《完全平方公式》教案

短文网

2026-02-18教案

短文网整理的《完全平方公式》教案(精选6篇),快来看看吧,希望对您有所帮助。

《完全平方公式》教案 篇1

教学目标

1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的因式分解。

2、掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)

教学方法:对比发现法课型新授课教具投影仪

教师活动:学生活动

复习巩固:上节课我们学习了运用平方差公式分解因式,请同学们先阅读课本87—88页,看看你能有什么发现?

新课讲解:

(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2

a2-8a+16=a2-2×4a+42=(a-4)2

(要强调注意符号)

首先我们来试一试:(投影:牛刀小试)

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1

(3)(m+n)2-4(m+n)+4

(教师强调步骤的.重要性,注意发现学生易错点,及时纠正)

2.把81x4-72x2y2+16y4分解因式

(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)

将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。

练习:第88页练一练第1、2题

《完全平方公式》教案 篇2

1.能根据多项式的乘法推导出完全平方公式;(重点)

2.理解并掌握完全平方公式,并能进行计算.(重点、难点)

一、情境导入

计算:

(1)(x+1)2; (2)(x-1)2;

(3)(a+b)2; (4)(a-b)2.

由上述计算,你发现了什么结论?

二、合作探究

探究点:完全平方公式

【类型一】 直接运用完全平方公式进行计算

利用完全平方公式计算:

(1)(5-a)2;

(2)(-3-4n)2;

(3)(-3a+b)2.

解析:直接运用完全平方公式进行计算即可.

解:(1)(5-a)2=25-10a+a2;

(2)(-3-4n)2=92+24n+16n2;

(3)(-3a+b)2=9a2-6ab+b2.

方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.

变式训练:见《学练优》本课时练习“课堂达标训练”第12题

【类型二】 构造完全平方式

如果36x2+(+1)x+252是一个完全平方式,求的值.

解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.

解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.

方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.

变式训练:见《学练优》本课时练习“课堂达标训练”第4题

【类型三】 运用完全平方公式进行简便计算

利用完全平方公式计算:

(1)992; (2)1022.

解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.

解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;

(2)1022=(100+2)2=1002+2×100×2+4=10404.

方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.

变式训练:见《学练优》本课时练习“课堂达标训练”第13题

【类型四】 灵活运用完全平方公式求代数式的值

若(x+)2=9,且(x-)2=1.

(1)求1x2+12的值;

(2)求(x2+1)(2+1)的值.

解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.

解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;

(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.

方法总结:所求的展开式中都含有x或x+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.

变式训练:见《学练优》本课时练习“课后巩固提升”第9题

【类型五】 完全平方公式的`几何背景

我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )

A.a2-b2=(a+b)(a-b)

B.(a-b)(a+2b)=a2+ab-2b2

C.(a-b)2=a2-2ab+b2

D.(a+b)2=a2+2ab+b2

解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故选C.

方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.

变式训练:见《学练优》本课时练习“课堂达标训练”第7题

【类型六】 与完全平方公式有关的探究问题

下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.

(a+b)1=a+b,

(a+b)2=a2+2ab+b2,

(a+b)3=a3+3a2b+3ab2+b3,

则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.

解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1,故填20.

方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.

变式训练:见《学练优》本课时练习“课后巩固提升”第10题

三、板书设计

1.完全平方公式

两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.

(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

2.完全平方公式的运用

本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。

《完全平方公式》教案 篇3

教学目标

1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.

2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.

3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.

教学重难点

教学重点:

1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.

2、会运用公式进行简单的计算.

教学难点:

1、完全平方公式的推导及其几何解释.

2、完全平方公式的结构特点及其应用.

教学工具

课件

教学过程

一、复习旧知、引入新知

问题1:请说出平方差公式,说说它的结构特点.

问题2:平方差公式是如何推导出来的?

问题3:平方差公式可用来解决什么问题,举例说明.

问题4:想一想、做一做,说出下列各式的结果.

(1)(a+b)2(2)(a-b)2

(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)

二、创设问题情境、探究新知

一块边长为a米的'正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)

(1)四块面积分别为:、、、;

(2)两种形式表示实验田的总面积:

①整体看:边长为的大正方形,S=;

②部分看:四块面积的和,S=.

总结:通过以上探索你发现了什么?

问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?

问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.

(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)

问题3:你能说说(a+b)2=a2+2ab+b2

这个等式的结构特点吗?用自己的语言叙述.

(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)

问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.

总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.

问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?

语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.

强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.

三、例题讲解,巩固新知

例1:利用完全平方公式计算

(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

解:(2x-3)2=(2x)2-2o(2x)o3+32

=4x2-12x+9

(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

=16x2+40xy+25y2

(mn-a)2=(mn)2-2o(mn)oa+a2

=m2n2-2mna+a2

交流总结:运用完全平方公式计算的一般步骤

(1)确定首、尾,分别平方;

(2)确定中间系数与符号,得到结果.

四、练习巩固

练习1:利用完全平方公式计算

练习2:利用完全平方公式计算

练习3:

(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)

五、变式练习

六、畅谈收获,归纳总结

1、本节课我们学习了乘法的完全平方公式.

2、我们在运用公式时,要注意以下几点:

(1)公式中的字母a、b可以是任意代数式;

(2)公式的结果有三项,不要漏项和写错符号;

(3)可能出现①②这样的错误.也不要与平方差公式混在一起.

七、作业设置

《完全平方公式》教案 篇4

一、教材分析:

(一)教材的地位与作用

本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

(2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

(3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

(二)教学目标的确定

在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

1、知识目标:

理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

2、能力目标:

渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

3、情感目标:

培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

(三)教学重点与难点

完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

二、教学方法与手段

(一)教学方法:

针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

采用小组讨论,大组竞赛等多种形式激发学习兴趣。

(二)教学手段:

利用投影仪辅助教学,突破教学难点,公式的`推导变成生动、形象、直观,提高教学效率。

(三)学法指导:

在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

三、教材处理

根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

四、教学程序

教 学 过 程

设计意图

一、创设情境,引出课题

如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

a

若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

a 10

引导学生利用图形分割求面积。

另一方面:正方形

10 10a 102 面积为(a+10)2, 所以:

(a+10)2=a2+20a+102

a a2 10a

a 10

b ab b2 把10替换为b,

(a+b)2=a2+2ab+b2

a a2 ab 提出课题

a b

通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)

(根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生主动地进行探索和思考。

对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触

二、交流对话,探求新知

1、推导两数和的完全平方公式

计算(a+b)2

解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

2、理解公式特征

①算式:两数和的平方

②积:两个数的平方和加上这两个数积的2倍

3、语言叙述

(a+b)2=a2+2ab+b2用语言如何叙述

4、公式(a-b)2=a2-2ab+b2教学

①利用多项式乘法 (a-b)2=(a-b)(a-b)

②利用换元思想 (a-b)2=[a+(-b)]2

③利用图形

b

a

(a-b) b

a

5、学生总结、归纳:

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。

6、公式中的字母含义的理解。(学生回答)

(x+2y)2是哪两个数的和的平方?

(x+2y)2=( )2+2( )( )+( )2

(2x-5y)2是哪两个数的差的平方?

(2x+5y)2=( )2+2( )( )+( )2

变式 (2x-5y)2可以看成是哪两个数的和的平方?

利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。

由学生对公式

(a+b)2=a2+2ab+b2进行口头语言叙述。

(1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的主动性,开阔学生的思路。(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;(3)体会辩证统一的唯物主义观点;(4)正确引导学生学习时知识的正迁移。

使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”

加深学生对公式中的字母含义的理解,明确字母意义的广泛性

三、整理新知形成结构

1、完全平方公式并分析公式左右的特征。

2、换元的基本想法

四、应用新知,体验成功

1、例1教学:用完全平方公式计算

(1)(a+3)2 (2)(y-)2 (3)(-2x+t)2 (4)(-3x-4y)2

学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方

提出以下问题:

(1)可否看成两数和的平方,运用两数和的平方公式来计算?

(2)可否看成两数差的平方,运用两数差的平方公式来计算?

(3)能不能进行符号转化?如(-3x-4y)2=(3x+4y)2

2、公式巩固

(1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

(2)下列各式的计算,错在哪里?应怎样改正?

①(a+b)2=a2+b2 ②(a-b)2=a2-b2

③(a-2b)2=a2+2ab+2b2

3、练习:运用完全平方公式计算:(学生板演)

①(a+5)2 ②(3+x)2 ③(y-2)2 ④(7-y)2

⑤(2x+3y)2⑥(-2x-3y)2 ⑦(3- )2 ⑧(- - )2

4、例2,运用完全平方公式计算:(1)1012 (2)982

5、练习:运用完全平方公式计算

(1)912 (2)7982 (3)(10 )2

6、讨论:(1-2x)(-1-2x), (x-2y)(-2y+1)如何计算

五、公式拓展,鼓励探究

1、a2+b2=(a+b)2-______ a2+b2+ _______=(a+b)2

a2+b2+ ________ =(a-b)2

2、(a+b)2-(a-b)2=______ 3、(a+b+c)2=________

4、提出思考题:(a+b)3=? (a+b)4=?

5、已知 求 的值。

6、已知: ,求 , 的值。

6. 已知 ,求x和y的值。

(1)遵循及时巩固原则。(2)针对初一学生注意力不能持久的特点。(3)形成知识网络,有利于学生进一步学习公式的运用

(1)直接运用公式进行计算。(2)进一步帮助学生掌握换元法。(3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。

对这几个式子的辨析目的在于防止学生对以前学过的如(ab)2=a2b2的公式的负迁移作用

讲练结合

(1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。(2)体会公式实际运用作用,增加学习兴趣

进一步辨析完全平方公式与平方差公式的区别

公式变形利于各种计算

提出一个问题,引导学生用学习研究完全平方公式的方法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

六、小结提高,知识升华

1、两个公式 (a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

2、两种推导方法:多项式乘法导出;图形面积导出

3、换元法与转化

七、作业布置,分层落实

1、阅读教材 6.17内容

2、见省编作业本 6.17

3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究

由学生自己小结本节所学知识、方法等。教师根据学生回答情况作出补充。

(1)作业1主要以培养学习良好的学习习惯为目的。(2)结合学生实际情况,贯彻面向全体学生,因材施教原则。作业2要求全体学都能完成。作业3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。 也能满足不同层次学生的不同要求。

附:板书设计与时间大致安排

屏 幕

课题

公式……例题

学生板演

本课时的时间大致安排:

引入课题3分钟左右,探求新知15分钟左右,整理新知2分钟左右,应用新知15分钟左右,公式拓展5分钟左右,小结作业布置约5分钟。

设 计 说 明

本节课的教学设计注重体现以教师为主导、学生为主体,以发展学生为本的思想。遵循初一学生的心理特点(形象思维大于抽象思维)和认知规律(从特殊到一般)。结合学生实际学习情况(已较熟练掌握多项式乘法,并且本节之前也已经学习了平方差公式)进行本课设计的。下面就设计作几点简单说明:

1、完全平方公式的本质是多项式乘法,它的推导方法与平方差公式推导方法是一样的,根据乘方的意义与多项式乘法法则,就可以推导出完全平方公式。因此在两数和的平方公式推导中,采取先由学生自己计算(a+b)2,然后教师点题的方式,再加上引课时已经由几何图形面积的计算得出的结论(a+b)2=a2+2ab+b2,学生是容易接受的。在两数差的平方公式推导中,更进一步,由学生自主选择一种模式解决、验证,增加了数学课堂的开放性。

2、充分发挥学生自主学习、探究的能力。从引入时图形变换的教师启发引导,到公式验证、推导时的学生自主探索,再到学生与学生之间的合作交流学习,都突出了学生是探索性学习活动的主体。在公式拓展中还提出了思考题(a+b)3=?(a+b)4=?……(a+b+c)2=?培养学生严谨的治学态度和钻研探索的精神。同时让学生明确本节课不仅要学会完全平方公式,更加要学会完全平方公式的推导方法,即授学生以渔,让学生学会学习。

3、在练习设计与作业布置中都体现了分层次教学的要求,让不同层次的学生都能主动的参与并都能得到充分的发展。同时也遵循了面向全体与因材施教相结合的教学原则。

4、充分挖掘本课时教材中的隐含的各种数学思想,在教学中渗透如建模思想、数形结合思想、换元思想、化归思想,注重培养学生的发现问题、解决问题的能力、求简意识、应用意识、创新能力等各方面能力。

5、公式(a-b)2=a2-2ab+b2可以作为(a+b)2=a2+2ab+b2的一个应用,这样两个公式便统一为一个公式,这样做有助于学生的记忆和理解,但作为应用,实践表明还是把它们分开来用的好。因此,教学中在公式(a-b)2=a2-2ab+b2的推导过程就有意识的安排与(a+b)2=a2-2ab+b2统一,但又它与(a+b)2=a2+2ab+b2同等的对待。最后在小结时,对于两者的联系再加以说明,让学生领会到数学中的辩证统一思想。

《完全平方公式》教案 篇5

运用乘法公式计算:

(l) (2)

(3) (4)

学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

【教法说明】 这样做的目的是训练学生的快速反应能力及综合运用知识的`能力,同时也激发学生的学习兴趣,活跃课堂气氛.

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

《完全平方公式》教案 篇6

总体说明:

完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.

本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.

一、学生学情分析

学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

二、教学目标

知识与技能:

(1)让学生会推导完全平方公式,并能进行简单的应用.

(2)了解完全平方公式的几何背景.

数学能力:

(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

(2)发展学生的数形结合的.数学思想.

情感与态度:

将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

三、教学重难点

教学重点:

1、完全平方公式的推导;

2、完全平方公式的应用;

教学难点:

1、消除学生头脑中的前概念,避免形成“相异构想”;

2、完全平方公式结构的认知及正确应用.

四、教学设计分析

本节课设计了十一个教学环节:学生练习、暴露问题――验证――推广到一般情况,形成公式――数形结合――进一步拓广――总结口诀――公式应用――学生反馈――学生PK――学生反思――巩固练习.

第一环节:学生练习、暴露问题

活动内容:计算:(a+2)2

设想学生的做法有以下几种可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正确做法;

针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

第二环节:验证(a+2)2=a2

大家都在看