短文网整理的比的意义教学设计(精选22篇),快来看看吧,希望对您有所帮助。
比的意义教学设计 篇1
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。
教学目标:
1进一步掌握小数点位置的移动引起小数大小的变化。
2能根据要求正确移动小数点的位置。
3感受数学知识的严谨,养成认真、仔细的`习惯。
教学重点:
进一步掌握小数点位置的移动引起小数大小的变化。
教学难点:
根据要求正确移动小数点的位置。
教学过程:
一、基本练习
1小数点位置移动引起小数大小变化的规律是什么?
2练习十六第3题。
学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。
二、指导练习
1第8题
老师针对不同的学生进行指导。
第9题请同学们先汇报收集的资料,再算一算。
3第10题
注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。
三、独立练习
1练习十六第4,5题教师强调:写得数时注意位数不够用"0"补足。
2学生独立完成第6,7题
四、拓展练习
练习第11题。
引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的积的变化。
五、小结
哪些同学愿意谈谈今天的收获?
比的意义教学设计 篇2
教学内容
教科书第46~47页和相应的“做一做”,练习十二的第1~4题。
教学目的
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关系。
教具准备
长3分米、宽2分米的红旗一面,投影仪。
教学过程
一、复习
教师:在日常生活和工农业生产中,常常需要对两个数量进行比较。比如这面红旗(教师出示红旗),它长3分米,宽2分米。要对这面红旗的长和宽进行比较,可以用什么方法?
引导学生回答:可以用减法,比较长比宽多多少或宽比长少多少。用除法,比较长是宽的几倍,或者宽是长的几分之几。
板书:3÷2==1……………长是宽的1倍
2÷3=……………………宽是长的
二、新课
1、导入新课。
教师:刚才我们用以前学过的方法对红旗的长、宽进行比较。这节课,我们要在用除法对两个数量进行比较的基础上,学习一种新的对两个数量进行比较的数学方法──比。(板书:比。)
教师:比表示什么意义呢?它怎么读,怎么写?各部分的名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。(板书课题。)
2、教学比的意义。
教师:(指3÷2)看这个除法算式,长是宽的几倍需要哪个量和哪个量比较?
(长和宽比较。)
红旗的长是多少?宽呢?红旗的长和宽比较也就是几和几比?
(长和宽比较也就是3和2比。)
求红旗长是宽的几倍又可以说成长和宽的比是3比2.(板书:长和宽的比是3比2.)
(指2÷3)宽是长的几分之几是哪个量和哪个量比较?根据这个例子(指上例),想一想,宽是长的几分之几又可以说成什么?
引导学生说出:宽和长的比是2比3.教师板书。
小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁的比。
教师:这两个例子都是对长、宽两个量进行比较,为什么一个比是3比2,而一个比是2比3呢?
引导学生回答:3比2是长和宽的比,2比3是宽和长的比。
这两个例子告诉我们:两个数量进行比较一定要弄清谁和谁比。谁在前、谁在后不能颠倒位置。
教师:刚才我们用除法和比的方法对红旗的长、宽进行了比较。在日常生活中,两个数量进行比较的事例有许多,请看这个例子(出示投影片):
“一辆汽车2小时行驶了100千米,这辆汽车的速度是每小时多少千米?
求汽车行驶的速度怎样计算?
学生回答时,板书:100÷2=50(千米)
100千米是汽车行驶的什么?2小时呢?汽车的速度需要哪个量和哪个量比较?
(路程和时间比较。)
那么汽车行驶的速度又可以说成路程和时间的比。
教师:在这个例子中,路程和时间的比是几比几?
学生回答后教师板书:路程和时间的比是100比2.
教师:现在看这些例子,都是用什么方法对两个数量进行比较的?(用除法。)那么表示两种量的两个数,它们之间具有什么关系?(相除关系。)是几个数相除?(两个数相除。)
学生回答后板书。
再看长和宽的比是3比2,宽和长的比是2比3,路程和时间的比是100比2,这又是用什么方法对两个数量进行比较的?(比的方法。)几个数的比?学生回答后教师板书:两个数的比。
(教师引导学生总结出比的意义:)通过这些例子可以清楚地看出:两个数相除又叫做两个数的比。
从比的意义看,两个数的比是表示两个数之间的什么关系?(相除关系。)学生回答后,教师在相除二字下面画上着重号,然后齐读。
3、教学比的读写法,各部分名称及求比值的方法。
教师:以上我们学习了比的意义,在数学中,比还有这样的记法。
3比2记作(板书:记作),先写3,再写“∶”,最后写2.(板书:3∶2)
提示学生比号的两个小圆点要写在两个数的正中间,它叫比号,读作“比”,那么这个比就读作3比2.让学生齐读一遍。
2比3记作(板书:记作),先写什么?再写什么?最后写什么?
教师提问,学生回答后教师板书。
100比2怎么写?学生回答后,教师板书:100∶2.
这两个比会读吗?齐读一遍,学生练习写比。
教师:在比中,每一部分都有它的名称。我们以3∶2为例(板书:3∶2),这叫什么符号?(学生答后板书:比号)比号前面的数叫做比的前项,(板书:前项)比号后面的数叫做比的后项。(板书:后项)
根据比的意义,比的前项和后项是什么关系?(相除关系。)在这个比中,用谁除以谁?(3除以2.)3除以2的商是多少?(1)
教师指出:我们把比的前项除以后项所得的商叫做比值。(板书:比值)1在这里就叫做3∶2的比值。
板书:3∶2=3÷2=1
┇ ┇ ┇┇
前比后比
项号项值
教师:从上面的式子可以看出,同除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于除法的商,可以用下表来表示。
比
前项
∶(比号)
后项
比值
除法
被除数
÷(除号)
除数
商
列完表后,教师指出:比和除法还是有区别的,不能完全混同起来,除法是一种运算,而比表示两个数的关系。
教师提问:那么,比和比值有什么区别和联系呢?
引导学生根据比的意义和比值的定义,弄清楚比值是一个数,是比的前后项相除所得的商,它通常用分数表示,也可以用小数表示,有时也可能是整数;而比是表示所比较的两个数的关系,如3∶2,也可以写成分数形式(但不能写成带分数,仍读作3比2.)
需要指出:比的后项不能是零。
让学生想一想这是为什么?引导学生联系比和除法的关系,由于比的.后项相当于除法的除数,而除数不能为零,所以比的后项也不能为0.同时还要进一步指出,在体育比赛中的“几比几”,也使用“∶”号。但这只表示哪一队对哪一队比赛,各得多少分,不表示两队所得分数的倍比关系,与数学中的比的意义不同。比赛中时常出现0∶0或几比0的情况,而数学中比的后项是不能为0的。另外,比赛中的几比几是不能化简的。
4、做教科书第62页上半部分“做一做”的题目。
(1)完成第1题。
指名一学生在黑板上板演,其他学生独立完成。教师注意巡视,并察看学生是否将比号的位置写得规范。
然后提问:每个比的前项是几?后项是几?能不能把比的前项和后项颠倒?
教师指出:正如前面所讲,求长是宽的几倍,用长÷宽;求宽是长的几分之几,用宽÷长;所以交换了比的前后项的位置,比的具体意义就变了。
(2)完成第2题。
让学生独立完成,教师巡视,做完后集体订正。
5、教学比与分数的关系。
教师:两个数的比也可以写成分数形式。例如:3∶2可以写作,在这里,它表示两个数的比,仍读作3比2.
让学生齐读。
进一步举例:2∶3可以写作,100∶2可以写作。然后让学生齐读。
提问:分数和除法有什么关系呢?(分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。)
提问:根据分数和除法的关系以及比和除法的关系,比和分数又有什么关系呢?
引导学生弄清楚:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。列表如下:
比
前项
∶(比号)
后项
比值
除法
被除数
÷(除号)
除数
商
分数
分子
──(分数线)
分母
分数值
列完表后,提问:比和分数有没有区别呢?
让学生明确分数是一种数,而比表示两个数相除的关系。
总结比、除法、分数三者在意义上的区别:比是指两个数相除,表示两个数的关系;除法是一种运算;分数是一种数。它们的意义是不同的。
6、做教科书第62页下半部分“做一做”的题目。
让学生独立完成,教师巡视。
集体订正时,指名学生说说自己用分数表示的比,并强调指出:虽然写的是分数形式,但不能读作几分之几,而应读作几比几。
三、巩固练习
1、做练习十二的第1题。
(1)做第(1)题。
教师提问:路程和时间的比是两个同类量的比,还是不同类量的比?(不同类量的比。)
路程和时间的比,得到的是什么量?(速度。)
教师指出:路程和时间的比表示的意义就是速度。
然后让学生独立做在练习本上,最后集体订正。
(2)做第(2)题。
先让学生独立完成,教师巡视。
集体订正时,让学生说说模型总数和人数的比表示的意义是什么。(表示的是平均每人做的模型数。)
(3)做第(3)题。
让学生独立完成,集体订正。
2、做练习十二的第2题。
让学生独立完成,教师注意巡视。完成后集体订正。
3、做练习十二的第3题。
让学生独立完成。集体订正时,可以让学生对比一下两个比值的关系,指出这种关系是一种反比例关系,今后要进一步学习。
4、做练习十二的第4题。
先让同桌的两名同学讨论对不对,教师注意旁听学生的讨论情况,然后指名学生回答自己的讨论结果。
教师指出:小强和爸爸身高的比属于同类量相比,同过去求一个数是另一个数的几倍或几分之几一样,相比的同类量的单位大小不一致时,比就失去了它的意义。因此,要求小强和爸爸身高的比,就要先把两个数量化成同单位的数。所以小强和爸爸身高的比应该是100∶173.
比的意义教学设计 篇3
教学目标:
1、使学生经历比的。概念的抽象过程,理解比的意义,感悟数学知识之间的内在联系,培养观察、比较、抽象、概括以及合情推理的能力。
2、使学生掌握比的读法、写法,知道比的各部分名称,理解并掌握比与除法、分数的关系,掌握求比值的方法,会正确求比值。
教学重点、难点:建构比的意义。
教学课件:多媒体课件。
教学过程:
一、激情导课
1、根据情境写除法算式。
师:同学们,你们好!谁愿意告诉老师你们今年多大了?
师:大多数同学都是12岁,如果李老师今年24岁。(板书:生12师24)
师:你能根据老师年龄和同学年龄这两个信息,提一个用除法来解决的数学问题吗?
生:老师的年龄是同学年龄的几倍?怎样列式?
生:24÷12(板书)
生:同学的年龄是老师年龄的几分之几?又该怎样列式?
生:12÷24(板书)
2、揭示课题,引出比。
师:上面的两个问题都是用除法算式来表示两种数量的关系的。其实这种两数相除的关系我们数学上还有一种新的表示形式,这就是我们今天所要研究的新内容比。(板书:比)
二、民主导学
任务(一)根据概念理解比。
1、任务呈现:师:那么什么叫做比呢?请大家打开数学书第68页,书上已经有了说明,找一找,齐读这句话。
师:你是怎样理解这句话的?
2、自主学习
独立思考后小组合作
3、展示交流:
生:两个数相除又可以写成这两个数的比。
师:你认为这句话里哪个词是最重要的?
师:正如大家所说,两数相除又叫做这两个数的比。(板书:两数相除又叫做这两个数的比。)这就是比的意义。(板书:的意义)齐读课题。
师:根据比的意义,能不能把刚才的除法算式改写成比呢?24÷12=24:12(板书:24:12),比的写法,在两个数中间点上两个小圆点,就像我们语文上写的冒号一样,在比中,我们把它叫做比号,也可以写成分数形式的比,都读作“24比12”。(板书)把12÷24改写成比的形式12:24(板书:12:24)。
师:我们继续来研究这个比,这里的24表示什么?12又表示什么?
生:这里的'24表示老师的年龄是24岁,(板书:老师年龄)12表示同学的年龄是12岁。(板书:同学年龄)
师:24:12表示谁和谁的比?
生:24:12表示老师年龄与同学年龄的比。
师:12:24表示谁和谁的比?
生:同学年龄与老师年龄的比。(板书:同学年龄:老师年龄)
师:24:12与12:24这两个比有什么区别?
生:它们的意义不一样,24:12表示老师年龄与同学年龄的比,12:24是同学年龄与老师年龄的比。
师:用比来表示两个数量关系的时候,我们一定要说清楚是谁和谁的比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。
任务(二)比的分类。
1、任务呈现:
师:看来大家对于比都有了比较深刻的认识,下面请同学们根据例1的表格完成课本68页“试一试”。
2、自主学习:
独立思考后小组交流
3、展示交流
课件出示:李兰和张丽所用时间的比是4:5,张丽所行路程和时间的比是240:5
师:这里的4表示什么?5又表示什么?
生:4表示李兰所用时间是4分钟,(课件出示:时间)5表示张丽所用时间是5分钟。(课件出示:时间)
师:240:5这里的240表示什么?5又表示什么?
生:240表示张丽所行的路程是240米,(课件出示:路程)5表示张丽所用的时间是5分钟。(课件出示:时间)
师:你发现这两道题里面相比的两个量有什么不同吗?
1、同类量比。
前一题相比的两个量都是所用时间,这样的比是同类量的比。比出的结果是一个量是另一个量的几倍或几分之几。
2、不同类量比。
后一题相比的两个量是所行的路程和所用的时间,这样的比是不同类量的比,比出的结果表示速度。因此,不同类量的比要产生一种新的量。
3、练习。
师:下面每组信息中有两个数量,你能用比来表示它们的关系吗?
课件出示:(1)小汽车每小时行60千米,货车每小时行50千米。
师:60表示什么?50表示什么?60:50表示?小汽车的速度:货车的速度=60:50
(2)用12元买了4个杯子。总价:数量=12:4
(3)工人生产24个零件,需要3小时。工作总量:工作时间=24:3
生:12元买了4个杯子,12÷4=3元,也就是总价除以数量等于单价。所以总价和数量的比是12:4.24÷3=8个,8表示的是每小时生产零件的个数,24个零件叫做工作总量,3小时叫做工作时间,工作总量除以工作时间等于工作效率,所以工作总量和工作时间的比是24:3。
师:这3道题里哪些是同类量的比,哪些是不同类量的比?
任务(三)自学认识比各部分名称,求比值。
1、任务呈现:
师:请同学们带着自学提纲中的这些问题自学教材第68页,可以和同桌同学一起议一议。
2、自主学习:
自学提纲:
(1)比由几部分组成?
(2)比的各部分名称是什么?
(3)什么叫比值?比值是怎样求出来的?
3、展示交流:
师:谁愿意向大家汇报第一个问题?
生:比由3部分组成。
师:那比的这3部分名称分别是什么?
以24:12为例来介绍比各部分的名称。
师:前项在什么位置?后项在什么位置?
在比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。在24:12这个比中,24是比的前项,12是比的后项。
师:什么叫比值?比值是怎样求出来的?
生:比的前项除以后项,所得的商叫做这个比的比值。用比的前项除以比的后项。
师:24:12这个比的比值该怎样计算呢?
生:24÷12=2
师:你能用刚才计算比值的方法求出下面每个比的比值吗?
课件出示:求出下面每个比的比值。5:1=()÷()=()2、7:9=()÷()=()4:7=()÷()=()(学生口述答案,教师借助课件反馈)
师:你是怎样理解比值的?比值有几种表示形式?
生:比值是一个数,可以用分数表示,也可以用小数或整数表示。勾出书上的有关句子并齐读。
师:比和比值有什么区别?
生:比值是一个数,比表示两个数之间的一种关系。
任务(四)从分数、除法的角度深化比。
1、任务呈现
看课件:那么,比和除法、分数之间有着怎样的联系和区别呢?
2、小组合作
独立思考后小组交流
3、展示交流
比的前项相当于除法中的(),相当于分数中的(),比号相当于除法中的(),相当于分数中的(),比的后项相当于除法中的(),相当于分数中的(),比值相当于除法中的(),相当于分数中的(),除法、比、分数既有联系又有区别。它们的意义不同。分数是(数)的一种表现形式,除法是一种(运算),比表示两个数之间的相除(关系)。如果用字母a表示比的前项,用字母b表示比的后项,写出比是a:b,除法算式是a÷b,写成分数是,三者之间的内在关系是:a:b=a÷b=这里的b能等于0吗为什么?
生:b相当于除法当中的除数,因为除数不能为0所以(b≠0)。
师:那也就是说比的后项不能为0.20xx年10月16日,在一场国际足球热身赛中,巴西队主场4比0胜日本队,这里比的后项怎么是0了?4表示什么?0表示什么?4:0表示什么呢?
生:巴西队是4分,日本队是0分,看看他们谁赢了。4:0表示的是两队的分数。
师:与今天我们所讲的比的意义一样吗?
生:不一样,各类比赛中的比表示的是两队得分相差多少的关系,我们数学中的比表示两个数相除的关系。
三、检测导结
1、目标检测
写比。甲数是3,乙数是10。
(1)甲数与乙数的比是()。
(2)乙数与甲数的比是()。
(3)甲数与甲乙两数和的比是()。
(4)乙数与甲乙两数和的比是()。
2、求比值。6:36=()2、8:7=()0、4:0、4=()5:2、5=()
3、哪一杯糖水更甜?
4、图形中找比。
师:接下来咱们进行一场小小的比赛,看一看谁在这个图中发现的比最多。
师:刚才他们说的都是两个数的比,有三种颜色,你能不能找出一个与众不同的比呢?能不能说出三个数的比呢?比还能表示三个数的关系,生活中还真有这样的比!搅拌混凝土时,水泥、沙子和石子的比是2:3:5。
2、结果反馈:同桌互判,反馈对错情况。
3、反思总结
这节课你有哪些收获?今天我们大家共同认识了比,其实关于比的知识还有很多,有兴趣的同学课后可以继续研究它。
比的意义教学设计 篇4
一、教学内容:人教版教材五年级下册第45、46页(新授课)
二、教材分析:
三、学情分析:
四、教学目标
1、了解分数的产生,理解分数的意义。
2、理解单位“1”的含义,认识分数单位,能说明一个分数中有几个分数单位。3、在理解分数含义的过程中,渗透比较、数形结合等数学思想方法,培养学生的抽象概括能力。
五、教学重难点
教学重点:理解分数的意义。
教学难点:理解单位“1”,认识分数单位。
六、教学准备
教具:课件、彩色磁扣。
学具:圆片、正方形和长方形纸片,一板面包图片(分格的),4根香蕉图片,一段绳子
七、教法学法
教法:创设情境法、操作发现法
学法:合作交流法、自主探究法
八、教学过程
(一)情境引入(2分钟)
(二)探究新知(14分钟)
(三)探究求周长的策略(15分钟)
(5)量一量、算一算
A三角形、长方形等直边的测量方法。(3分钟)
师:那么要想知道封闭图形一周的长度是多少,该怎么办?
师:课前老师给每个小组准备一个学具袋,里面有一个封闭图形,下面四人小组想办法测量出它的周长,活动前请先阅读活动要求。
小组合作:
①小组内快速交流用什么方法测量。
②选择需要的工具进行测量。
③组内分工合作。(测量时取整厘米数)
反馈交流测量方法。
①三角形
6+8+10=24cm
师:那个小组愿意汇报?
预设:我们测量的是三角形,测量工具是直尺,测量的方法是量,测量的结果约为24厘米。
师:你们用直尺量出三角形三条边的长度,然后呢?(把三条边的长度加起来)那测量结果24厘米表示什么?
预设:三角形三条边的长度总和。
预设:三角形一周的长度。
师:三角形一周的长度就是它的周长,三角形的周长是它三条边的长度和。(课件出示)
②长方形
5+5+3+3=16cm
师:昨天咱们刚刚学习过四边形,哪组来汇报一下四边形?
预设:我们选择的图形是长方形,测量工具是直尺,测量的方法是量,测量的结果约为16厘米。
师:16厘米这个长度表示什么呢?
预设:表示长方形一周的长度,也就是长方形的周长。
师:他们也选用了用直尺测量,量了几条边(四条边),然后再把它们加起来。
师:有不同的意见吗?(长方形对边相等只需量两条边,一条长、一条宽)
师:真棒!你们能根据长方形的特征简化测量过程。
师:那如果想知道正方形的周长怎么做呢?
预设:量一条边,就知道四条边的长度了。
师:当然,不论量几条边,计算四边形的周长都是要把四条边的长度加起来?我们发现四边形的周长是它四条边的长度总和。
思考:如果是五边形,它的周长是几条边的长度总和?六边形呢?八边形呢?
交流后小结:看来多边形的周长就是它所有边的长度总和。
B爱心、树叶等不规则图形的测量方法。(8分钟)
③树叶
师:老师给有些小组准备了一片树叶。那个小组选择测量的是树叶的周长?1厘米大约是这么长,请同学们估估看这片树叶的周长大约是多少厘米?它的周长到底是多少呢?我们来听一听这个小组的汇报?
预设:先用绳子沿着边线围一圈,在绳上做一个标记,然后把绳子拉直再用直尺测量,测量的结果约是9厘米8毫米。
师:有不同的方法吗?
预设:直接用软尺绕一圈可以直接测量出树叶一周的长度。
师:太智慧了!为什么不用尺子直接量呢?
预设:因为边是弯弯曲曲的。
介绍滚动法:首先在树叶上作一个记号,然后在尺子上滚一圈,看滚到哪里,读出刻度也可以知道树叶的周长。滚动法也是把弯曲的边转化成直直的线段进行测量,也利用了化曲为直的方法。
④爱心
学生汇报:测量工具是绳子,测量的方法是围、量,测量过的结果约是12厘米
师:你们小组测量的是爱心。爱心的边也是弯曲的,说说你们用的什么方法测量的,为什么不用滚的方法?滚动法不能测量到凹陷的部分。
师:同学们,经过探究合作和展示,要想得出封闭图形的周长有哪些方法?
预设:直边的图形用尺子测量,曲边的图形用绳测法或者滚动法,化曲为直的方法
师小结:没错,直边先量边长后计算,曲边化曲为直
(6)揭示周长概念的本质
师:回顾之前的学习,经过了这么多学习的感受,现在你认为什么是周长?
预设:封闭图形一周的长度就是这个封闭图形的周长(完善板书)
师小结:看来同学们对于周长已经理解了。周长,周长,周指一周,即封闭图形的一周,长就是长度,封闭图形一周的长度就是它的周长。
【设计意图】操作是智力的源泉,思维的起点,在经历摸一摸、量一量、比划、估一估的过程中,让孩子充分的操作,积累丰富的体验感受,不但可以使他们在操作过程中提高动手能力,而且容易把感性认识提高到理性认识,把通过实际操作得出的结论延伸、并进行合理的想象,这在培养学生对长度的感觉和估的能力的同时,进一步感受“周长”和长度的关联,能够将面和线区分清楚,体会周长概念的本质。
(四)实践应用,拓展延伸(8分钟)
1、增加干扰,强化周长
(1)教材书84页的第3题
下面每组图形的周长一样吗?你是怎么想的?
师:请同学们仔细观察,下面两个图形的周长一样长吗?
师:谁来说一说你是怎么比较的?
师:通过移一移,我们把这个不规则的图形转化成规则的图形。然后比较发现他们的周长是(相等的)
师:再来比较一下这两个图形的周长一样长吗?
(2)教科书88页第8题
师:(课件出示长方形)这是什么图形?老师把它分成甲乙两部分,观察比较一下,哪个图形的周长长?你是怎么想?
预设:一样长,两个图形的周长都是一条长加一条宽,再加一条斜线。
师:老师把这条边变弯曲,现在两个图形谁的`周长长?
预设1:甲的周长更长
预设2:一样长
师:你是怎么想的?
预设:两个图形的周长都是一条长加一条宽,再加上公共的那条弯弯曲曲的边,所以这两部分的周长一样长。
师:为什么一开始认为甲的周长长?
师:哦!原来如此。周长是图形一周的长度,并非指图形的内部。
小结:比较两个图形周长的时候,图形每条边的长度一样,它的周长就是一样的。
(3)生活中的周长(机动内容)
【设计意图】通过练习设计进一步内化周长概念,学生在观察、交流的过程中进一步理解周长的本质。通过对比、辨析排除内部线段和面积的干扰。同时体会图形转化的方法。
(五)归纳总结,内化新知(1分钟)
师:通过这节课的学习,你有什么收获?
同学们,今天我们初步认识了周长,知道了周长的概念,并且能够通过测量和计算得到图形的周长。希望课后同学们继续深入的研究周长。
【设计意图】让学生谈一谈自己的收获,是对本课知识的梳理和加深,从而让学生体验成功的快乐。
九、板书设计
认识周长
封闭图形一周的长度是它的周长
直边:量、算
曲边:围、滚 (化曲为直)
十、设计理念
在教学中,我们发现学生总是认为一周就是周长,故此我先让学生充分理解什么是“一周”,在此基础上,沟通一周和封闭图形之间的联系,然后通过学生的探究活动测量封闭图形一周的长度,并没有急于揭示周长的概念,而是让学生先在大量的活动体验中感知周长是可测量的一维图形,又在估的过程中进一步感知周长是图形边线的长度,只是存在于二维图形的面上,与面的大小无关,最后再由学生自己揭示周长概念。同时在这一系列的活动过程中培养学生的空间观念。
1、创设生活情境引入,学生通过观察对比三种不同的路线,突出“沿着边线,绕回起点”两个重要特征,然后再指一指、说一说生活中物体表面的一周,建立学生对“一周”的表象认识,为后面理解周长概念的本质做铺垫。
2、在小组合作的过程中,让孩子在探究测量周长方法的过程中,或测量或计算,充分体验、感受周长的本质就是长度,是可测量的一维图形。通过学生用线围曲边的一周,把边线取下来拉直、测量,帮助学生沟通一维图形和二维图形的联系,即周长是从面里脱离出来的线段,深刻体会周长概念的本质,学生的空间观念也在这个过程中不断地得到发展。
3、当学生利用充分的时间和空间完成了量一量的活动之后,再让他们观察三个图形的大小以及周长,去摸一摸,经过想象、比划以及之前的经验有条理的思考和推理、比较出三个图形的周长与什么有关,再次经历从二维图形中抽象出一维图形“线段”这个过程,最后通过教师化曲为直的验证,从而探索周长的性质,理解周长的本质就是线段的长度,积累了这样的实践经验和思维经验,获得贤明、生动形象的认识,进而形成表象,发展空间观念,为今后学习中区分清楚二维图形的“面积”和一维图形的“长度”打下坚实的基础。
4、在整节课每一次活动体验后,我都让学生描述、概括自己体验的感受和想法,通篇培养学生空间描述的能力。
十一、教后反思
1、以活动为基础来理解周长的含义
新课开始,让学生观察动画,初步感知边线,使学生体会图形一周的长度必须从起点开始绕边线一圈再回到起点,这样就把握住了周长概念的基本点。再通过学生动手描一描平面图形的一周,指一指具体物体某一个面一周的长度从而对周长的概念有了准确的理解,进而让学生讨论是不是所有的平面图形都有周长使学生体会到平面图形的周长的“封闭”观念,学生通过动手做悉心理解,加强感受,把生活中对边线的零星感受进行再现和体验。事实也证明学生通过这一过程,很多学生能充分理解周长所蕴含的真实意义。
2、以周长测量策略探究来内化周长的意义.
学生通过小组合作的形式运用准备的学具——尺子、线想办法量算出封闭图形和树叶的周长,然后汇报演示。出现两种情况一是图形的边是直线时可以用量、算的方法求出它的周长。而是图形的边是曲线时可以用绕,量的方法求出它的周长。深刻体会到解决问题策略的多样化,特殊问题有特殊的解决办法,让他们充分体验自主解决问题的快乐,享受成功的喜悦,有利于他们形成良好的数学认知结构。另外,汇报演示时的师生交流,生生互动虽然还没有做到很好,但还算达到了预期效果,让学生的知识和能力得到了同步发展,有利于全面提高学生的整体素质。
3、辨析中深化
周长只能用于二维图形上,它和面积总是同时出现在一个物体上的,所以它们是两个易混淆的概念。认识周长不能只孤立地认识周长,应该将其与面积进行区别。课尾设计的两道练习都是帮助学生深化理解周长的概念。在对比中发现不同,明析周长概念的内涵。
总之,概念课让学生真实地经历概念发生、发展的过程,才能让学生学得明白。我们将学生的经验水平改造为老师的学科水平。只有老师想的明白,学生才会学得明白。
比的意义教学设计 篇5
教学目标:
(一)在学生初步认识分数和小数的基础上,进一步理解。
(二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(三)培养学生的观察、分析、推理能力。
教学重点和难点
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点。
教学过程设计
(一)复习准备
1.谈话引入:
在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示。
我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?
2.口答:(1)1角=(—)元=( )元
(2)3角=(—)元=( )元
(3)9分=(—)元=( )元
3.把一条线段平均分成10份,1份是这条线段的,平均分成100份,l份是这条线段。
(二)学习新课
1.谈话引入:
今天我们继续学习小数。(板书课题:)
在日常生活中,除了商品标价不够整元可以用小数外。在量屋子的高度时,它不够整米时,以米作单位也常用小数表示。
2.教学。
(1)利用旧知识继续研究。
我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1元的1/10,用小数表示是0.1元,1/10元与0.1元是不同的形式,表示的是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)
思考:1分钱是1元的几分之几?(1/100)用小数表示是多少?(0.01)。
那么百分之几的数用小数表示是几位小数?(两位小数)
(2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示?
先想想,米、分米、厘米、毫米的进率分别是多少?
板书:1米=10分米
=100厘米
=1000毫米
观察米尺。提问:
①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?
学生观察得出:把1米平均分成10份,每份是1分米,写成分数是1/10米,写成小数是0.1米。1要写在小数点右面第一位。
3分米是多少米?用分数、小数怎样表示?
学生类推出:3分米是3/10米,还可以写成0.3米。
师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示。
②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?
学生观察米尺后得出:把l米平均分成100份,l份是1厘米,写成分数是1/100米,写成小数是0.01米,l要写在小数点右面第二位。
怎样把7厘米写成以米作单位的分数和小数?
学生推理得出:7厘米是7/100米,还可写成0.07米。
启发学生想:15厘米怎样写成以米作单位的分数和小数?
经小组议论后,学生得出:15厘米是15个1/100米就是15/100米,5个1/100就在小数点右面第二位写5,还有10个1/100,够1个1/10,就在小数右面第一位写1。所以15厘米是0.15米。
明确把1米平均分成100份,一份或几份都可以用两位小数表示。
②把1米平均分成1000份,l份在尺子上是多少?(1毫米)
l毫米是几分之几米?(1/1000米)
千分之一米怎样用小数表示?
启发学生推理得出:千分之一写在小数点右面第三位,写作0.001。
9毫米、63毫米以米作单位写成小数分别是多少米?
启发学生根据上边的推理得出:9毫米是9/1000米,还可写成0.009米,63毫米是0.063米。
根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)
教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数。
启发学生根据前面3个问题的研究,可以得出什么结论?
(把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成1000份,1份或几份可以用三位小数表示……)
(3)启发学生概括。
启发性提问:
①上面例子都是把l米平均分成多少份?(10份,100份,10加份)
②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之儿,千分之几);
③这些分数的分数单位分别是多少?(1/10,1/100,1/1000)
④每相邻的两个单位间的进率是多少?如1/10米有几个1/100米?(10个)
1/100米里有几个1/1000(10个)
所以相邻两个单位间的'进率也是lo。
师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数。
小数的计数单位是十分之一、百分之一、千分之一……,分别写作0.1,0.01,0.001;等。
阅读课本295页结论。
反馈:95页“做一做”。
订正时说明意义,计数单位。
(4)强化概念。
启发性提问:
①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?
②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?
③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?
④每相邻两个单位间的进率是多少?
(三)巩固反馈
1.练习二十第2题、第5题。 ·
2.填空(投影)。
用分数表示用小数表示
7分米米米
7厘米米米
7毫米米米
3.判断下面各题是否正确?为什么?
9/100=0.9 4毫米=0.04米
75/1000=0.075 5厘米=0.5米
(四)作业
练习二十第1—3题。
板书设计:
1米=10分米一位小数表示十分之儿,计数单位是
=100厘米0.1
=1000毫米两位小数表示百分之几,计数单位是
把1米平均分成10份,每份长1分米。 0.01
1分米=1/10米=0.1米三位小数表示千分之几,计算单位是
把l米平均分成100份,每份长1厘米。 0.001
1厘米=i米=0.01米相邻两个计数单位间的进率都是10。
15厘米=15/100米=0.15米
把1米平均分成1000份,每份长1毫米。
1毫米=1/1000米=0.001米
63毫米=63/1000米=0.063米
比的意义教学设计 篇6
教学内容:
教材第45~46页内容
教学目标:
1.通过观察、实验操作使学生知道分数是在人们的日常生活和生产实践中产生的。
2.在正确认识单位“1”的基础上,正确理解分数的意义,并能应用分数解决有关的问题。
3.通过操作,分析讨论等活动,提高学生的分析,类比,迁移能力和自主探索能力。
教学重点:
理解单位“1”及分数的意义。
教学难点:
理解“整体”的含义,明确“1”在这里的作用。
教学过程设计
一、教学分数的产生
在我们的日常生活中,为了平均分一些东西,会遇到分不到整数的情况。(出示插图)如:两个小朋友分别平分一个橘子、一块月饼........,这些数能用整数表示么?
不能的话,怎么办?(用小数表示、用分数表示),今天我们就一起来探索其中的一种----用分数来表示这些数。
二、教学分数的意义
1.三年级时,我们简单的学习了分数,会比较一些简单的分数的大小、计算简单的分数加减法,今天,我们将进一步来学习有关分数的知识——分数的意义。(板书课题)
你能用一个生活中的实例说明的含义吗?
2.课件出示课本46页插图。
说一说,每个图下面的分别:
把什么看作一个整体?把它平均分成了几份?怎么表示其中的1份?(学生自由发表意见,引导学生归纳)
3.你能用前面的方式,说一说的含义么?
4.引导概括分数的意义。
那么,同学们,通过上面的两个例子,你能用自己的话说一说分数的意义么?根据学生的回答,教师逐步板书。
(1)一个物体或一些物体都可以看作一个整体,把一个整体平均分成若干份,这样的一份或几份可以用分数几分之一或几分之几来表示。
(2)教师指明:在数学中一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(3)请学生说一说46页4幅图中的单位“1”分别指什么。
根据学生的回答,教师引导学生,将“一个整体”替换为单位“1”。
(4)议一议。你能说一说分子、分母的含义吗?
教师听取学生的回答,并订正后,加以板书:
……分子:表示有这样的几份。
……分母:表示把单位“1”平均分成几份。
(5) 以为例,说一说分你是怎么写分数的,这样写有什么意义?(先写分母,表示整体一共被平均分成几分,再写分数线,最后写分子--表示有其中的几份。)
(6) 及时练习巩固
学生快速完成46页的'“做一做”,师生即时订正。
三、教学分数单位
1.自然数的单位是几?10里面有几个1?32呢?(通过自然数的单位是“1”,引出分数单位“几分之一”)
明确:分数也有属于它的单位,我们把它称作分数单位。
2.引出分数单位的概念:
把单位“1”(一个整体)平均分成若干份,表示其中1份的数叫做分数单位。(板书)
3 .的分数单位是什么?它含有几个这样的单位?
4.说出上面分数的分数单位,它们分别有几个这样的单位。
5.指出:分数单位是由分母决定的,分母是几,分数单位就是几分之一。
四、巩固练习
游戏:同桌之间互相为对方写出一个分数,由对方说出它的意义和分数单位。请2组同桌上台展示。
五、课堂小结
通过这节课的学习,你有什么收获?
板书设计
分数的意义
分数的意义:一个物体或一些物体都可以看作一个整体(单位1),把一个整体(单位“1”)平均分成若干份,这样的一份或几份可以用分数几分之一或几分之几来表示。表示其中1份的数叫做分数单位。
1 3...........分子:表示有这样的几份
— —...........分数线
4 4.............分母:表示把单位“1”分成几份
比的意义教学设计 篇7
教学目标:
1、使学生理解分数的意义及分子分母的含义。
2、在操作、观察、思考、辨析等活动中,体会部分与整体的关系,感受分数的相对性。
3、让学生亲身体验知识的形成过程,激发学生探索知识的强烈愿望和数学学习的兴趣。
教学重点:通过具体的操作活动,使学生理解分数的意义,发展学生的数感。
教学难点:在比较辨析中体会部分与整体的关系,感受分数的相对性。
教学过程:
一、导入
出示:数
1、你们都学过哪些数?(整数、小数、分数)
把你知道的分数知识说出来,让我们大家分享一下好吗?
预设:(1)分数有分母、分子、分数线
(2)把一个苹果平均分成两份,取一份就是1/2
(3)分数的比较大小
2、关于分数,你还想知道什么呢?
预设:(1)分数加减法
(2)约分、通分
看来大家的求知欲很强,今天咱们就继续研究分数
二、实践操作,研究新知
(一)认识单位1
出示:1/4
1、你能举例说明1/4的含义吗?把它画下来
2、学生活动,教师巡视
先完成的同学再举举其他的例子
3、汇报交流
学生边汇报,教师边板书
预设:
(1)我把一块蛋糕平均分成四份,这样的一份就是这块蛋糕的1/4
板书:平均分
强调:是谁的1/4
(2)我把一个长方形平均分成四份,这样的一份就是这个长方形的1/4
(3)我把一米平均分成四份,这样的一份就是一米的1/4
(4)我把四根小棒平均分成四份,这样的一份就是(这四根小棒的)1/4
这一份是谁的1/4啊?(这四根小棒的)
也就是说把这四根小棒看成了一个整体平均分成四份,这一份就是这个整体的1/4
你们知道这个整体可以用什么来表示吗?(用自然数1来表示,通常把它叫做单位1。)这一份就是(单位1)的1/4
上面这些图中,把谁看做单位1?分别说一说
4、你还能把多少图形平均分,也能用1/4表示其中的一份?
(5)我把八根小棒平均分成了四份,这样的一份就是这八根小棒的1/4
这是把谁看成一个整体?(八根小棒),那么八根小棒就是(单位1)这样的一份就是(单位1)的1/4
(6)我把12根小棒看做单位1,平均分成四份,这样的一份就是单位1的1/4
5、请同学们观察我们操作的结果,有什么相同点和不同点?
相同:都是平均分成四份,表示其中的一份,也就是意义相同
不同:单位1不同,有的是把一个物体进行平均分,有的是把多个物体看成一个整体进行平均分
分多个物体时,1/4一会表示1根,一会表示2根,一会表示3根
6、通过观察你现在认为1/4与它们所分的物体的(个数)无关,也就是与(单位1无关)。无论物体的个数是多少,1/4的分母4,始终表示把它们平均分成四份,分子1始终表示其中的一份。只要把单位1平均分成四份,其中的一份就可以用1/4表示
7、每一份出现数量不同是因为(单位1不同)
8、如果把他们平均分成四份,表示其中的'两份呢?(2/4)
你能说说它表示的含义吗?三份呢?四份呢?
1、刚刚通过大家的努力,我们用不同数量的物体找到了1/4,下面以小组合作的方式
(1)、把12个图形平均分一分,你可以得到哪些分数?
(2)、要求:以小组为单位操作,思考有几种分法。
根据操作过程填写记录单。
说清每个分数的含义。
把()看做单位1,平均分成()份,表示这样的()份是()的(),是()个图形。
记录单:
方法一
方法二
方法三
方法四
画图表示
用分数表示
()
()
()
()
()
()
()
()
与分数对应的个数
2、小组汇报,根据汇报情况,学生质疑、解答。
结合表格或图说一说,每个分数中,分母表示的是什么?分子表示什么?这个分数表示什么含义?
2、教师:这样的2份、3份是单位1的几分之几?是几个图形
那也就说既可以平均分成若干份,又可以表示其中的一份或几份
3、归纳概念:
刚才大家开动脑筋,得出了这么多的分数,你能结合刚才的学习活动,结合表格试着总结出什么叫分数吗?
师在学生回答的基础上概括小结:把单位1平均分成若干份,它的一份或几份就可以用分数来表示。这就是我们今天探究的内容分数的意义。(板书课题)
三、简单应用,生活中解释意义
1、分数不仅在我们的课堂中,而且还出现在我们的生活中。
中国是一个干旱缺水严重的国家。淡水资源占全球水资源的6/100,我国人均占有水量是世界人均占有量的1/4,北京市的人均占有水量是全国人均占有量的1/8。
学生自主阅读,结合具体情境说说每个分数的意义。
谈谈你读后有什么感受。(感受分数与生活的联系,增强节约用水的意识)
2、用分数表示下面个图中的涂色部分。
3、判断并说明理由。
四、总结
通过这节课的学习,你对分数又有了哪些新的认识?有哪些收获?
比的意义教学设计 篇8
教学目标:
1、掌握本课重点字词,背诵重点段。
2、学习本文环境描写和抒情言志的手法,体会环境描写对揭示主题、表现人物情感的作用。
3、理解保尔的人生态度,引导学生深入理解生命的意义。
教学重点:
1、学习本文环境描写和抒情言志的手法,体会环境描写对揭示主题、表现人物情感的作用。
2、熟读背诵“人最宝贵的是生命……”。
教学难点:
环境描写的作用
教学安排:
一课时
课前准备:
1、朗读课文,掌握重点字词
踱着步子()碌碌无为()岔路口()高耸()如茵()栅栏()
2、收集作者资料,阅读《钢铁是怎样炼成的》一书。
教学过程:
一、导入新课
提问学生熟知的身残志坚,与命运抗争的英雄人物。
学生回答后,引出保尔。
“人,最宝贵的是生命,生命对每个人只有一次,这仅有的一次生命应当怎样度过呢?这样告诉我们:每当回忆往事的时候,能够不为虚度年华而悔恨,不因碌碌无为而羞耻;在临死的时候,他能够说:我的整个生命和全部精力,都已经献给了世界上最壮丽的`事业——为人类解放而进行的斗争。”今天我们就来学习《生命的意义》这一课,看看我们应该如何度过自己的一生。
二、介绍作者及作品
学生先介绍自己所了解的关于作品和作者的有关情况,然后教师补充。
奥斯特洛夫斯基(1904—1936),前苏联作家,出生于工人家庭,家境贫寒,只念过三年书。十月革命时,积极投身于保卫苏维埃政权的斗争,右眼失明。25岁时全身瘫痪,双目失明。但他却以惊人的毅力顽强斗争,创作了《钢铁是怎样炼成的》。
三、整体感知
1、学生自由朗读课文。教师提出朗读要求,读准字音,注意节奏,读出感情。
2、教师找学生读课文,检查课文的朗读情况,其他学生仔细听,然后评价指正。
3、再次自由朗读课文,画出文中表示人物行踪的句子,画出环境描写中表示肃杀气氛和新春气氛的词句。
4、让学生说说画出的表示人物行踪的词句,然后教师引导着学生明确本文的结构布局。
四、把握主旨
让学生说说,读了全文,你感受到主人公保尔怎样的内心世界,怎样的人生态度?
(学生可以小组讨论,交流后给出答案,教师引导明确:文章通过对保尔瞻仰烈士公墓的所见所思,一方面表达出他对牺牲的革命烈士深沉的哀思,另一方面,通过对烈士们崇高革命理想的沉思,表达出自己为共产主义事业献身的坚定信念和人生态度。)
五、探究赏析
1、本文最有特色的是地方就是将景与情巧妙的结合在一起,主要写了没有生命力和有生命力两种不同的环境,体现两种不同的气氛:一种是肃杀的气氛,具体表现在哪些地方?作用是什么?一种是欣欣向荣,充满生机的。具体表现在哪里,作用是什么?
(学生自己找出来之后,先独立思考,然后小组进行交流,教师提问后,引导学生明确:
(1)肃杀:“冷冷清清的”街道监狱“阴森森的” “空寂”的广场小镇的尽头“阴郁而冷清”
作用:这种气氛渲染,主要突出遭白匪破坏后的萧条冷落,也寄托对烈士的哀思。
(2)欣欣向荣,充满生机:“陡坡外高耸着挺拔的青松”“谷地里满铺着如茵的嫩草”“四野里复苏的大地散发出新春的气息”“松林轻声地沙沙作响”“墓地周围”是“一圈苍翠的小树”
作用:展示的是胜利后充满生机的景象,也暗示了烈士们用鲜血和生命换来了苏维埃的新春。)
2、请同学们有感情地来朗读第七自然段,细细品味保尔的这段传世名言的深刻含义。
教师给出示例,如“人,最宝贵的是生命。”在“生命”之前用了副词“最”,可见革命是多么的珍爱。
请同学们再从课文中保尔充满哲理性的抒情中找出相关语句进行品读。
(学生自己找,然后回答。
“生命对每个人只有一次”显而易见,失去了的生命就再也没有了,它提醒人们要珍惜生命,珍惜它的价值。
“我的整个生命和全部精力,这两个修饰语,表现出一种毫不含糊,不折不扣的信念。)
3、课文内容比较简短,主人公保尔在去公墓的路上以及在公墓前内心发生了巨大的涟漪,试从课文中找出能表现保尔内心活动的句子,体会保尔的心理变化。
(学生找出,并回答,教师引导学生明确。
如:第七自然段,保尔站在烈士墓前的心理描写,写出了保尔对生命意义的思考。)
4、让学生再次朗读文章第七段,能够背诵,从而加深对课文的理解。
六、拓展延伸
文中提到“不为虚度年华而悔恨”,“不因碌碌无为而羞耻”。我们在生活中接触的都是一些平平凡凡的人,或工人,或农民,或做小生意的人,他们在为生计忙碌,他们似乎也没有保尔一样的崇高理想,你们说他们是“虚度年华”和“碌碌无为”的吗?
(学生思考,然后教师提问,没有固定答案,言之成理即可。)
七、课堂小结
八、布置作业:
课下读《钢铁是怎样炼成的》这部小说,再次感受一下永远的保尔精神,理解生命的意义。
九、板书设计
比的意义教学设计 篇9
教学目标:
1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。
2、掌握求比值的方法,并能正确求出比的比值。
3、培养学生抽象、概括能力。
教学重点:
理解比的意义,掌握求比值的方法。
教学难点:
理解比的意义,建立比的概念
教学过程:
活动一:
同学们,在每个星期一的'早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。
课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?
在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。
活动二;
(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?
同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?
让学生举出生活中这样的例子。
(二)探究非同类量的比
课件出示书中的第二个红点问题。
让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?
再让学生举出生活中这样地例子。
活动三:
仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)
通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。
课件出示问题:
⑴、比的读、写法?比都有哪些表示形式?
⑵、比的各部分名称?如何求比值?
⑶、比和除法、分数有哪些联系?
⑷、比的后项能不能是0?为什么?
引导学生起来交流,在学生交流的基础上有针对性的板书。
活动四:
1、填一填。
⑴、把2克盐溶解在100克水中,盐和水的比的()。盐和盐水的比是()。
⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是(),比值是()。
活动五;
学生谈收获。
比的意义教学设计 篇10
设计说明
复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”。而是担负着查缺补漏、系统整理和巩固发展的任务。所以,要让每个学生都积极参与复习,在轻松、平等、和谐的氛围中学习,让学生在独立思考、合作交流、活泼愉悦的过程中“温故而知新”。
1.以学生自主学习为主。
这部分知识比较多、散,但难度不大,所以让学生先独自整理,再汇报交流。这样就让学生逐渐地形成了自己的知识体系,也能更好地理解和掌握所学知识,同时在梳理知识的过程中养成反思的意识和习惯,形成归纳总结能力。
2.梳理知识与做习题相结合。
汇报交流中,老师出示相应的习题加以检验,以便让学生相互学习,查缺补漏,夯实自己的知识基础,形成基本能力。
课前准备
教师准备PPT课件
教学过程
导入新课
交代本节课的复习内容。
师:同学们,这节课我们结合教材习题,复习与分数有关的知识。
整理复习
引导学生构建分数知识框架。
1.回忆与分数有关的知识有哪些?独自整理,组内交流。(师巡视,有针对性地进行指导)
2.全班汇报,补充交流。(师举例辅助并检验)
梳理的知识如下:
(1)分数的意义。
①观察下图,理解什么是分数,什么是分数单位。
②分数可以分为哪几类?
分数
(2)分数与除法的关系。
①根据下面的式子,说一说分数和除法之间有着怎样的联系和区别。
=13÷42
②根据学生汇报整理分数与除法的关系。(课件出示)
分数与除法的关系
联系
区别
分数
分子
分数线
分母
是一种数,也可看作两个数相除
除法
被除数
除号
除数
是一种运算
(3)复习分数的基本性质。
联系分数与除法的关系以及商不变的规律来理解分数的基本性质。
分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。
(4)结合复习约分。
①把一个分数的分子、分母同时除以它们的公因数,分数值不变,这个过程叫作约分。
②约分的步骤:找出分子和分母的.最大公因数;利用分数的基本性质,分子、分母同时除以它们的最大公因数。
③约分的目的:把分数约成最简分数。
(5)结合和、和复习通分。
①把分母不相同的分数化成和原来分数相等,并且分母相同的分数,这个过程叫作通分。
②通分的两个要点:和原来分数相等;分母相同。
(6)结合○和○复习比较分数的大小。
①同分母分数相比较:分子越大,分数越大;
②同分子分数相比较:分母越小,分数越大;
③分子、分母都不相同的分数相比较的方法。
方法一:先把两个分数化成分母相同的分数,再比较大小。
方法二:先把两个分数化成分子相同的分数,再比较大小。
补充知识点:通分一般以最小公倍数作分母。
(7)先想一想分数加减法应该怎样计算,再计算下面各题。
比的意义教学设计 篇11
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重点:
理解小数的意义。
教学难点:
理解小数的计数单位。
教学过程:
一、创设情境,复习引入
1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,咱们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)
请同学们先回想一下,对于小数,你已有那些认识?……谁能举出一些小数的例子?并说说它表示的意义吗?
生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。
师:说得很好,谁再来说一个?
生2:0.5表示十分之五,
生3:0.4表示十分之四。
师:像这样的小数同学们都能说出来吧!(根据学生的回答,教师板书一组一位小数:0.2、0.5、0.4……,并说明一位小数表示十分之几)现在老师如果让你把这些小数用画图的方式表示出来,你能行吗?
生:能!
师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?
生:好!
师:哪位同学展示一下你画的小数?把你的想法和画法和同学们说一说?
生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。
师:老师想问问你,为什么取其中5份就是0.5?
生1:因为其中一份是0.1,5份就是0.5。
师:谁想再来展示一下?
生2:我先画一个长方形平均分成10份,取其中的`2份,是十分之二,也就是0.2。
师:刚才同学们用自己喜欢的方法画出了自己喜欢的小数,看这些小数,它们都是几位小数?
生:一位小数。
师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?
生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。
2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)
二、结合情境,探究新知
1.学习小数的读写。
(1)师:请同学们仔细观察情境图,你获得了那些数学信息?
(学生根据情境图说出信息)
师:这个小数读作?第二个小数读作?
这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?
(读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)
(2)师:谁来读一读下面这两条信息?这两条信息中有两个小数,谁能到黑板上把这两个小数写出来,其他同学写在练习本上。谁来说说写小数时应注意什么?
(写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)
2.学习两位小数的意义。
(1)在正方形纸片上表示出0.25。
这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。
谁能到前面来说说你的想法和画法?
学生到前面交流。
师:你是把什么看作一个整体,平均分成( )份,表示其中的( )份,用分数表示是( ),0.25里面有( )个0.01。
老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。
比的意义教学设计 篇12
教材分析
教材在安排比的意义的学习时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。比的意义教材是从富有教育意义的神五飞天的例子中引出的,通过对具体例子的讨论,明确了比的概念是建立在除法的意义基础之上的,揭示了比与除法之间的本质联系,是一种以“倍比”为基础的比较关系。教材在介绍比的各部分名称时提出了比值的意义,它既是一个知识点,又有助于进一步理解比的意义。比与分数、除法的关系是本节课的又一教学要点,理解它们之间的关系,对后继学习特别是综合应用各种知识解决问题具有重要意义,同时也是理解比的后项不能为0的认知基础。
学情分析
学生在已学过和掌握分数、除法的意义,及分数与除法的关系的`基础上,进一步学习“比的意义”。虽然学生在生活中也接触到了一些“比”,但并不了解数学的比和生活中的“比”的内在联系和区别。
教学目标
一、知识与技能:
1、理解比的意义,掌握比的读写法,认识比的各部分名称。
2、理解比值的含义,知道求比值的方法,并能正确地求比值。
3、理解并掌握比与分数、除法的关系。
4、培养学生分析、比较、抽象概括、分析解决问题的能力和应用意识。
二、过程与方法:
1、通过自主学习,合作交流,使学生掌握一定的学习方法。
2、利用多媒体课件沟通数学与生活的联系,培养学生的应用意识。
3、引导学生加强知识间的联系,提高学生分析解决问题的能力。
三、情感态度价值观:
1、有机渗透爱国主义教育。
2、引导学生探索知识间的内在联系,激发学生学习兴趣。
3、通过课件演示,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。
教学重点和难点
1、教学重点:比与除法、分数的关系
2、教学难点:理解比的意义
比的意义教学设计 篇13
教学内容:
义务教育课程标准实验教科书《数学》五年级下册P60—64。
教学目标:
1.结合具体情境,在学生原有分数知识基础上,了解分数产生的背景,理解分数的意义,理解单位“1”不仅是一个物体,也可以是许多物体;知道分子、分母和分数单位的含义。
2、经历认识分数意义的过程,进而理解分数的意义和分数单位的意义,并学会用分数描述生活中的事物,体会“整体”与“部分”之间的关系。
3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。
4.在轻松和谐的氛围中学习数学,感受生活中处处有分数,并培养抽象、概括能力。教学重难点:明确分数和分数单位的意义,理解单位“1”的含义。教学准备:多媒体课件、练习纸、一支水彩笔
教学过程:
一、回忆旧知
1。师:把6个苹果平均分给2个小朋友,每人分得几个?若老师只有1个苹果平均分给2个小朋友,每人分得多少?
2。师:你们认识它吗?请大声地读出它?(二分之一)
它是什么数?
3。师:你已经知道了分数的哪些知识?
(分子,分母,分数线)
二、探究新知
(一)了解分数的产生
1。师:对于分数同学们知道的真不少,那你们知道分数是怎么来的吗?
2。师:我给你们准备了几幅图,大家看(课件出示60页主题图1)。
3。师:古人把绳子按相同的长度打上结用来测量物体的长度,两个结中间的一段就表示长度的一个计量单位,(指着图)如图上这样的一段就用1表示,这里有1、2、3三段就用(3)表示,剩下的不足一段,还能用1表示吗?(不能)
4。师:(课件出示60页主题图2)再来看,把桌上的东西平均分给两个同学,每个同学分到的东西还能用整数表示吗?(不能)
5。师:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
6。师:你知道第一个发明分数的人,他是怎么写这个分数的吗?
7。师:(课件出示62页主题图)3000多年前,古埃及就有了分数记号,人们借助椭圆表示分子为1的分数;20xx多年前,我们中国用算筹表示分数,像这样上面摆3根,下面摆5根,就表示3/5;后来,印度用阿拉伯数字表示分数,这种方法和我国的类似,只是这两种方法都没有分数线,直至公元12世纪,也就是大约800年前,阿拉伯人发明了分数线,这种方法一直沿用至今。
8。师:那分数到底表示什么呢?接下去我们就重点研究分数的`意义。(板书:和意义)
(二)探索研究,理解分数的意义
1。师:你能举例说明1/4的含义吗?(学生答)
2。师:下列图中的阴影部分能用1/4表示吗?为什么?
如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。
(强调一定要平均分)(板书:平均分)
3。动手操作,创作分数。
(1)操作。
师:现在你能利用手中的学具,通过折一折、画一画、分一分等方法,创造出几个不同的分数吗?(学生动手操作,教师巡视。)
(2)交流
师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?
4。认识单位“1”。
师:利用手中的学具,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?
师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分
把4根香蕉、8块面包平均分,我们又可以称之为把一些物体平均分。
师小结:
不管是一个正方形、一个圆形、一条线段、、4根香蕉、8个面包都可以看作一个整体。(板书:一个整体)一个整体可以用自然数来表示,我们通常把它叫做什么?(学生回答:单位“1”,老师板书),这个1要用双引号,因为它不单单表示
一个物体也可以表示一些物体。
师:你能举例说说可以把什么看作单位“1”?
5。概括分数的意义
师:通过刚才的举例和学习,谁可以更准确地说说怎样才用分数表示呢?(两个学生讲后老师小结)把单位“1”平均分成若干份,(老师板书)这样的一份或几份可以用分数表示。
(三)认识分数单位
1、62页做一做
2、师:自然数的单位是什么?7里面有几个1?26呢?
分数也有自己的单位,什么是分数单位呢?请同学们自学课本62页。
3。找生汇报:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数,这是分数的意义。而表示其中一份的数叫做分数单位。如2/3的分数单位是1/3。
3、练习:读出下面的分数,并说出每一个分数的分数单位。(课件)
三、巩固新知
1。完成课本练习十一部分练习。
2。体会“整体”与“部分”之间的关系
(结合课件演示)
师:这1支粉笔,是全部粉笔的1/5,你能猜出一共有几支吗?(5支)师:为什么是5支呢?
师:现在有2支粉笔,也是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?你是怎么知道的?
师:现在有3支粉笔,还是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?怎么那么快就猜出来了?
师:为什么都是,有的是1支,有的是2支,还有的却是3支呢?
师小结:虽然都是把全部的粉笔平均分成了5份,但是因为单位“1”的数量不同,所以每一份的数量也就不同。因此说一个分数时,一定要强调是哪一个整体的几分之几,即:说清楚是“谁的”几分之几。
四、全课总结
师:谁能说一说我们班的每一个同学占全班同学的几分之几?通过这节课的学习,你有哪些收获呢?
板书设计:
分数的产生和意义
一个物体
一个整体单位“1”
一些物体
把单位“1”平均分成若干份,这样的一份或几份可以用分数表示。表示这样一份的数叫分数单位。
比的意义教学设计 篇14
教学内容:
人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。
教学目标:
1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。
2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。
3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。
教学重点:
抓住“等式”“含有未知数”两个关键词初步建立方程的概念。
教学难点:
方程与等式的关系;方程中等量关系的建立。
教学准备:
课件、写式子的卡片、磁钉。
教学过程:
一、认识天平,谈话铺垫
教师(出示天平图):这是什么?同学们知道天平的用途吗?
一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。
二、探究新知
(一)天平演示,初步感知等与不等。
1.出示天平图1。
现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)
2.(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用
g表示,那么杯子和水共重多少呢?(100+ )
3.如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。
这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。
4.来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。
5.(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?
【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。
(二)分类整理,建构概念
1.观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)
2.学生反馈,教师根据反馈在黑板上移动式子。
预设1:按左右相等和不等分类(补充等式和不等式);
预设2:按是否含有未知数分类。
注:教师在按照两种分类方式摆放式子时整理成如下表格所示:
3.(指表格)像这样,含有未知数的等式称为方程(揭题)。
4.写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)
5.说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)
(三)概念辨析,理清等式与方程之间的关系
1.“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)
2.这两个式子是否是方程呢?
反馈分析:
(1)式1:一定是。为什么?
(2)式2:一定是等式,可能是方程。
(3)思考:等式和方程有什么联系呢?
(4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。
【设计意图】方程与等式的关系是本节课的`教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。
三、实践反思,巩固提高
1.“做一做”第2题及练习十四第2题:看图列出方程。
学生练习并进行反馈。
反馈侧重:使学生明确,可以根据量相等来列出方程。
2.练习十四第3题:看情境图,思考数量关系再列方程。
(1)从图上你知道了什么?
(2)你能根据你知道的数量关系列出方程吗?
(3)学生自行根据数量关系列出方程,并进行反馈。
【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(20xx年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。
四、总结回顾,介绍历史
1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)
2.教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)
【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。
比的意义教学设计 篇15
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1。使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2。让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1。让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2。说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1。教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2。归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3。用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4。师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5。组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6。你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的`点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1。教材第48页的“做一做”。
2。教材第51页第9、10题。
答案:1。(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2。第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:50 100 12
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1。完成练习册中本课时的练习。
2。教材51~52页第8、14题。
答案:
2。第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1。2km,18min跑1。2×18=21。6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0。8km,18min跑0。8×18=14。4(km)。
(3)斑马跑得快。
第3课时反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
比的意义教学设计 篇16
尊敬的各位评委:
你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
一、教材分析
1、教学内容:人教版六年级下册P39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的`具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中、进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
二、学况分析
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
三、教法
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
四、学法
引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
五、教学过程
本节课我安排了六个教学环节
第一个环节:游戏导入,激发兴趣
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验
用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高
第六环节:全课小结
六、效果预测
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
比的意义教学设计 篇17
教材分析
百分数在日常生活中运用非常广泛,它源于分数,又有别于一般分数。教材在安排教学百分数意义时,从实例出发,创设情境,把学生带入生活中去学习百分数。通过比较得出百分数的概念,即“表示一个数是另一个数的百分之几的数叫做百分数”。要特别注意的是百分数只表示两个数相比的一种关系,不表示一个数值。百分数的后面不能带单位表示一个具体的.量。这就是百分数与分数之间的区别,所以百分数也叫做百分比或百分率。教学中,要注意孕含百分数应用题的基本思想,通过让学生分析一些百分数表示谁与谁比,为进一步学习打好基础。并抓住一些有说服力的数据和统计资料,对学生进行爱祖国、爱社会主义的思想教育。
学情分析
学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。
教学目标
1、知识与技能:使学生初步认识百分数,感知和理解百分数的意义;能正确读写百分数;理解百分数与分数在意义上的区别;培养学生的分析、比较、概括等思维能力。
2、过程与方法:组织与引导学生经历学习过程,通过讨论交流,体验百分数的意义及在生活中的广泛应用,培养学生的问题意识及合作、交流能力和自学能力。
3、情感、态度与价值观:感受数学在现实生活中的价值,体会百分数与日常生活的密切联系及在实践中的广泛应用。激发数学学习的乐趣,培养学生热爱生活,热爱数学的情感。
教学重点和难点
教学重点:让学生充分体验,理解百分数的意义。
教学难点:让学生理解百分数和分数在意义上的区别和联系。
比的意义教学设计 篇18
教学目标
1.使学生理解并掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
教学重点
比例的意义和基本性质。
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程
一、复习准备。
(一)教师提问复习。
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值。
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接。
教师板书:4.5∶2.7=10∶6
二、新授教学。
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
class=Normal vAlign=top width=166>
时间(时)
class=Normal vAlign=top width=166>
2
class=Normal vAlign=top width=166>
5
class=Normal vAlign=top width=166>
路程(千米)
class=Normal vAlign=top width=166>
80
class=Normal vAlign=top width=166>
200
>
1.教师提问:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等。因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例。
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例。
(2)一个比例,等号左边的比和等号右边的比一定是( )的。
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的'内项。(板书)
2.练习:指出下面比例的外项和内项。
4.5∶2.7=10∶66∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积。
5.教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整。
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
比的意义教学设计 篇19
教学目标
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、推理能力。
教学重点理解小数的意义。
教学过程
一、交流信息,引入课题
师:课前布置学生收集一些与小数有关的资料,谁愿意读给大家听听?谈谈你了解到了什么,又想到些什么?
小结:刚才出现的这些数都是小数,它们表示什么意义,应该怎样正确地读和写呢,;今天这节课我们一起来学习。(板书课题:小数的意义和读写方法)
【设计意图:学生的知识起点是三年级时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情】
二、教学例1
初步感知
师:为了便于研究,老师课前也收集了一些与小数有关的材料。
1.出示例1三幅图。图上这些数都是小数,表示物品的价钱。会读吗?如果你到商店去买这些物品,该怎样付钱呢?
生1:元就付3角。
师:很好,你会把元转化成角来考虑。那元和元呢?
生2:元就是5分。
生3:元就是4角8分。
帅:对,也可以说成48分。
2.师:把3角写成用元做单位的分数,是多少呢?
生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3个1/10,是3/10元)
师:3角=3/10元,也可以写成元,读作零点三元。(板书)
师:5分、48分也写成用元做单位的分数,你们会吗?同桌先讨论一下,再回答。
生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5个1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板书:5分=5/100元48分=48/100元)
师:5/100元还可以写成小数元,读作零点零五;48/100元还可以写成小数元,读作零点四八。(继续板书读写)
小结:、、都是小数,的小数部分有位,是一位小数,和小数部分有两位,是两位小数,当然,还有三位小数、四位小数
【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。在初步感知阶段,利用元该怎么付?学生把元转化成角,进而追问3角钱以元为单位用分数表示?得出元=3角3/10元,即=3/10。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。在得出分数之后,告诉学生3/10还可以写成像这样的小数,再教给读法】
三、教学例2
揭示意义
1.师:刚才从1元:100分,我们想到了用分做单位的数都表示1元的百分之几,都能写成小数,在其他情境中也能看到这样的现象。瞧,(课件出示米尺)这是一把米尺,我们截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,还可以写成米。(板书:1厘米=1/100米=米)那么,(出示)4厘米、9厘米写成分数和小数各是多少呢?
学生尝试完成。
师:请位同学来说一说,你是怎么填的?
板书:1厘米=1/100米=米
4厘米=4/100米=米
9厘米=9/100米=米
师小结:
请大家仔细观察一下,、和都是两位小数。那前面对应的`这排分数有什么共同之处呢?
生:都是分母为100的分数。
师:对,他们都是分母为100的分数。分母是100的分数可以写成两位小数。现在你们知道什么样的分数可以写成两位小数吗?什么样的分数可以写成三位小数呢?
2.我们继续观察刚才那把米尺,把他平均分成1000份,每份是1毫米。(课件出示)1毫米是1米的1/1000,还可以写成米。(板书1厘米=1/1000米=米)那7毫米、15毫米写成用米做单位的分数和小数各是多少?大家试试吧。
板书:1毫米=1/1000面米=米
7毫米=7/1000米=米
9毫米=9/1000米=米
小结:
请大家观察这一行分数和对应的小数,你有什么发现?
生:分母是1000的分数可以用三位小数表示。
3.总的观察:
三位小数是由分母是1000的分数得到的,两位小数由分母是100的分数得到的,那位小数呢?{是由分母是10的分数得到的)谁来说说什么样的分数可以改写成小数呢?
生:分母是10、100、1000的分数可以用小数表示、:(屏搭上出示这句话)
师:我们再从右往左看,表示3/10,表示5/100,表示48/100,表示1/1000,表示4/1000你有什么发现?
生:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师(指着省略号):四位小数呢?(表示万分之几)
【设计意图:数学学习的本质在于数学思维、经过对一位、两位、三位小数意义的具体分析后,教师抓住展示和交流这一时机,通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解】
四、练习拓展,巩固提升
(一)说说做做这个练习分4个层次进行。
师:上面每个图形都表示整数1,你会用分数和小数把涂色部分表示出来吗?
7/1033/1009/1000
选其中个小数请学生说出表示什么意义。并通过上下对比观察,再次强化:分母是10、100、1000的分数,用小数米表示分别是一位小数、两位小数、三位小数。
2.师:阴影部分是,淮能用小数表示出空白部分?它又表示什么意义?
3.出示空白图形和、、这三个分数,分别动手涂色表示出这三个小数。
4.个人自由在空白图形上涂色,同桌互相考查,分别用小数表示出涂色和空白部分。
【设计意图:在新课结束后,书上安排了练一练,教材的目的在于巩固小数的意义,但如果这样,题目的价值就没能充分发挥出来,将练一练进行适当处理,使书上分散的练习融为一个整体,由浅入深地对一道习题进行充分的挖掘与应用,使题目增值。
第一层次是对教材目标的基本达成;
第二层次是对习题的进一步开发,渗透辩证统一思想;
第三层次培养逆向思维能力;
第四个层次由个体智慧到合作交流,对习题实现了更高层次的创造和升华:采用了让学生画小数这种直观的操作活动,伴随着学生画前的思考和画后的交流,学生对小数意义的理解也就从画出来想出来说出来,逐渐明了】
(二)快速抢答。练一练1、2和书上练习第4题。
(三)我说你写。老帅报几个小数,看谁能又快又好地记下来。
问座位互相检查一下,写的对不对?
(此时有同学争论:和,是不是老师重复报了个?)
师(故意):大家争论什么?你为什么这样想?
生1:我认为和一样大,所以是重复写了;
师:表示什么:意义?0.80又表示什么意义?
生2:表示十分之八,是把1平均分成100份,取其中8份,表示一百分之八十,是把1平均分成100份,取其中80份。
师指出:很特别,末尾是0,虽然末尾是0,但它表示两位小数,这个。有特殊的意义,我们以后再学习。(为学习小数的基本性质打下伏笔)
(四)纠错能手。家文具店里的商品标价不太规范,请你帮忙把这些标价改成用元作单位的小数。
小刀3角擦皮8分直尺5角9分
(五)开放题:把6毫米用小数表示出来,你有几种方法?
(六)出示姚明照片:认识吗?准来介绍介绍他?他的身高是多少?
生:2米26。(板书2米26)
师:2米26是口头话,用规范的数学语言,应该说成多少米?(米)你的身高是多少米?猜猜老师的身高。(米)这些数跟我们今天所学的小数还有点不同(整数部分不是0)。关于这些小数的知识,我们以后继续学习。
【设计意图:在拓展提升部分,通过多种形式的练习,引导学生从身边的现象入手,不断巩固所学的小数的意义和读写方法。注意细节的处理,和的比较,6毫米的三种表示方法,以及姚明身高米的表述,既引导学生归纳出数学知识,又为后续学习打下铺垫】
比的意义教学设计 篇20
教学目标:
1、通过观察进一步理解等分活动与除法之间的关系,进一步体验除法运算与生活实际的密切联系。
2、结合具体情境,体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
3、培养学生分析、解决问题的能力,养成良好的学习习惯。
教学重难点:
体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
教学手段:
多媒体课件。
教学过程:
一、复习准备,为新课铺垫。
1、小朋友们,喜欢去麦当劳、肯德基吗?吃过薯条、汉堡包吗?
2、今天,老师就和大家一起去哪里看看有哪些好吃的东西,好不好?
3、多媒体出示即时练习,指名回答,并说明理由。
二、创设情境,激趣导入。
1、小朋友,在我们的学习生活中,文具的用处可大了!哪位小朋友能说说,你有哪些文具?
2、原来你们有这么多的文具呀!袋鼠妈妈听了可真羡慕呀!于是她决定要在森林里开一家文具店,让小动物们和小朋友一样,都能买到各种各样的文具。我们一起去看看,好吗?
3、出示课题:文具店。
二、自主探索,研究新知。
1、出示教学目标,了解今天的学习任务。
2、了解图意,获取信息。
(1)我们一起看看小动物们都买了什么文具呢?
小兔买了一支笔,花了2元钱。
大灰狼买了一个文具盒。
小牛买了3支铅笔。
(2)们说得真不错,除了这些以外,你还知道什么?
大灰狼花的'钱是小兔的4倍。
3、小组交流,解决问题。
(1)你真是一个认真观察的好孩子!现在大灰狼想考考大家,你们知道他们买文具花了多少钱吗?请小朋友在组里互相说一说,然后完成书上的“填一填”。
(2)学生分组交流,解决问题。
(3)师生共同探讨:你是怎么想的,说说你的理由。
(4)小朋友说得真好!大灰狼和小牛为你们喝彩。谁和他们一样棒,也来说一说。
(5)小朋友们说得太好了!香蕉和小鸡想请你们来帮它们解决问题,你们愿意帮助它们吗?
(6)小结:求一个数的几倍是多少用乘法计算。
4、画一画。
同学们通过了大灰狼和小牛的考验,现在老师想考考你们,愿意接受挑战吗?
请小朋友完成课本48页“画一画”。
(1)学生独立思考。
(2)让学生用学画一画。
(3)指名回答。
(4)你会用什么是什么的几倍说一句话吗?
5、经过刚才的学习,你能解决下面的问题吗?
(1)5的2倍是多少?
(2)3的9倍是多少?
(3)6的5倍是多少?
(4)4的8倍是多少?
三、巩固应用,拓展创新。
1、练一练1、2。
(1)袋鼠妈妈看见小朋友这么聪明,也带来了四个问题想考考大家,我们一起来解决,好吗?
(2)学生独立完成,师生交流。
2、练一练3。
(1)小朋友们,喜欢去旅游吗?
(2)你们去旅游都离不开什么交通工具?
(3)今天老师给同学们带来了3辆车,你能说出是什么车吗?
(4)从图中你得到了哪些数学信息?
(5)你知道大客车上有多少位乘客吗?小轿车上呢?请小朋友们讨论一下,也可以用小棒或圆摆一摆。
四、评价体验。
今天,我们班的小朋友真聪明,不仅解决了小动物提出的各种问题,而且最难的思考题都没有难住你们!现在,谁来说说你有什么收获?
五、板书设计:
文具店
老黄牛花的6元钱 2×3=6(元)
大灰狼花的8元钱 2×4=8(元)
比的意义教学设计 篇21
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的`表达式
14631000(2)y= tx
k可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
比的意义教学设计 篇22
教学目标:
1、通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分的名称,理解比和分数、除法之间的关系。
2、会正确写出两个数的比,掌握求比值的方法,能正确求比值。
3、通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辩证唯物主义观点。
4、培养学生抽象、概括能力。
教学重点、难点:
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关系。
教学过程:
师:同学们,今天是几月几日,你知道历史上的今天在我国发生了一件什么样的震惊世界的大事吗?
学生:……
学生:“神舟”五号飞船顺利升入太空。
师:你们知识面真广,是的,在这一天,我国第一艘载人飞船——“神舟”五号顺利升空。驾驶这艘载人飞船的宇航员就是(停顿)。
学生:杨利伟叔叔。
师:“神舟”五号地顺利升空,标志着我国在载人航天方面取得重大突破,我国的载人航天技术已处于国际领先水平。身为中国人,我们无比自豪。
(设计意图:很巧合的是此节课正好在10月15日下午第一节课上,我临时调整新课引入,采用中央电视台“历史上的今天”的方式激趣引入,课一开始,教师就抓住了学生,拉近了师生间的关系,为新课的学习创造了和谐轻松的学习氛围,促使学生思维活跃,积极主动地从多角度去思考问题,变“让我学”为“我要学”。)
师:看!这是杨利伟叔叔在飞船上向人们展示的一面中华人民共和国国旗和联合国旗帜的'图案,这个图案长是15厘米,宽是10厘米。怎样用算式表示它们长和宽的关系?
学生:可以用15÷10表示长是宽的多少倍?
学生:也可以用10÷15表示宽是长的几分之几?
师:这里所求的结果后写单位吗?
学生:不写单位。
师:为什么?
学生:这是在求长是宽的几倍。
师:这个学生说的意思就是在求长和宽的倍数关系。这里的长、宽两种数量都是一个长度,它们是两种同类的数量。在表示两种同类量的倍数关系时,除了可以用除法表示以外,还可以用另外一种方法表示,这就是今天我们将要学习的知识——比的意义。
(学生自学教材第43页的内容)
师:看完后,你知道了什么?
学生:长是宽的多少倍可以说成是长与宽的比是15比10。
学生:宽是长的几分之几也可以说成是宽与长的比是10比15。