法。

(2)第7题。学生根据图形作出直观的判断,并说说直观判断的方法。然后通过计算检验所作出的判断。

(3)第8题。学生读题,观察示意图。

提:

a、要求小路的面积实际求求什么?

b、求圆环的面积,必须知道什么条件?

c、题目中告诉了我们哪些条件?还有什么条件是要我们求的?

学生独立解答,并全班交流。

(4)第9题。

通过画辅导线的方法,来估计每种花卉所占圆形面积的几分之几,在让学生计算每种花卉的种植面积。

(5)思考题。学生先充分思考,再组织交流。

四、读一读“你知道吗?”,并算一算。

《组合图形的面积》教案 篇2

教学目标

1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

教学重难点

教学重点:探索组合图形面积的计算方法。

教学难点:根据组合图形的条件,有效地选择计算方法。

教学过程

一、复习:课件出示:

师:下面这些物体里有哪些图形?

说一说生活中哪些地方有组合图形。生畅所欲言。

师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?

师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。

二引入新课。

1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?

师:这个问题,能用你学过的知识想办法解决吗?

小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。

布置自主探索任务:

明确探索的要求;(把想法画在图上,并试着求出地板的面积)

交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。

提示:实在有困难的'同学,可以与同桌进行合作。

2、生独立尝试,师巡视,并发现典型。

3、反馈:

师:谁来展示你的解决办法?

(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)

补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。

可能出现的答案有:

将你的想法画在图形上,并试着求出图形的面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。

出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。

4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。

师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)

今天,我们学的是组合图形的面积。(板书:的面积)。

师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?

(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)

师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。

三、练习。

过渡:所以,我们在解决这类问题时,可以考虑要尽量的(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:

右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有

可能出现的其它问题有:请你来评价一下这两种方法。

(分成了不是已学过的图形)

(分得过细,数量上过多)

将下面图形分成我们已学过的图形

过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。

新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?

做一面中队旗用多少布?

在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

有一块正方形空心地砖,它实际占地面积是多少?

学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?

请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。

师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。

四:总结。

1、学习了这一课,你学会了什么?

2、最后,我们来轻松一下。

《组合图形的面积》教案 篇3

教学要求:

1.使学生理解组合图形的含义,初步了解组合图形面积的计算方法;

2.会计算一些较简单的组合图形的面积,提高学生运用几何初步知识解决实际问题的能力。

教学重点:使学生初步掌握组合图形面积的计算方法,会计算简单的组合图形的面积。

教学难点:能正确地把组合图形分解成几个已学过的图形。

教具准备:投影片若干

教学过程:

一、激发

1.口答下列各图形面积的计算公式,并计算出它们的面积。

2米3分米

3米4米5分米

2厘米

1.2米10厘米

1.6米2.5厘米

2.揭题:在实际生活中,我们见到的物体表面,有很多图形是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的,我们把这些图形叫做组合图形。今天我们就学习组合图形面积的计算。板书课题:组合图形面积的计算。

二、尝试

1.投影出示例题:右图表示的是2米

一间房子侧面墙的形状。它的面积是

5米

多少平方米?

5米

2.引导学生看图思考并回答。

(1)这个组合图形能否分解成几个

我们学过的简单图形?

(2)怎样求这个组合图形的面积呢?

3.生计算出这个组合图形的面积。

(1)生在书上例题下面填空。

(2)集体订正时让学生说说怎样计算组合图形的面积?

(3)师强调指出:计算组合图形的面积,一般是先把它分成几个我们学过的简单图形,分别计算出各个简单图形的面积,然后再把它们加起来,就是整个组合图形的`面积。

4.尝试后练习:做一做

新丰小学有一块菜地,形状如

右图。算出这块菜地的面积多少平

方米。

生独立审题,观察菜地的形状,思考将它分成几个什么样的简单图形,再让学生讲一讲,最后计算出这块菜地的面积。集体订正。

三、应用

1.练习十九第3题:量一量少先队的中队旗,算出它的面积。(你能想出不同的解法吗?)

(1)生分组讨论:怎样分成几个我们学过的简单图形?

(2)对分解合理简单的做法在投影仪上显示出来。

(3)生选取一种方法,量出所需长度,再计算出它的面积。

2.练习十九第4题:下面是一种机器零件的横截面图,求出涂色部分的面积是多少平方毫米。

20毫米

10毫米

30毫米27毫米

54毫米

生独立计算出它的面积,集体订正时讲一讲自己是怎样想的。

四、体验

本节课,你有什么收获?

五、作业

练习十九第1、2题。

《组合图形的面积》教案 篇4

教学内容:义务教育课程标准实验教科书人教版数学五年级上册第92~93页例4。

教学目标:

1.联系已有知识认识组合图形,会把组合图形分解成已学过的平面图形,能正确计算组合图形的面积。

2.通过观察、操作、分析,初步认识转化思想方法在组合图形面积计算中的运用;提高观察、分析、综合和运用转化的方法解决实际问题的能力。

3.增强探索数学的自觉性与创新意识,体验成功解决数学问题的愉悦。

教学重点:将组合图形转化成若干个已学过的基本图形。

教学难点:根据组合图形的特点灵活进行转化,并找出隐含在图形中的条件。

教具、学具准备:教师准备多媒体课件、实物投影仪;学生准备七巧板。

教学过程:

一、复习旧知,激疑导入

1.复习平面图形的面积。

(1)出示下列图形,让学生说说每个图形的面积怎样计算?

(2)学生说后,教师依次在图形的下面写上面积算公式:

S=ab S=a2 S=ah S=ah2

S=(a+b)h2

2.观察组合图形,激疑导入。

教师(投影)出示组合图形:房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形。

师:这些图形与我们学过的哪些图形相同?怎样计算它们的面积?(引导学生观察思考并说明这些图形分别是由几个我们已经学过的简单图形组成的,我们把它们叫做组合图形。板书课题:组合图形的面积计算)

(设计意图:通过复习学过的平面图形面积计算公式,巩固对简单图形面积计算方法的理解,为学习组合图形的面积计算做好铺垫。联系生活实际,通过投影展示多种组合图形,引导学生观察,用问题激发学生的求知欲,使揭示课题水到渠成。)

二、观察分析,探索方法

1.认识组合图形。

(1)在组合图形中找一找简单图形。

师:在实际生活中,我们见到的物体表面有许多是由我们已经学过的长方形、正方形、平行四边形、三角形、梯形等基本图形组成的组合图形。现在请同学们认真观察屏幕上的组合图形,找一找房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形各由哪些简单图形组成?

(学生边说,教师边用彩色笔在投影片上把前面三种组合图形分割成几个简单图形。)

(2)找一找生活中见过的组合图形。

师:在日常生活中,同学们还见过哪些物体的表面是组合图形?它们是由哪些简单图形组成的?

(3)小组议一议,画一画组合图形。

(4)小结:组合图形是由几个简单图形组成的平面图形。

(设计意图:通过引导学生观察、寻找组合图形中的简单图形,寻找日常生活中的组合图形,引导学生议一议,画一画。在此基础上再引导学生归纳、概括组合图形的含义,建立组合图形的概念,使学生对组合图形有了清晰的认识。)2.探索组合图形面积的计算方法。

师:同学们认识了组合图形,接下来我们探索组合图形面积的计算方法。

(1)投影例题:张大叔有一块菜地,形状如下图。这种菜地的面积是多少平方米?

(2)探索计算方法。

教师发给每个学生印有上图的练习纸,按下列要求完成:

①想一想:这个图形是由哪几个简单图形拼成的?

②画一画:画上虚线,把组合图形分割成几个简单图形,看看谁的方法多?谁的方法好?

③找一找:寻找计算组合图形面积的条件。

④算一算:学生独立尝试计算组合图形的面积。

⑤说一说:学生汇报交流,先说一说把组合图形分割成哪几个简单图形,再利用课件展示分割过程,最后投影展示学生的不同计算方法。

方法一:求一个梯形和一个长方形面积的和。

(4+8)(10-5)2+54

=30+20

=50(m )

方法二:求一个梯形和一个三角形面积的和。

(5+10)42+8(10-5)2

=30+20

=50(m )

方法三:求一个三角形和一个长方形面积的和。

(10-5)(8-4)2+104

=10+40

=50(m )

方法四:求两个三角形面积的和。

1082+542

=40+10

=50(m )

方法五:从一个长方形的面积中减去一个梯形的面积。

108-(10+5)(8-4)2

=80-30

=50(m )

⑥议一议。组织讨论,比较算法。上面五种计算和思考方法有何异同?为什么有的用加法算,有的用减法算?比一比,哪种计算方法比较简便?

3.小结计算方法。

先把组合图形分解成学过的几个简单图形,然后寻找计算简单图形面积的条件,最后运用加、减法求出组合图形的面积。但要注意,分解图形时应当考虑计算方便且要有计算面积所必需的数据。

教师板书:合理分解(转化)寻找计算简单图形面积的条件计算简单图形的面积运用加、减法(求和或求差)。

(设计意图:通过让学生想一想、画一画、找一找、算一算,鼓励学生寻求不同的解题策略,运用不同的思路计算面积,培养学生思维的灵活性,让学生创造性地解决问题;通过学生说一说、议一议,交流各自的计算方法,拓宽计算组合图形面积的思路,明确计算组合图形面积时不仅可以用加法算,有时也需要用减法算;明确分解图形时要考虑尽量用简便的方法计算,促进算法优化;通过小结计算方法,使学生进一步理解和掌握组合图形面积的计算方法,并认识到根据已知条件对图形进行分解,不是任意分解都能计算,培养学生思维的深刻性;通过教师板书解题思路,渗透数学转化思想,提升学生的数学思维能力。)三、解决问题,发展能力

1.下面是少先队的中队队旗,做一面中队旗要用红布多少平方米?

师:先用虚线画一画,可以把它分割成哪些简单的图形?看看谁的方法多?

(1)让学生独立完成。学生一般能想出下面两种方法:

①求两个梯形面积的和。

②求一个长方形和两个三角形面积的.和。

(2)组织小组交流,引导学生想出第三种方法:

从一个长方形的面积减去一个三角形的面积。

(3)评价小结。

师:同学们不但想出了多种计算方法,而且知道了计算组合图形的面积既可以是合并求和用加法,也可以是去空求差用减法。

2.下图是一种机器零件的横截面图,求出阴影部分的面积是多少平方毫米?

师:先观察这幅图,想一想可以怎样求阴影部分的面积?

(1)让学生独立完成。

(2)组织小组交流、讨论:怎样求(阴影部分)组合图形的面积,说说解题思路。为什么要用减法计算?

(3)反馈评价。

3.下图是教室的一面墙。如果砌这面墙每平方米用砖185块,一共需要多少块砖?

师:要求一共需要用多少块砖?需要知道哪些条件?怎样求这面墙的面积?

(1)让学生独立完成。

(2)组织小组交流。

(3)引导反馈评价。

(4)自己订正错误。

4.摆一摆,量一量,算一算。

(1)用七巧板中的四块拼成一个组合图形,看看可以拼成怎样的组合图形?

(2)想一想,还有别的组合方法吗?再动手拼一拼。

(3)说一说,你是用哪四个图形组合起来的?

(4)量一量,量出求组合图形需要的有关数据。

(5)算一算,计算出组合图形的面积。

(6)评一评,学生(可能)拼成以下几种组合图形,先展示观察,再引导学生评价。

(设计意图:《数学课程标准(修改稿)》在解决问题目标中提出:初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的实际问题,发展应用意识和实践能力。根据课标这一理念,在巩固练习环节,设计了解决三道实际问题和一道摆摆、量量、算算的开放题,让学生独立思考,小组交流,动手操作,自主完成,相互评价,主动订正,旨在巩固所学知识,让学生进一步掌握组合图形面积的计算方法,发展学生的求异创新思维能力,培养学生分析问题和解决简单实际问题的能力。)

四、全课总结,情知共融

师:怎样计算组合图形的面积?通过这节课的学习,你有什么收获?

《组合图形的面积》教案 篇5

《组合图形的面积》教案

作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?下面是小编整理的《组合图形的面积》教案,欢迎大家分享。

《组合图形的面积》教案 篇6

教学内容:

北师大版教科书第九册第75~76页的内容

教学目标:

1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

重点、难点

重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

难点:如何选择有效的`计算方法解决问题。

教具准备:

多媒体课件和组合图形图片。

教学过程:

一.引出概念,揭示主题。

1.你能看出以下图形是由那些基本图形组成的吗?

2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

二.新授。

这是我家的客厅平面图!(课件出示客厅的平面图。)

1、估计地板的面积

师:请同学们先估一估这个地板的面积有多大呢?

2、探索不同方法。

师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

生动手画图。

教师有选择的展示方法。

3.师总结分割法和添补法。

其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。

4.计算:

现在你会计算这个组合图形的面积吗?

要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。

生独立计算。

5.汇报计算方法及结果。

6.辨析及总结。

(1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?

分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。

(2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

三.巩固练习。

1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。

四.小结:谈谈你的收获!

五.板书:

组合图形面积

图11.转化

图22.找条件

图33.计算图

大家都在看