三角形的边的教学设计

短文网

2025-10-10教案

短文网整理的三角形的边的教学设计(精选9篇),快来看看吧,希望对您有所帮助。

三角形的边的教学设计 篇1

一、教学目标

1、探究三角形三边的关系,理解三角形任意两边的和大于第三边;

2、能根据三角形三边的关系解释生活中的现象,提高解决实际问题的能力;

3、积极参与探究活动,获得成功体验,产生学习数学的兴趣。

二、教学重难点

重点:探索三角形三边之间的关系

难点:三角形任意两边的和大于第三边

三、教学过程

Ⅰ、创设情境,引入新课

师:同学们,昨天我们已经认识了三角形,谁能来告诉大家什么是三角形么?

生:由三条线段围成的图形叫做三角形。

师:讲得很好,也就是说三角形是由三条线段所围成的。那么是不是只要有三条线段,我们就一定能围成三角形呢?

生:是(有些答不是)。

师:现在同学们从老师发的5根小棒中选出3根,看看是否能围成三角形?好,开始。(板书:不能围成三角形能围成三角形)

生:摆一摆(上台展示)

师:任取三根小棒,有时能围成三角形,有时却围不成三角形,那么围成与围不成,跟三角形的什么有关系呢?

生:三角形的边。

师:大家回答得很好,三角形的边有什么样的关系呢?这就是我们今天要研究的`问题。(板书:三角形边的关系)

Ⅱ、自主探究,提炼规律

师:下面让我们一起来完成这个探究活动,请齐读操作要求,开始!

生:进行实验并完成表格填写(教师进行指导)

组别小棒的长度能否围成三角形两边之和与第三边的大小关系

13583+5○8;3+8○5;5+8○3

245104+5○10;4+10○5;5+10○4

33453+4○5;3+5○4;4+5○3

458105+8○10;5+10○8;8+10○5

师:坐好。大家认为有哪几组是围不成三角形的呢?

生:前两组。

师:让我们一起来看看

生1,你发现的两边之和与第三边的关系是什么?

生1:3+5=8,3+8>5,5+8>3(课件展示:3、5、8,围不成)

师:很棒,我们继续来看第2组

生2,你发现了什么?(教师手指两边之和与第三边的关系)

生2:4+55,5+10>4(4,5,10,围不成)

师:为什么这两组的小棒围不成三角形呢?

生:3+5=8,4+5<10(或有两条边的长度的和没有第三条边长)

师:说得很好,也就是说两边之和小于或等于第三边,所以这三根小棒围不成三角形。(板书:两边的和≤第三边)

师:那围成三角形的就是3、4组了,对吧?

生:对。

师:生3,你发现的两边之和与第三边的关系是什么?

生3:3+4>5,3+5>4,4+5>3看第三组的课件演示(3、4、5,围成)

师:这个呢?

生3:能围成,5+8>10,5+10>8,8+10>5

师:回答得非常棒,大家试一试将3、4组与1、2组进行对比,为什么3.4组能围成三角形?

生:它3个都是大于的(有些同学会回答:两边的和比第三条边大)。

师:那也就是说围成三角形是两边的和大于第三边(板书:两边的和>第三边?)

师:这个有问题么,大家看看屏幕,1、2组也有两边的和大于第三边呀?

生:都大于。

师:对!必须强调每组都是,即是“任意”,我们把它表示为:任意两边的和大于第三边。(板书:擦去?,补任意)

师:我们发现的规律就出现在课本的82页,大家把它画起来。(5秒)齐读。

生:三角形的任意两边之和大于第三边。(板书:三角形的任意两边之和大于第三边)

Ⅲ、巩固应用,变式提升

例判断下列三条线段是否能围成三角形?

(1)6,7,8(2)4,5,9(3)3,6,10

(学生先用三条式子来判断是否能围成三角形,教师再让学生讨论交流好方法)

通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形。

教师指导学生:将两条短的边相加与最长的边相比,如果大于,就能围成三角形。

1、判断以下几组小棒能否围成三角形,能的打“√”,不能的打“×”,并说明理由。

(1)3cm4cm5cm()

(2)3cm3cm3cm()

(3)2cm2cm6cm()

(4)3cm3cm5cm()

注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。

2、生活中的数学

3、巩固提升

小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。

(1)第三根木条可以是多少分米?(取整数)

(2)第三边的木条的长度是a分米,那么a的取值范围是()

四、回忆新知,归纳总结

师:通过本节课的学习,你收获了什么?

生:三角形任意两边之和大于第三边。(等等)

五、板书设计

三角形边的关系

不能围成三角形能围成三角形

两边之和≤第三边任意两边之和>第三边

三角形任意两边之和大于第三边

三角形的边的教学设计 篇2

一、教学目标

1、探究三角形三边的关系,理解三角形任意两边的和大于第三边;

2、能根据三角形三边的关系解释生活中的现象,提高解决实际问题的能力;

3、积极参与探究活动,获得成功体验,产生学习数学的兴趣。

二、教学重难点

重点:探索三角形三边之间的关系

难点:三角形任意两边的和大于第三边

三、教学过程

Ⅰ、创设情境,引入新课

师:同学们,昨天我们已经认识了三角形,谁能来告诉大家什么是三角形么?

生:由三条线段围成的图形叫做三角形。

师:讲得很好,也就是说三角形是由三条线段所围成的。那么是不是只要有三条线段,我们就一定能围成三角形呢?

生:是(有些答不是)。

师:现在同学们从老师发的5根小棒中选出3根,看看是否能围成三角形?好,开始。(板书:不能围成三角形能围成三角形)

生:摆一摆(上台展示)

师:任取三根小棒,有时能围成三角形,有时却围不成三角形,那么围成与围不成,跟三角形的什么有关系呢?

生:三角形的边。

师:大家回答得很好,三角形的边有什么样的关系呢?这就是我们今天要研究的问题。(板书:三角形边的关系)

Ⅱ、自主探究,提炼规律

师:下面让我们一起来完成这个探究活动,请齐读操作要求,开始!

生:进行实验并完成表格填写(教师进行指导)

组别小棒的长度能否围成三角形两边之和与第三边的大小关系

13583+5○8;3+8○5;5+8○3

245104+5○10;4+10○5;5+10○4

33453+4○5;3+5○4;4+5○3

458105+8○10;5+10○8;8+10○5

师:坐好。大家认为有哪几组是围不成三角形的呢?

生:前两组。

师:让我们一起来看看

生1,你发现的两边之和与第三边的关系是什么?

生1:3+5=8,3+8>5,5+8>3(课件展示:3、5、8,围不成)

师:很棒,我们继续来看第2组

生2,你发现了什么?(教师手指两边之和与第三边的关系)

生2:4+55,5+10>4(4,5,10,围不成)

师:为什么这两组的小棒围不成三角形呢?

生:3+5=8,4+5<10(或有两条边的长度的和没有第三条边长)

师:说得很好,也就是说两边之和小于或等于第三边,所以这三根小棒围不成三角形。(板书:两边的和≤第三边)

师:那围成三角形的就是3、4组了,对吧?

生:对。

师:生3,你发现的两边之和与第三边的关系是什么?

生3:3+4>5,3+5>4,4+5>3看第三组的课件演示(3、4、5,围成)

师:这个呢?

生3:能围成,5+8>10,5+10>8,8+10>5

师:回答得非常棒,大家试一试将3、4组与1、2组进行对比,为什么3.4组能围成三角形?

生:它3个都是大于的(有些同学会回答:两边的和比第三条边大)。

师:那也就是说围成三角形是两边的和大于第三边(板书:两边的和>第三边?)

师:这个有问题么,大家看看屏幕,1、2组也有两边的和大于第三边呀?

生:都大于。

师:对!必须强调每组都是,即是“任意”,我们把它表示为:任意两边的和大于第三边。(板书:擦去?,补任意)

师:我们发现的规律就出现在课本的82页,大家把它画起来。(5秒)齐读。

生:三角形的任意两边之和大于第三边。(板书:三角形的任意两边之和大于第三边)

Ⅲ、巩固应用,变式提升

例判断下列三条线段是否能围成三角形?

(1)6,7,8(2)4,5,9(3)3,6,10

(学生先用三条式子来判断是否能围成三角形,教师再让学生讨论交流好方法)

通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形。

教师指导学生:将两条短的边相加与最长的边相比,如果大于,就能围成三角形。

1、判断以下几组小棒能否围成三角形,能的打“√”,不能的.打“×”,并说明理由。

(1)3cm4cm5cm()

(2)3cm3cm3cm()

(3)2cm2cm6cm()

(4)3cm3cm5cm()

注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。

2、生活中的数学

3、巩固提升

小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。

(1)第三根木条可以是多少分米?(取整数)

(2)第三边的木条的长度是a分米,那么a的取值范围是()

四、回忆新知,归纳总结

师:通过本节课的学习,你收获了什么?

生:三角形任意两边之和大于第三边。(等等)

五、板书设计

三角形边的关系

不能围成三角形能围成三角形

两边之和≤第三边任意两边之和>第三边

三角形任意两边之和大于第三边

三角形的边的教学设计 篇3

教学目标

知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

过程与方法:。积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。能根据三角形三边的关系解释生活中的现象。

情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

教学重点

三角形三边关系的实验与探究。

教学难点

利用三角形三条边之间的关系解决实际问题。

教具准备

三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt。

教学过程

一、导入。

1、谈话创设情境:

这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)

2、复习旧知:

(1)(欣赏图片)你看到了什么?

(2)那你能说一说,你对三角形都有哪些了解?

(3)三个顶点,三个角,三条边,三角形具有稳定性;

(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。

3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课

二、动手操作、探究新知。

(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?

操作要求:

1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员

2、测量员量出你所选择的纸条的长度;

3、记录员做记录;

4、操作员动手拼三角形,把你拼出来的图形贴在下面;

5、组长汇报结果。

注意:相邻的两条线段要端点相连。

(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。

展示操作结果:

试验次数三边长度(cm)结果三角形三条边的长度关系

(1)3、5、9否较短的两条边长度之和小于第三边3+5

(2)3、6、9否较短的两条边长度之和等于第三边3+6=9

(3)3、5、7是较短的两条边长度之和大于第三边3+5>7

(4)5、6、7是较短的两条边长度之和小于第三边5+6>7

(5)5,8,13否较短的两条边长度之和等于第三边5+8=13

(6)7,11,12是较短的两条边长度之和大于第三边7+11>12

(7)18,7,5否较短的两条边长度之和小于第三边5+7

(8)11,4,15否较短的两条边长度之和等于第三边4+11=15

(三)引导学生发现特性:(课件演示)

1、两条边的长度之和小于或等于第三条边的长度不能围成三角形

2、较短的两条边的长度之和大于第三条边的长度能围成三角形

3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)

4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?

三、精彩练习、拓展提升。(课件出示)

在能围成三角形的各组小棒下面画“√”。(单位:厘米)

(5)1cm2cm3cm()(6)4cm2cm3cm()

(7)3cm4cm5cm()(8)3cm3cm5cm()

四、学以致用。

(一)、课件出示:课本82页例3情境图。

1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?

2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?

3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的'这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)

(二)完善表格。

五、课堂总结。

同学们,通过今天的研究你有什么收获吗?

1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。

2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

板书设计:

三角形三边关系

三角形任意两边之和大于第三边。

两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。

三角形的边的教学设计 篇4

三角形的边的教学设计10篇

作为一名老师,就难以避免地要准备教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?以下是小编为大家整理的三角形的边的教学设计,希望对大家有所帮助。

三角形的边的教学设计 篇5

教学目标

1、让学生结合实例并根据自己的认识和理解概括出三角形的定义;

2、会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类;

3、理解三角形任何两边之和大于第三边的性质,并会应用性质解决问题;

4、在探索三角形三边关系的过程中,让学生经历了观察、实验、推理、交流等活动,培养了学生空间观念和推理能力。

5、在教学中让学生体会成功的喜悦。

教学重点

三角形三边的关系;

教学难点

三角形三边的关系的应用。教具小黑板、卷

教学过程

教学环节教师活动学生活动设计意图

一创设

情境:5分

二、探究新知:25分

三、尝试练习,体验成功:12分

四、小结升华:2分

五、布置作业:1分

板书:教师导言:同学们都知道三角形是最基本、最常见的几何图形,从古代埃及的金字塔到现在的飞机到处都有三角形的形象。

一、定义:定义中应注意:

(1)不在同一直线上;(2)三条线段;(3)首尾顺次相接。

接着回忆与三角形有关的概念:顶点、角、边--板书课题7.1.1三角形的边。

老师讲述三角形的表示方法:

回忆三角形按角分类;

二、三角形按边的相等关系分类:(老师板演)接着介绍与等腰三角形有关的一些概念。之后给出【动脑筋】中的第一问。(在小黑板上。用一条长为18cm的细绳围成一个等腰三角形,(1)如果腰长是底的二倍,那么各边长是多少?).

三、三角形三边关系:

出示【探究题】:任意画一个△ABC,假设一只小虫从点D出发,沿着三角形的`边爬到点C,它有几条线路可以选择?哪条线路最短?

教师小结:利用三角形三边关系解决三角形能否组成三角形以及生活中的一些实际问题。

【例】判断下列各组线段中,哪些能组成三角形?不能组成,请说明理由。(1)4cm,9cm,5cm(2cm,8cm,13cm.(3)2cm,6cm,3cm

(4)3cm,4cm,5cm..

【动脑筋】第二问:(2)能围成有一边长为4cm的等腰三角形吗?为什么?

(一)仔细填一填:1、2、3

(二)认真选一选:4、5、6

(三)看谁最聪明!

在第三问中力求给学生充分的思考空间,教师起引导作用。

1、三角形的表示及分类;

2、三角形三边的关系,学会用简单的方法判断三角形的组成情况;

3、在解决等腰三角形边与周长的问题中,1、当条件不明确时,要进行讨论;2、检验三角形能否组成。

一、必做题:69~1、2

二、选做题:练习册。

板书写在小黑板上。让学生结合生活实例并根据自己的认识和理解概括出三角形的定义。

在图形中让学生领会注意要点。

学生口答小试牛刀:

让学生回忆,

让学生尝试,老师补充。

让学生分析解题思路,并口述。

让学生在下面任意画一个三角形,观察从B~C有几条线路可走?再测量验证一下。并尝试运用所学知识说明道理。最后归纳出三角形三边的关系。

三、三角形两边之和大于第三边。(b+c>a;a+b>c;a+c>b)

让学生口答。老师提出问题:在判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条线段之和都大于第三边呢?有没有更简单的方法呢?让学生试着概括出:看较小的两边之和是否大于第三边。

启发并引导学生分析,得出:1、2

学生口述,老师板书。

让学生在5、6题中要注意的地方。

由学生讲述解题思路,老师补充。

学生小结,老师补充。让学生概括定义,老师补充。

自然引入课题。

巩固与三角形有关的一些知识。

第一问在这处理目的为了分散本题的教学难点。

让学生经历了观察、实验、推理、交流等活动,培养了学生空间观念和推理能力。

培养学生的归纳和概括能力。

【动脑筋】第二问给学生充分的思考时间。突出教学重点和教学难点,

体验成功的喜悦。

检验学生对教学重点和教学难点的掌握情况。

培养学生的归纳和概括能力。

体现分层次教学。

三角形的边的教学设计 篇6

教学目标

知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

过程与方法:。积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。能根据三角形三边的关系解释生活中的现象。

情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

教学重点

三角形三边关系的实验与探究。

教学难点

利用三角形三条边之间的关系解决实际问题。

教具准备

三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt。

教学过程

一、导入。

1、谈话创设情境:

这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)

2、复习旧知:

(1)(欣赏图片)你看到了什么?

(2)那你能说一说,你对三角形都有哪些了解?

(3)三个顶点,三个角,三条边,三角形具有稳定性;

(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。

3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课

二、动手操作、探究新知。

(一)、分组操作:请同学们用你们手上的.小纸条来围成一个三角形,你们能完成吗?

操作要求:

1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员

2、测量员量出你所选择的纸条的长度;

3、记录员做记录;

4、操作员动手拼三角形,把你拼出来的图形贴在下面;

5、组长汇报结果。

注意:相邻的两条线段要端点相连。

(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。

展示操作结果:

试验次数三边长度(cm)结果三角形三条边的长度关系

(1)3、5、9否较短的两条边长度之和小于第三边3+5

(2)3、6、9否较短的两条边长度之和等于第三边3+6=9

(3)3、5、7是较短的两条边长度之和大于第三边3+5>7

(4)5、6、7是较短的两条边长度之和小于第三边5+6>7

(5)5,8,13否较短的两条边长度之和等于第三边5+8=13

(6)7,11,12是较短的两条边长度之和大于第三边7+11>12

(7)18,7,5否较短的两条边长度之和小于第三边5+7

(8)11,4,15否较短的两条边长度之和等于第三边4+11=15

(三)引导学生发现特性:(课件演示)

1、两条边的长度之和小于或等于第三条边的长度不能围成三角形

2、较短的两条边的长度之和大于第三条边的长度能围成三角形

3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)

4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?

三、精彩练习、拓展提升。(课件出示)

在能围成三角形的各组小棒下面画“√”。(单位:厘米)

(5)1cm2cm3cm()(6)4cm2cm3cm()

(7)3cm4cm5cm()(8)3cm3cm5cm()

四、学以致用。

(一)、课件出示:课本82页例3情境图。

1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?

2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?

3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)

(二)完善表格。

五、课堂总结。

同学们,通过今天的研究你有什么收获吗?

1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。

2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

板书设计:

三角形三边关系

三角形任意两边之和大于第三边。

两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。

三角形的边的教学设计 篇7

教学目标:

1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。

2、感受动手实验是探索数学规律的途径和方法。

3、培养学生初步的应用数学知识解决实际问题的能力。

教学重点:

在观察、操作、比较、分析中发现三角形边的关系。

教学难点:

应用三角形边的关系解决问题。

教学方法:

观察法、动手操作法、小组讨论法

教学过程:

一、设境导入,猜想质疑

小明和我们一样每天都按时上学,请看小明到学校的线路图(课件示)小明上学共有几条路线?有一天小明起来晚了,你们猜猜他肯定会走哪条路去学校?为什么?

今天我们用数学知识来解决这个问题,请观察路线①和路线②围成的近似一个什么图形?路线②和路线③又近似一个什么图形?走路线②,走过的路程是三角形的一条边,走旁边的路走过的路程实际上是三角形的另外两条边的和。根据大家的判断,走三角形的两条边的和要比第三边大。是不是所有的三角形的三条边都有这样的关系呢?

这节课我们一起来研究一下,板书课题:三角形三条边的关系

二、小组合作,实验探究

实验1:我们都知道三角形是由三条线段首尾相连围成的封闭图形。现在从学具中任意拿出三根小棒,摆一摆,看看你发现了什么?

①学生动手操作。

②交流,展示汇报。(出现了两种情况:一种可以摆出三角形,另一种摆不出三角形。)

实验2:看来,不是任意三条线段都能围成三角形,有的同学用三根小棒摆成了三角形,有的`同学没有摆成,这是什么原因?下面我们就对这两种情况做一个深入的探究。

①小组按要求合作,完成实验报告单(教师指导)

②反馈:A、首先我们看看怎样的三条线段能围成三角形?(生展示汇报,师板书)

通过仔细观察发现:任意两条边的和大于第三边。(板书)

质疑:‘任意’是什么意思?能举例说明吗?(生汇报)

③B、下面我们再来看看怎样的三条线段不能围成三角形?(生展示汇报,师板书)

通过对比发现不能围成情况有:

a)两边的和小于第三边;

b)两边的和等于第三边;

检验其他记录的情况,对比发现:两边的和小于或等于第三边就不能围成三角形。(相机板书)

小结:通过我们实验观察,知道了三角形的两边之和大于第三边。(出示课件)

三、建构模型,联系生活

(出示课件)小明上学示意图,现在你能用三角形的三边关系解释小明为什么走中间这条路吗?(同桌互说后,交流)

四、巩固应用,深化练习

1、做一做:教科书第86页第4题(出示课件)

学生独立完成后,汇报方法。优化出快捷的判断方法:用较小的两条边的和大于第三边就可以做到任意两条边的和大于第三条边。

2、试一试现在有两根分别是3厘米和7厘米的小棒。猜一猜,与它们能组成三角形的第三根小棒的长是多少厘米?(取整厘米数)(出示课件)学生独立思考30秒后,小组讨论。

三角形的边的教学设计 篇8

教学目标:

1、知识与技能:

(1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。

(2)运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。

2、过程与方法:

通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。

3、情感与态度:

(1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。

(2)学会从全面、周到的角度考虑问题。

教学重点:

理解、掌握“三角形任意两边之和大于第三边”的性质。

教学难点:

引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。

教学准备:

课件、学具袋。

教学过程:

(课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?

如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种)

如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种)

教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。

一、动手游戏,提出问题

教师:请同学们拿出你的1号学具袋,看看里面有什么?(三根小棒。)

三根小棒能围成一个三角形吗?

学生先猜。

教师:光猜可不行,知识是科学,咱们来动手围一围。

学生动手围,集体交流:有的能围成,有的不能围成。

教师请能围成和不能围成的同学分别上来展示一下。

同时板贴:能围成三角形不能围成三角形

教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。

提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?

引导学生明白:跟三角形的边有关系。

教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀?

板书课题:三角形边的关系(让学生收拾好一号学具袋)

[设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?]

二、实践操作,探究学习

1、动手操作。

电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?

教师说明操作要求:

(1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实践操作表格);

(2)在作业纸上有不同的线段,请你用两根小棒去围一围,看看是否能围成一个三角形(至少要和三条不同的线段围一围);

(3)将数据和结果填写在表格中,能围成的用√表示,不能围成的用×表示。

学生活动,教师巡视指导。

2、汇报交流。

教师:下面就请同学们来汇报一下你的操作结果。

[设计意图:既然已经知道能否围成一个三角形,与三角形的边有关系,所以教师先给出学生两根6厘米和3厘米的小棒,让学生通过动手操作得到,当第三边是几厘米的时候能围成三角形,直观明了,为后面的探究打好基础。]

3、集体探究。

第一层次:发现不能围成的原因。

(1)教师:同学们通过动手实践,发现1厘米的小棒不能围,确定吗?咱们再来验证一下。

课件演示:当三根小棒分别是1厘米、3厘米和6厘米的时候,围不成三角形。

教师:为什么围不成?你会用一个数学关系式表示出它们的关系吗?

引导学生得出:1+3

(2)教师:下面我们再来验证一下2厘米。课件演示。

教师:你发现了什么?会用一个数学关系式表示出它们的关系吗?

引导学生得出:2+3

(3)教师:3厘米也不能围成,是什么原因呢?课件演示。

提问:它为什么也围不成?你会用一个数学关系式表示出它们的关系吗?

引导学生说出:3+3=6,所以不能围。

(4)提出:1厘米、2厘米和3厘米的小棒都围不成。大家观察这三道算式,谁能用一句话说说什么情况下不能围成三角形阿?

板书(补上小于等于号):两边之和≤第三边不能围成三角形

[设计意图:学生已经有了操作的初步体验,但是不能围成的原因是什么,却还没有发现。这里,通过课件直观、生动的演示和教师及时的启发、点拨,学生便会很快的发现不能围成三角形的原因了。]

第二个层次:猜想,初步得出三角形边的性质。

教师:两边之和小于或者等于第三边,不能围成三角形。同学们猜想一下,什么情况下能围成三角形呢?

学生猜出:两边之和大于第三边。

板贴:两边之和>第三边能围成三角形?

同时,教师在旁边画上“?”

初步验证猜想:

教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系?

教师指着4厘米,问:当第三根小棒是4厘米的时候,谁能来说一说?

同时课件进行演示,得出:4+3>6。课件演示。

教师指着5厘米,问:那5厘米?得出:5+3>6

教师点击:那么下面就依次类推了。课件依次出现算式:6+3>67+3>68+3>69+3>6

[设计意图:由于有了“两边之和≤第三边,不能围成三角形”这个结论作基础,学生会自然而然地想到当“两边之和大于第三边”的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。]

第三个层次:引发矛盾,突破难点。

教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出9厘米不能围,可是9+3>6呀,这符合我们刚刚得出的结论啊?

先让学生说一说,然后进行课件演示。

教师:9和3这组的两边之和是大于6,可是它能围成吗?(不能)(课件演示确实不能围成。)

教师:我们再换一组看看,3和6这组的两边之和第三边9比,什么关系?(相等)

教师:那还要看哪一组?(6和9的和与3比)

引导学生明确:只通过一组来判断能否围成三角形,全面吗?那应该怎么说?

引导学生得出“任意”两字。

[设计意图:9+3>6却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什么样的关系,从而发现只通过一组两边的和来判断能否围成三角形是不全面的,必须要看三组,这样“任意”在这里的引出也就水到渠成了。]

第四个层次:再次验证,明确三角形三边的关系。

教师:下面我们利用这个结论再来验证一下,这些能围成三角形的三边,是不是都具备这样的关系?每个同学选一个你喜欢的在小组内交流。

学生交流,集体汇报。

第一边

长度(cm)第二边

长度(cm)第三边

长度(cm)能否

围成算式

631×1+3

2×2+3

3×3+3=6

4√4+3>63+6>44+6>3

5√5+3>63+6>55+6>3

6√6+3>63+6>66+6>3

7√7+3>63+6>77+6>3

8√8+3>63+6>88+6>3

9×9+3>63+6=99+6>3

10×

……

教师:在同学们的猜想前面加上“任意”两字,通过再次验证后,发现它就是一条正确的结论。(教师擦掉“?”)咱们来一起读一遍。

[设计意图:加上“任意”两字以后,结论是不是就正确了呢?这时,让学生回过头来,再次验证能围成三角形的三边是不是具备这样的关系,不仅加深了学生对三角形边的关系的理解,也让学生充分经历了“猜想—验证—结论”这一科学的学习过程。]

第五个层次:找出判断不能围成的简捷方法。

教师:在这些不能围成三角形的三边中,它们也应该有几组算式?(3组)

那我们在判断它能不能围成的时候,是不是要把三组算式都找出来啊?

引导学生明确:只要找到一组不符合能围成的条件就可以了。

教师:谁能快速地说出‘10’不能围成的原因?

[设计意图:怎样最快的找到不能围成的`原因,在这里也应该让学生明确。方法最优化应随时有效地渗透在教学环节中。]

第六个层次:再次验证“任意”,将结论从特殊扩大到一般;同时发现判断能围成三角形的简单方法。

(1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角形的第三边,得到这样的结论的。那是不是任意一个三角形的三边都具备这样的关系呢?

教师演示课件,随意拖拉两次,让学生用估算的方法说出三边的关系。

[设计意图:一开始的研究,是从给定的3厘米和6厘米的两边着手的。在这里通过课件的直观演示,将特殊情况推广到一般情况,让学生明白任意一个三角形的三边都有这样的性质。]

(2)提出:在判断能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?

让学生先充分地进行交流。

引导学生发现:因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了。所以呢,这要把只要把较小的两条边加起来这一组进行判断,就可以代表三组了。还需要每组都判断吗?

[设计意图:我以为,在全体学生都已经掌握的基础上,肯定会有少数学生发现判断能围成三角形的诀窍。教师的设计应当顾及到这样的学生。所以,在这里可以及时地引导全体学生都掌握简单方法。]

三、深化认知,联系实际,拓展应用

1、轻松小游戏。

教师:同学们的表现真是棒极了,老师为了表扬大家,给你做个小游戏,想不想啊?

出示:有人说自己步子大,一步能跨两米多,你相信吗?为什么?

请两个学生上来跨一步。

先让学生充分的交流。

教师:你能用我们今天学习的知识来解释一下吗?

课件演示:两腿和地面跨出的距离形成了一个三角形。

教师:可是有个人说,我可以。你们知道是谁吗?

出示姚明图片,身高:226厘米;腿长131厘米。

[设计意图:通过游戏的形式解决问题,使学生主动地把本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步达到“会学”数学的境界,并再次向学生渗透看问题要全面的原则。]

2、判断:下面哪组的小棒能围成一个三角形?(单位:厘米)(有图。)

(1)3、4、5(2)3、3、3(3)3、3、5(4)2、6、2

[设计意图:这道基础题的练习,既是对前面所学内容的巩固,同时引导学生利用简单方法快速地进行判断。]

3、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根三米长的木料,假如你是设计师,第三根木料会准备多长?并说明理由。

[设计意图:“从问题中来,到问题中去”,让学生用学习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。]

四、全课小结,从考虑问题要全面,引出第三边的取值范围

[设计意图:对于小学四年级的学生而言,范围的建立的确是有一定困难的。再次呈现前面的研究表格,这些数据是具体的,教师提出:“3、5厘米行吗?3、2呢?3、1呢?3、01呢?不断地向3逼近,学生自然会想到3、0001也是可以的,那该怎样表述呢?“比3厘米长”已呼之欲出;以此思考,学生不难得出“又必须比9厘米短”。这样层层递进的启发引导,发散拓宽了学生的思维,有机地渗透了无限逼近的数学思想,培养了学生抽象、概括的能力。]

三角形的边的教学设计 篇9

教学目标:

1.使学生认识射线和直角、锐角、钝角、平角、周角,会用量角器量角的度数,会按指定的度数量角。

2.使学生初步认识垂线和平行线,会用三角板和直尺画垂线和平行线。

3.使学生掌握三角形、平行四边形和梯形的性质和特征,知道三角形按角进行分类的'情况,初步认识轴对称图形。

4.学会计算三角形、平行四边形和梯形的面积。

5、培养学生的空间观念,发展思维能力。

学生认识基础:

1.学生已直观认识线线段、直线,可以此引出射线。

2.学生已认识角的形状,并知道角的各部分名称,并对直角有一个较深入的认识。

教学注意点:

1.重在树立学生的空间观念。

2.本单元内容步步紧扣,并为以后学习面积计算公式

大家都在看