短文网整理的《倒数的认识》教案(精选12篇),快来看看吧,希望对您有所帮助。
《倒数的认识》教案 篇1
目标确定的依据
1.课程标准相关要求
理解倒数的含义,能进行准确的叙述,会求一个数的倒数。
2教材分析
这部分内容是新知识,是为后面学习分数除法扫清障碍。由于分数除法的基本方法为“除以一个不等于0的数,等于乘这个数的倒数”,因此认识倒数的概念以及熟练地求出一个非0数的倒数,是学习分数除法的基础。
3.学情分析
倒数的认识是在学习了分数乘法的基础上学习的,主要为后面学习分数除法做基础。
目标
通过观察、分类、讨论等活动认识倒数,能说出倒数的意义。
2.体验找倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,经历观察、归纳、推理和概括的学习过程。
评价任务
学生口算、思考互为倒数的特征。
2.会求一个数的倒数。
3.通过交流、游戏活动探讨找倒数的方法。教学过程
一、创设情境,引入新课
1、创设活动“造反”游戏。
师:同学们,在学习新课之前,先让我们来玩一个游戏,游戏的名字是“造反”游戏
反说:
刷牙—牙刷球台—台球唱歌—歌唱反写:
杏—呆吴—吞干—士
师:在我们的语文上有许多这样有趣的文字,那么在我们的数学王国里,也有这样有趣的数学,大家一起来试一试。
像这样有趣的现象,在数学上叫什么呢?这就是我们这一节要学习的
板书“倒数的认识”看到这个题目,你有什么问题吗?生1:生2:
师:带着这些问题,我们来深入探究一下“倒数”我们先来算一算
谁能照上面的例子,再说一说?通过上面的算式,你有什么发现?生1:生2:
师:大家都是活眼金睛啊!那么大家的这些发现之间有没有什么必然的联系呢?
下面请大家打开课本,自学一下下面的知识。
请学习完的同学坐端正。回答:什么是倒数?
怎样叙述它们之间的关系?生1:生2:生3:
板书:乘积是1的两个数互为倒数。
师:你认为在这句话中,哪些字或词语比较重要呢?那么,根据上面的两组算式,谁来叙述一下它们之间的关系。生1:生2:
大家的叙述都非常准确,老师这有两道题,请你也来试一试师:通过上面的学习,你认为怎样求一个数的倒数呢?
板书:求一个数的'倒数,只要把分子和分母调换位置就可以了。 评价要点:知道交换位置
除了这些,老师还带来两个特殊的朋友0和1下面请大家讨论下面的两个问题(1)1的倒数是(1)(2)0有没有倒数?为什么?
0和1都来了,那么还有一些老朋友也来凑热闹了。动脑筋:整数,带分数、小数如何找倒数
怎么办?
整数都可以看成分母是1的假分数
带分数也可以化成假分数。小数也可以化成分数。今天,大家的表现都棒棒的,下面我们来试试身手吧.想一想:找朋友练习1:写倒数
练习2:整数、假分数的倒数填空
既然大家都这么棒,那么我们一起来智慧屋里去闯一闯吧!第一关:填空(积是1)
第二关:我来当裁判(以书信的形式出现)第三关:修改日记。
希望大家也能把本节课学习的知识,用日记的形式写下来。
其实,在我们的学习中,各学科之间都是有一定的联系的,下面大家来看一看下面几道题。
最后,我们来猜谜语。
《倒数的认识》教案 篇2
教学内容 教科书第28~29页例1、“做一做”及相关内容。
教学目标
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点 理解倒数的意义;求一个数的倒数。
教学难点 理解“互为倒数”的含义。
教学准备 教学课件、写算式的卡片。
教学过程 具体内容 修订
基本训练,强化巩固。
(3分钟) 1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。
(2分钟) 请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。
(1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。
(6分钟) 1. 观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。
(4分钟) 让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。
(8分钟) 1.学生讨论并说出自己的发现:两个数的`乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
4.探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书
《倒数的认识》教案 篇3
教学目标:
1. 通过自学、交流、错例讨论评析经历倒数的意义这一概念的形成过程,并理解倒数的意义。
2.通过写一写、说一说的形式,引导学生观察并寻找求一个数的倒数的方法。
3.培养学生推理和概括能力。
教学重点:理解倒数的意义,会求一个数的倒数。
教学难点:0为什么没有倒数。
教学过程:
设疑与探究:
师:同学们,我们今天要来学习一个新知识,学好了这个新知识能为我们后面分数除法的学习打下坚实的基础。一起来看看是什么新知识呢?请同学们翻开课本24页。(板书:倒数)请同学们带着下面几个问题先自学,看看你能自学到多少有关倒数的知识呢?把你学到的知识画下来。
①什么是倒数?(倒数的意义是什么?)
②怎样求一个数的倒数?(倒数有什么特点?)
③1的倒数是什么?0有倒数吗?为什么?
设计理念:这是一个新的概念,所以开课开门见山,强调概念的重要性,引起学生的重视,同时能直接进入新课的学习。另一方面,让学生带着问题自学文本。数学课程改革强调培养学生的自主学习能力,注重学生的自主发展,先学后教,在学生自学的基础上,教师再进行针对性教学。同时让学生带着问题去学,能够给自学作出一些指引。
反思:三个问题暗示了这节课学习的主要内容,能让学生仅仅围绕这几个问题去展开后面的学习。但是另一方面也限制了学生的思维,也许学生在自学的过程中会提出很多问题,老师可以从你能提出什么问题?你能解决什么问题?你还有哪里不明白?去引导,进而培养学生提出问题、解决问题和发现新问题的能力。课堂上围绕学生提出的问题去开展探究学习,能有效的利用课堂生成的动态资源,也能更好的开展课堂评价,这样的课堂会更活力。
(一)、揭示倒数的意义
1、自学文本,初步形成概念
学生自学文本,同桌交流。
2、探讨错题,理解概念
师:第一个问题,相信很多同学心里都已经有答案了。但是老师先要考一考你,请看下面的题。(判断,并说明理由)
①因为1/4+3/4=1,所以1/4和3/4互为倒数。( )
生:因为乘积是1的两个数叫做互为倒数,而这里是和是1。(板书乘积是1)
②因为1/24/33/2=1,所以1/2、4/3、3/2互为倒数。( )
生:因为倒数是两个数,而这里是三个数。(板书两个数)
③因为2/55/2=1,所以2/5是倒数。( )
生:因为倒数是两个数相互依存的关系。(板书互为倒数)
进一步形成概念,全班读一遍倒数的意义:乘积是1的两个数互为倒数。
设计理念:概念教学要把握概念本身的基本特性。要掌握倒数这个概念需要抓住三个特性:乘积是1、两个数、互为。学生通过初步的自学很难去准确把握这三点,因此设计这三个错例,旨在让学生充分把握这三个特性,进而形成和理解概念。
反思:对于什么是倒数?学生通过自学,肯定都没有问题,但是我没有(或者说不让)让他们回答这个问题,这样一下子抑制了他们想回答但是不能回答的情绪,转而先考一考你,吸引他们看问题,激发他们在判断的时候终于有话可说。这样很好的调动了学生的好胜心。但是在 互为的理解上,没有充分探讨,可以引导学生从下面两句话去理解:( )和( )互为倒数、( )是( )的倒数。
评价与生成:
3、多种练习,深化概念
(1)口头回答
3/4( )=1,( )6/5=1,7( )=1
设计理念:学生初步理解概念,需要一个逐渐消化的过程。设计这题一是给学生提供模仿的过程,二是能直观的把概念具体化。
(2)模仿创作
师:我们已经知道了什么是倒数,你能不能写出乘积是1的任意两个数?( )( )=1(生:能)我们就进行一个小小的比赛。请大家拿出堂上练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。(根据学生写的,选择性的板书4个,例如真分数的2/33/2=1,假分数的7/44/7=1,整数的61/6=1,小数的0.110=1。)
师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。 太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(生:无数个)
设计理念:学生有了第一题的具体直观练习,再通过比赛的形式鼓励学生进行模仿创作。因为每个学生创作的都不一样,这时老师可以有效的利用这些资源,为下面的观察倒数的特点和求各种类型的数的倒数的学习提供平台。
反思:在这一环节,学生都能写的是真分数的、假分数的和整数的,学生没有想到带分数的'和小数的,这是我在课前就有思想准备的,于是我设计了下面师生互说互猜的环节,学生想不到的,可以由老师抛出问题让学生思考,这样有时候更能激发学生的思维。但是也有一个学生写的11=1是我没有想到的。其实学生能写出这个,就能为后面1的倒数是几找到答案。但是很可惜,我没有很好的处理这个式子的出现,也没有及时的对这位学生给出表扬,还是教学机智不够灵活。
(3)师生互说互猜
师:不过老师比你们更厉害。我不但能写出这么多算式,而且还能猜出你们写的是什么?只要你说出你写的第一个数,我就能猜出你写的第二个数是什么?生说师猜。反过来,师说生猜。(要求按照我说 ,我说 ,因为( )( )=1来回答,老师根据情况有选择的板书,例如板书小数的和倒数的。)
师:同学们,其实我们在创作和互说互猜的过程中,就是在找一个数的倒数。那通过练习和我们刚刚的自学谁来说说怎样找一个数的倒数呢?倒数有什么特点?
您现在正在阅读的小议“倒数的认识”教学概念课文章内容由收集!本站将为您提供更多的精品教学资源!小议“倒数的认识”教学概念课设计理念:师生互说互猜的环节在前两个题的基础上,又是一个提升,同时师说生猜,老师能够根据学生没有想到的问题提出来,及时进行补充提升,进一步激发学生的思维。同时要求按照我说 ,我说 ,因为( )( )=1来回答,既能进一步抓住概念的本质,又能培养学生的推理和表达能力。通过口头回答模仿创作互说互猜的多种形式练习,由易到难逐步深化概念,符合学生的认知规律。
反思:在这一环节,出现了预想到的东西,也出现了很多散发性的东西。但是正是这些东西才构建了活力课堂的有效生成资源。同时一句老师比你们更厉害一下子触动了他们的情绪,很多学生表示我们也能,进而很好的调动了课堂。
(二)、探索求一个数的倒数的方法。
1、观察式子,发现特点,归纳方法
学生自己归纳方法:只要把分数的分子和分母交换位置。(板书)
追问:为什么求一个数的倒数,只要把分子和分母交换位置呢?
学生讨论得出:因为相乘时分子分母就可以完全约分,得到乘积是1。
师:如果我们用a/b表示一个分数,那么它的倒数就是b/a。(板书:a/b的倒数是b/a)
设计理念:概念首先是具体到抽象生成,进而是抽象到具体的上升。因此如果只是从概念本身出发去找特点很困难,于是让学生回到具体的式子,观察发现特点,归纳方法。同时追问为什么?引导学生抓住概念的本质乘积是1。充分体现方法都是以概念做基础,概念是构建理论大厦的基石。同时又把它具体到用字母表示,能更直观的体现倒数的特点。
反思:从学生自己归纳方法,到老师在此基础上进一步提升到用字母表示,能让学生更直观的发现倒数的特点。但是也有一点是没有处理好,因为字母可以表示任何数,应该写明a、b,这样就更严谨了。
2、解疑难点(求整数、带分数,小数的倒数)
师:老师还有几个问题,你们能帮帮老师吗?怎么求下面这几个数的倒数?
4?(生:把整数看作分母是1的分数)
1又3/7呢?(生:先化成假分数)
0.5呢?(生:化成分数)
老师根据学生的回答,板书具体的例子。
3、师:那1 的倒数是几呢? 0有倒数吗?为什么?
生1:1的倒数是1,因为11=1;0没有倒数,因为0( )=0.
4、师生共同小结方法:求一个数(0除外)的倒数,只要把分子和分母交换位置。
生齐读求一遍数倒数的方法。
设计理念:当学生不能提出新问题的时候,老师可以转变角色,提出问题,引导学生新的思考。
反思:因为有了前面概念和方法较为抓实的掌握,学生在这一环节能很快的找到方法,接下来就是加强练习了。
运用与分享:
师:我们学习到了那么多倒数的知识,赶紧去做一些练习吧。
1、课本24页做一做:写出下列各数的倒数。
4/11,16/9,35,7/8,4/15
(规范:( )的倒数是( )。)
2、填空:
①7( )=15/2( )=()3又2/3=0.17( )=1
②一个数和它倒数的和是2,这个数是( )
③最小的质数的倒数是( )?
设计理念:两个练习由易到难,既能检查学生对基础知识和方法的掌握程度,也能提高学生运用知识和方法的能力。
反思:第1题的设计缺乏针对性,例如前面讲到的带分数和小数的没有。同时在规范书写上,好多学生出现问题,例如 4/11=11/4, 4/11 11/4,4/1111/4。说明了前面教学在书写规范上的疏忽,但是也正是由于这些暴露出来不规范的书写,通过师生之间的交流和纠正,更进一步加深了学生对书写规范的印象。
小结:
师:同学们通过今天的学习,你学到了什么?还有什么问题?
设计理念:学生的分享过程是学生重整和提炼知识的过程,同时给学生质疑的机会,既能发现学生还存在的问题,也能更好的为后面的学习做好铺垫和研究。
板书设计:
倒数的认识
乘积是1的两个数互为倒数 2/33/2=1
分子和分母交换位置 7/44/7=1
a/b的倒数是b/a 61/6=1
1的倒数是1(11=1) 1又3/7=10/7, 10/77/10=1
0的倒数是0(0( )=0) 0.1=1/10,1/1010=1
《倒数的认识》教案 篇4
第一课时
【学习内容】
义务教育课程标准实验教科书(西师版)小学数学六年级上册第31页例1及填一填。第32页课堂活动第1题(1),练习八第1、2、3题。
【学习目标】
1.理解倒数的意义。
2.掌握求倒数的方法,会求一个数的倒数。
3.经历探究倒数的意义的过程,培养自主探究、归纳概括的能力。
【学习重点】
理解倒数的意义,掌握求倒数的方法。
【学习难点】
理解特殊数的倒数。
【课时安排】
1课时。
【学习过程】
一、复习巩固(利用投影打出以下算式)
× = × = 6× = ×40 =
× = × = 3× = ×80=
1.让学生口算出上边等式的结果,以此复习分数乘法的相关知识。
2.让学生观察并说说下边排分式的特点从而对倒数有一定的感知。
二、让学生观看书上例题1, 分组合作,讨论解疑。
1.出示例1。 自主学习例1,相信自己是最棒的!
例1,观察下列每组数,你有什么发现?
和 和 和 3和
教师提示:1.观察每组数中的分子、分母、找出规律.
①学生思考,小组交流。②集体汇报
汇报:每组数中的两个数的分子和分母都调换了位置.
2.将每组数中的两个数相乘,计算出结果.你发现了什么?
①学生思考,小组交流。②集体汇报
汇报:每组数中的两个数相乘,积都等于1.
归纳总结:像刚才这样的一组数叫做互为倒数。乘积是1的两个数互为倒数。(板书)
3.让学生总结倒数的特点.
分子、分母的位置 互相颠倒 倒数指的是 两个数 之间的关系。
4.让学生来说说课堂活动中1题(1)。(明确:两个数互为倒数)
三.训练探索 求 的倒数
①学生思考,小组交流。②集体汇报
学生板演:让一个学生写出来.
学生讲解:让另一个学生总结求倒数的方法.
总结:求一个数的倒数, 只要把这个数的`分子、分母调换位置。
四.合作探究
1.提问:整数有没有倒数,如果有该怎么求,举倒分析。
①学生:小组交流,举倒说明。
②集体汇报
2.提问:0和1的倒数是多少?
①学生思考,小组交流。(教师提示:从分数、除法之间的关系去考虑。)
②集体汇报
③总结:0没有倒数,因为除法中0不能作除数,除数相当于分数中的分母,所以0不能作分母。因此0没有倒数,1的倒数是它本身。
总结(板书) 求倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
五,课堂练习:让学生做教材31页“填一填”
①学生独立完成。
②集体订正。
六.出示投影,探究小数的倒数。
①学生思考,小组交流。②集体汇报
③教师总结:小数也有倒数,与小数乘积为1的数就是小数的倒数。
七.出示投影,探究带分数的倒数。
①学生思考,小组交流。
②集体汇报
③教师总结:带分数要先转化成假分数后,把分子、分母调换就是这个带分数的倒数。
八.出示投影,达标检测。
把互为倒数的两个数连线。
【当堂检测】
做练习八(1、2、3)题
【拓展延伸】
1.假分数的倒数( )
A.大于1 B 小于1 C 小于或等于1
2.一个数的倒数小于1,这个数( )1
A 大于 B 小于 C 等于
九、课堂小结:通过这两节课的学习,你有什么收获?
学生畅谈收获心得,提出自已还不理解的地方,集体帮助解答。
板书:1、乘积是1的两个数互为倒数。
2、求一个数的倒数, 只要把这个数的分子、分母调换位置。
3、0没有倒数,1的倒数是它本身
【教师反思】
《倒数的认识》教案 篇5
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的`倒数。
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标研究倒数的意义、方法和用处。
二、新知探索:
1、研究倒数的意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)
(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)
(c、以带分数为例;带分数的倒数是真分数。)
(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、以整数为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论0、1的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
1、完成练一练。
学生独立完成后,集体订正。重点问:8的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。
《倒数的认识》教案 篇6
教学内容 倒数的认识
教学目标 1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重难点
教学重点:理解倒数的`意义,学会求倒数的方法。
教学难点:发现倒数的一些特征。
教具准备 课件
设计意图
教学过程
特色设计
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课
找找下面文字的构成规律
呆———杏 土———干吞———吴
按照上面的规律填数
——( ) ——( ) ——( )
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
二、新知探究
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢? 能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的两个数有什么特点?
3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2 两个分数的倒数。
学生试做讨论后,教师将过程 。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
三、巩固练习
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1-5题。
四、课堂小结
今天我们学习了有关倒数的哪些新知识? 板书设计
《倒数的认识》教案 篇7
教学目标:
1.使学生理解倒数的意义。
2.使学生掌握求一个数的倒数的方法。
3.渗透辩证唯物主义关于事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的概念
教学难点:会灵活求真、假分数、小数、整数、带分数的倒数。
教学策略:
1、因为学生已经有了前面分数乘法计算的基础,所以本节课教师可以完全放手让学生通过自学和足够的练习掌握倒数的`概念以及求一个数的倒数的方法。
2、教师应让学生明确倒数的两个条件:①两个数。②这两个数的乘积是1。乘积是1的两个数叫做互为倒数。并让学生讨论:
①怎样的两个数互为倒数?
②一个数能叫做倒数吗?
③5是倒数这样的说法对吗?为什么?
3、在学生讨论的基础上说明:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。这个数可以是小数,分数和整数。
然后让学生自己创作几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。
4、教学求一个数的倒数的方法时要引导学生观察:互为倒数的两个数的分子、分母是互相调换位置的。并思考:
①所有的自然数都有倒数吗?1的倒数是几?
②0有没有倒数?为什么?
③怎样求一个数的倒数?
引导学生得出:
1的倒数是1,0没有倒数。求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
5、使学生明确:
(1)自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。
(2)求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。
(3)求小数可以先把它化为分数再调换分子、分母的方法来求倒数。
《倒数的认识》教案 篇8
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:理解倒数的意义,求一个数的倒数。
教学难点:,从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/37/15×15/7 5×1/5 0。25×4
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×( )=1 ( )×9/7=1
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)
你是怎样想的?如0。5、1。7
3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/5 4/9 6 7/2 1 1。25 1。2 0学生独立完成,然后交流。
(1)先说说你找到的这个数的倒数的,你是怎样找的?
(2)在找这些数的倒数中,你有什么想说的?
3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)
四、巩固深化。
1、做一做,写出下面各数的倒数,并说说你是怎样想的。
2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。
3、判断题。书上第25页的第3题。
补充:(3)2/5×5/2=1,那么2/5是倒数。
(4)任何一个数都有倒数。
(5)如果一个数是A(0除外),那么这个数的倒数就是1÷A。 重点讨论:一个数的倒数一定比这个数小。
那么哪些数的倒数比原数小、大或相等。
4、完成作业:作业本第12页的1、2、3题。
五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?
《倒数》教学的想法和反思
今天学习《倒数》一课,内容简单,在其他数学版本中只是一个练习内容。倒数对于学生来说,虽然是新的`,但是却相当地容易,只要会分数乘法、分数、小数的相关知识就行了。但是在教学中学生往往会产生这样的认识,倒数就是两个数分子分母倒一下就行了。这样就会带来对知识本质的偏离,只关注事物的表象。如何来改变学生这一认识呢?
结合自己的个人研究重点:1、关注数学概念的内涵和外延的关系。2、关注学生学习数学过程中的思维活动。
先给自己提几个问题?
1、 倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?
倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。
内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。
2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。
于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。
《倒数的认识》教案 篇9
教学目标:
1. 通过自学、交流、错例讨论评析经历倒数的意义这一概念的形成过程,并理解倒数的意义。
2.通过写一写、说一说的形式,引导学生观察并寻找求一个数的倒数的方法。
3.培养学生推理和概括能力。
教学重点:理解倒数的意义,会求一个数的倒数。
教学难点:0为什么没有倒数。
教学过程:
设疑与探究:
师:同学们,我们今天要来学习一个新知识,学好了这个新知识能为我们后面分数除法的学习打下坚实的基础。一起来看看是什么新知识呢?请同学们翻开课本24页。(板书:倒数)请同学们带着下面几个问题先自学,看看你能自学到多少有关倒数的知识呢?把你学到的知识画下来。
①什么是倒数?(倒数的意义是什么?)
②怎样求一个数的倒数?(倒数有什么特点?)
③1的倒数是什么?0有倒数吗?为什么?
设计理念:这是一个新的概念,所以开课开门见山,强调概念的重要性,引起学生的重视,同时能直接进入新课的学习。另一方面,让学生带着问题自学文本。数学课程改革强调培养学生的自主学习能力,注重学生的自主发展,先学后教,在学生自学的基础上,教师再进行针对性教学。同时让学生带着问题去学,能够给自学作出一些指引。
反思:三个问题暗示了这节课学习的主要内容,能让学生仅仅围绕这几个问题去展开后面的学习。但是另一方面也限制了学生的思维,也许学生在自学的过程中会提出很多问题,老师可以从你能提出什么问题?你能解决什么问题?你还有哪里不明白?去引导,进而培养学生提出问题、解决问题和发现新问题的能力。课堂上围绕学生提出的问题去开展探究学习,能有效的利用课堂生成的动态资源,也能更好的开展课堂评价,这样的课堂会更活力。
(一)、揭示倒数的意义
1、自学文本,初步形成概念
学生自学文本,同桌交流。
2、探讨错题,理解概念
师:第一个问题,相信很多同学心里都已经有答案了。但是老师先要考一考你,请看下面的题。(判断,并说明理由)
①因为1/4+3/4=1,所以1/4和3/4互为倒数。( )
生:因为乘积是1的两个数叫做互为倒数,而这里是和是1。(板书乘积是1)
②因为1/24/33/2=1,所以1/2、4/3、3/2互为倒数。( )
生:因为倒数是两个数,而这里是三个数。(板书两个数)
③因为2/55/2=1,所以2/5是倒数。( )
生:因为倒数是两个数相互依存的关系。(板书互为倒数)
进一步形成概念,全班读一遍倒数的意义:乘积是1的两个数互为倒数。
设计理念:概念教学要把握概念本身的基本特性。要掌握倒数这个概念需要抓住三个特性:乘积是1、两个数、互为。学生通过初步的自学很难去准确把握这三点,因此设计这三个错例,旨在让学生充分把握这三个特性,进而形成和理解概念。
反思:对于什么是倒数?学生通过自学,肯定都没有问题,但是我没有(或者说不让)让他们回答这个问题,这样一下子抑制了他们想回答但是不能回答的情绪,转而先考一考你,吸引他们看问题,激发他们在判断的时候终于有话可说。这样很好的调动了学生的.好胜心。但是在 互为的理解上,没有充分探讨,可以引导学生从下面两句话去理解:( )和( )互为倒数、( )是( )的倒数。
评价与生成:
3、多种练习,深化概念
(1)口头回答
3/4( )=1,( )6/5=1,7( )=1
设计理念:学生初步理解概念,需要一个逐渐消化的过程。设计这题一是给学生提供模仿的过程,二是能直观的把概念具体化。
(2)模仿创作
师:我们已经知道了什么是倒数,你能不能写出乘积是1的任意两个数?( )( )=1(生:能)我们就进行一个小小的比赛。请大家拿出堂上练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。(根据学生写的,选择性的板书4个,例如真分数的2/33/2=1,假分数的7/44/7=1,整数的61/6=1,小数的0.110=1。)
师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。 太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(生:无数个)
设计理念:学生有了第一题的具体直观练习,再通过比赛的形式鼓励学生进行模仿创作。因为每个学生创作的都不一样,这时老师可以有效的利用这些资源,为下面的观察倒数的特点和求各种类型的数的倒数的学习提供平台。
反思:在这一环节,学生都能写的是真分数的、假分数的和整数的,学生没有想到带分数的和小数的,这是我在课前就有思想准备的,于是我设计了下面师生互说互猜的环节,学生想不到的,可以由老师抛出问题让学生思考,这样有时候更能激发学生的思维。但是也有一个学生写的11=1是我没有想到的。其实学生能写出这个,就能为后面1的倒数是几找到答案。但是很可惜,我没有很好的处理这个式子的出现,也没有及时的对这位学生给出表扬,还是教学机智不够灵活。
(3)师生互说互猜
师:不过老师比你们更厉害。我不但能写出这么多算式,而且还能猜出你们写的是什么?只要你说出你写的第一个数,我就能猜出你写的第二个数是什么?生说师猜。反过来,师说生猜。(要求按照我说 ,我说 ,因为( )( )=1来回答,老师根据情况有选择的板书,例如板书小数的和倒数的。)
师:同学们,其实我们在创作和互说互猜的过程中,就是在找一个数的倒数。那通过练习和我们刚刚的自学谁来说说怎样找一个数的倒数呢?倒数有什么特点?
您现在正在阅读的小议“倒数的认识”教学概念课文章内容由收集!本站将为您提供更多的精品教学资源!小议“倒数的认识”教学概念课设计理念:师生互说互猜的环节在前两个题的基础上,又是一个提升,同时师说生猜,老师能够根据学生没有想到的问题提出来,及时进行补充提升,进一步激发学生的思维。同时要求按照我说 ,我说 ,因为( )( )=1来回答,既能进一步抓住概念的本质,又能培养学生的推理和表达能力。通过口头回答模仿创作互说互猜的多种形式练习,由易到难逐步深化概念,符合学生的认知规律。
反思:在这一环节,出现了预想到的东西,也出现了很多散发性的东西。但是正是这些东西才构建了活力课堂的有效生成资源。同时一句老师比你们更厉害一下子触动了他们的情绪,很多学生表示我们也能,进而很好的调动了课堂。
(二)、探索求一个数的倒数的方法。
1、观察式子,发现特点,归纳方法
学生自己归纳方法:只要把分数的分子和分母交换位置。(板书)
追问:为什么求一个数的倒数,只要把分子和分母交换位置呢?
学生讨论得出:因为相乘时分子分母就可以完全约分,得到乘积是1。
师:如果我们用a/b表示一个分数,那么它的倒数就是b/a。(板书:a/b的倒数是b/a)
设计理念:概念首先是具体到抽象生成,进而是抽象到具体的上升。因此如果只是从概念本身出发去找特点很困难,于是让学生回到具体的式子,观察发现特点,归纳方法。同时追问为什么?引导学生抓住概念的本质乘积是1。充分体现方法都是以概念做基础,概念是构建理论大厦的基石。同时又把它具体到用字母表示,能更直观的体现倒数的特点。
反思:从学生自己归纳方法,到老师在此基础上进一步提升到用字母表示,能让学生更直观的发现倒数的特点。但是也有一点是没有处理好,因为字母可以表示任何数,应该写明a、b,这样就更严谨了。
2、解疑难点(求整数、带分数,小数的倒数)
师:老师还有几个问题,你们能帮帮老师吗?怎么求下面这几个数的倒数?
4?(生:把整数看作分母是1的分数)
1又3/7呢?(生:先化成假分数)
0.5呢?(生:化成分数)
老师根据学生的回答,板书具体的例子。
3、师:那1 的倒数是几呢? 0有倒数吗?为什么?
生1:1的倒数是1,因为11=1;0没有倒数,因为0( )=0.
4、师生共同小结方法:求一个数(0除外)的倒数,只要把分子和分母交换位置。
生齐读求一遍数倒数的方法。
设计理念:当学生不能提出新问题的时候,老师可以转变角色,提出问题,引导学生新的思考。
反思:因为有了前面概念和方法较为抓实的掌握,学生在这一环节能很快的找到方法,接下来就是加强练习了。
运用与分享:
师:我们学习到了那么多倒数的知识,赶紧去做一些练习吧。
1、课本24页做一做:写出下列各数的倒数。
4/11,16/9,35,7/8,4/15
(规范:( )的倒数是( )。)
2、填空:
①7( )=15/2( )=()3又2/3=0.17( )=1
②一个数和它倒数的和是2,这个数是( )
③最小的质数的倒数是( )?
设计理念:两个练习由易到难,既能检查学生对基础知识和方法的掌握程度,也能提高学生运用知识和方法的能力。
反思:第1题的设计缺乏针对性,例如前面讲到的带分数和小数的没有。同时在规范书写上,好多学生出现问题,例如 4/11=11/4, 4/11 11/4,4/1111/4。说明了前面教学在书写规范上的疏忽,但是也正是由于这些暴露出来不规范的书写,通过师生之间的交流和纠正,更进一步加深了学生对书写规范的印象。
小结:
师:同学们通过今天的学习,你学到了什么?还有什么问题?
设计理念:学生的分享过程是学生重整和提炼知识的过程,同时给学生质疑的机会,既能发现学生还存在的问题,也能更好的为后面的学习做好铺垫和研究。
板书设计:
倒数的认识
乘积是1的两个数互为倒数 2/33/2=1
分子和分母交换位置 7/44/7=1
a/b的倒数是b/a 61/6=1
1的倒数是1(11=1) 1又3/7=10/7, 10/77/10=1
0的倒数是0(0( )=0) 0.1=1/10,1/1010=1
《倒数的认识》教案 篇10
教学内容:
教材P24页中的例1、例2 ,完成练习六中的部分练习题。
教学目标:
1、知识与技能:
(1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。
(2)掌握求倒数的方法,并能正确熟练的求出倒数。
2、过程与方法:
引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
3、情感、态度与价值观:
(1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。
(2)通过亲身参与探究活动,获得积极成功的情感体验。
教学重点:
概括倒数的意义,掌握求倒数的方法。
教学难点:
理解“互为”、“倒数”的含义以及0、1的倒数。
教学方法:
创设情境、启发诱导、合作交流、自学与讲授相结合等。
课 型:新授课。
教学过程:
一、游戏激趣,揭示课题。
1、理解“互为”的含义。
朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(×××和我互为朋友,我是×××的朋友,×××也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他
们二人的关系吗?(略)那我们能说×××是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——
(父子关系、母女关系等)
2、简单理解“倒”。
师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。
板书:
3
8× 8
3= 1 7
15×15
7=15×= 151112 ×12= 1
二、新课教学。
(一)引导质疑。
学生算完后,观察并思考:这些题有什么共同的地方?
生1:得数是1 生2:乘积是1
除了乘积是一,因数还有什么特点(分子分母交换位置)
师再举例如: 5/4×4/5 7/10×10/73×1/3
进一步明确并(板书):乘积是1
生3:都是两个数相乘. 〈 板书 〉:两个数
1、 你们还能写出两个数乘积是1的算式吗?
那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)
出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。
师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?
比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。
生:①模仿说 ②同桌互说
2、理解意义:
(1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?
(互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)
倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
(2)以前我们学过这种两数间相互依存关系的知识吗?
(3)2/5和5/2的积是1,我们就说??(生齐说)
(4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同
(5)辨析:下面的说法对吗?为什么?
A:2/3 是倒数。( )
B:得数为1的两个数互为倒数。( )
C、
D、12712和×43712乘积是1 ,所以32127和32712互为倒数。( ) ×=1,所以12、43、互为倒数。 ( )
3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。
(二) 探索求一个倒数的方法
1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)
根据这一特点你能写出一个数的倒数吗? 试一试!
2、写出下列各数的倒数:3/5 7/2 5 13
(1)先写3/5的倒数。教师查看学生书写的情况。
(2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示
3/5 的.倒数是( ) 7/2 的倒数是( )
5 的倒数是( ) 13 的倒数是( )
师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)
师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。
3、1和0的倒数
师:那1 的倒数是几呢?为什么?
0的倒数呢?
师:为什么?
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后????(生齐:分母就为0了,而分母不可以为0。)
4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。
三、练习巩固。
1、判断题:
①互为倒数的两个数,乘积是1。 ( )
②任何假分数的倒数是真分数。 ( )
③因为3×1/3=1,所以3是倒数。 ( )
④1的倒数是1。 ( )
2、思考题:
3/8×( )=( )×=( )×6=1
3、找出马小虎的日记错误并改正。
今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。
瞧!我学的怎么样!
四、全课小结
同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。
五、作业
课本26页第4题。
六、板书设计:
倒数的认识
乘积是1的两个数互为倒数。
求倒数的方法:分子分母交换位置,
若是整数,先划成分母是1的分数。
1的倒数还是1,0没有的倒数。
《倒数的认识》教案 篇11
教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法
教学过程:
一、导入
1、口算:
(1)640
(2)380
2、今天我们一起来研究倒数,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、教学倒数的'意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:乘积是1的两个数互为倒数。
(3)提示学生说清互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
2、教学求倒数的方法。
(1)写出的倒数:
求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
6=
3、教学特例,深入理解
(1)1有没有倒数?怎么理解?(因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
3、巩固练习:课本24页做一做
(1)学生独立解答,教师巡视。
(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。
三、练习
1、练习六第2题:同桌互说倒数。
2、辨析练习:练习六第3题判断题。
3、开放性训练。
()=()=()()
四、总结
你已经知道了关于倒数的哪些知识?你联想到什么?还想知道什么?
教学追记:
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解倒数的意义,而在这其中,有一些概念点犹为关键,如互为,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于01的倒数这种特例,我并没有忽视它,而是充分发挥教师导的作用,帮助学生加强认识。
《倒数的认识》教案 篇12
[教学内容]:倒数的认识
[教材简析]
学生在前几课时已经学过了分数乘法,会计算分数乘整数,分数乘分数的计算方法,本课以分数乘法为基础,通过计算认识“乘积是1的两个数互为倒数”这一概念,接着教学求倒数的方法,练习六通过一系列的练习,进一步巩固倒数的概念及求一个数的倒数的方法。
[学情简析]
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。内容看似简单,但对学生来说比较抽象,难理解。教材首先让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出他们的共同特点,从而导出倒数的定义。例1教学求倒数的方法,从让学生自主找一个数的倒数的活动中,体验并概括求一个数倒数的方法,最后提出1和0的倒数问题,让学生讨论得出结论。
[教学目标]
1.在举例、观察、比较、分类、归纳的过程中帮助学生理解倒数的意义。
2.通过推理、探究,帮助学生掌握求一个数的倒数的方法。
3.通过学习使学生体会到学习数学的兴趣,发展学生的数学思维能力和质疑的习惯。
[教学重点]
倒数的意义与求法。
[教学难点]理解“互为”的意义,明确倒数只是表示两个数间的关系,而不能单独的说某个数是倒数。
[教学过程]
一、复习旧知,作好铺垫
1、创设情景激趣
师:请同学们仔细观察,(课件演示风景图片)
师问:你发现图画上的景物有什么特点?
生:这些图画都倒过来了,出现了倒影。
师:是啊,这些图片有了倒影,显得更加漂亮了。在我国的文字里,也有很有趣的汉字,让我们一起找找看。(课件演示有趣的汉字)
师:你们发现汉字的特点了吗?
生:这些汉字上下交换位置以后,都成了新的汉字。
师:今天我们要研究学习倒数,一个数是不是把它倒过来就是它的倒数呢?
板书:倒数
[设计意图:学生已经学过分数的`乘法,会计算分数乘整数、分数乘分数,因此,在课始,让学生通过完成练习十的第1题,既可以复习分数乘法,也为引出倒数的概念和为求一个数的倒数做好准备。]
二、合作探究,揭示倒数的意义。
1.学生交流自己写的乘积是1的两个数
(估计学生写的数中,两个数都是分数的较多,也可能有分数与小数、分数与整数、小数与小数、小数与整数的等。如:
师:你认为倒数是怎么样的数?(估计学生可能会提出:倒数应该是两个数之间的关系;称为“倒数”是否与“颠倒”有关,怎么求倒数……)
[设计意图:通过学生自己举例两个乘积是1的不同的数,引出“倒数”的概念--乘积是1的两个数互为倒数,知道了倒数的概念,学生一定会产生“倒数”究竟是些什么样的数,怎么求一个数的倒数等疑问。学生有了疑问,才会有探索的动力,使枯燥的求倒数的方法成为学生内在的需要而主动地进行研究。]
三、观察比较,探讨求倒数的方法。
探讨研究黑板上板书的几组数。