短文网整理的高一数学教案(精选37篇),快来看看吧,希望对您有所帮助。
高一数学教案 篇1
教学目标
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学重难点
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学过程
一、知识归纳
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的'角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
高一数学教案 篇2
本文题目:高一数学教案:函数的奇偶性
课题:1.3.2函数的奇偶性
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.复习在初中学习的轴对称图形和中心对称图形的定义:
2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:
函数的奇偶性:
(1)对于函数 ,其定义域关于原点对称:
如果______________________________________,那么函数 为奇函数;
如果______________________________________,那么函数 为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。
六、达标训练:
A1、判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函数 ( )是偶函数,则b=___________ .
B3、已知 ,其中 为常数,若 ,则
_______ .
B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )
(A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对
B5、如果定义在区间 上的函数 为奇函数,则 =_____ .
C6、若函数 是定义在R上的奇函数,且当 时, ,那么当
时, =_______ .
D7、设 是 上的`奇函数, ,当 时, ,则 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定义在 上的奇函数 ,则常数 ____ , _____ .
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
八、课后反思:
高一数学教案 篇3
一、教学目标
1、知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪 四、教学思路
(一)创设情景,揭示课题
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本P8,习题1.1 A组第1题。
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理
由学生整理学习了哪些内容 六、布置作业
课本P8 练习题1.1 B组第1题
课外练习 课本P8 习题1.1 B组第2题
高一数学教案 篇4
教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的`理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
高一数学教案 篇5
(4),(5)。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)可以写成,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。
3。归纳性质
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数
1。定义域:
2。值域:
3。奇偶性:既不是奇函数也不是偶函数
4。截距:在轴上没有,在轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于轴上方,且与轴不相交。)
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线。
二。图象与性质(板书)
1。图象的画法:性质指导下的列表描点法。
2。草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3。性质。
(1)无论为何值,都有定义域为,值域为,都过点。
(2)时,在定义域内为增函数,时,为减函数。
(3)时,,时,。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三。简单应用(板书)
1。利用单调性比大小。(板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1。比较下列各组数的大小
(1)与;(2)与;
(3)与1 。(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的`函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解:在上是增函数,且
< 。(板书)
教师最后再强调过程必须写清三句话:
(1)构造函数并指明函数的单调区间及相应的单调性。
(2)自变量的大小比较。
(3)函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小
(1)与;(2)与;
(3)与。(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出>1,。
解决后由教师小结比较大小的方法
(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)
(2)搭桥比较法:用特殊的数1或0。
三。巩固练习
练习:比较下列各组数的大小(板书)
(1)与(2)与;
(3)与;(4)与。解答过程略
四。小结
1。的概念
2。的图象和性质
3。简单应用
五。板书设计
高一数学教案 篇6
重点
理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.
难点
理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.
一、创设情境,导入新知
展示实物:时钟,圆规,折扇等.
(1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生.
(2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画.
(3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?
学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题.
二、自主合作,感受新知
回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分.
三、师生互动,理解新知
探究点一:角的概念及表示方法
活动一:从生活中认识角
我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题.
(1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生)
(2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么?
教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边.
(3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例)
活动二:角的表示方法
我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答)
教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB.
练习:谁能指出下列各角的顶点和两条边?
注意:①三个字母的顺序有规定,顶点的字母必须写在中间.
②顶点的字母不一定用O,角的始边与终边的字母也可以随意.
(2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O.
练习:判断下列角可以用顶点的字母表示吗?
(3)用数字或小写的希腊字母表示角.(注意:角中不能有角)
练习:下面表示角的方法,哪个是正确的?哪个是错误的.?
探究点二:角的度量
活动三:角的度量
(1)请同学们借助量角器画出下列各角:
①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°
学生画图,教师指导.(根据需要教师可先做示范)
(2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒.
教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制).
(3)还有什么单位是60进制?
(4)让学生画一个1°角,感受1°角有多大.
四、应用迁移,运用新知
1.角的定义
例1 下列说法中,正确的是( )
A.两条射线组成的图形叫做角
B.有公共端点的两条线段组成的图形叫做角
C.角可以看作是由一条射线绕着它的端点旋转而形成的图形
D.角可以看作是由一条线段绕着它的端点旋转而形成的图形
解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误.
方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.
2.角的表示方法
例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )
A B C D
解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误.
方法总结:角的两个基本元素中,边是两条射线,
顶点是这两条射线的公共端点.
3.判断角的数量
例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )
A.10 B.15 C.5 D.20
解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10.
方法总结:若从一点发出n条射线,则构成12n(n-1)个角.
4.角的度量
例4 见课本P144例1.
方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.
五、尝试练习,掌握新知
课本P144练习第1、2题、P145练习第1、2题.
“随堂演练”部分.
六、课堂小结,梳理新知
通过本节课的学习,我们都学到了哪些数学知识和方法?
本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象.
七、深化练习,巩固新知
课本P145~146习题4.4第1~4题.
“课时作业”部分.
高一数学教案 篇7
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.
2.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数的性质向对数型函数的演变延伸.
教学过程:
一、问题情境
1.复习对数函数的性质.
2.回答下列问题.
(1)函数y=log2x的值域是 ;
(2)函数y=log2x(x≥1)的值域是 ;
(3)函数y=log2x(0
3.情境问题.
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.
三、数学运用
例1 求函数y=log2(x2+2x+2)的定义域和值域.
练习:
(1)已知函数y=log2x的值域是[-2,3],则x的'范围是________________.
(2)函数 ,x(0,8]的值域是 .
(3)函数y=log (x2-6x+17)的值域 .
(4)函数 的值域是_______________.
例2 判断下列函数的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,试求实数a 取值范围.
例4 已知函数y=loga(1-ax)(a>0,a≠1).
(1)求函数的定义域与值域;
(2)求函数的单调区间.
练习:
1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有 (请写出所有正确结论的序号).
2.函数y=lg( -1)的图象关于 对称.
3.已知函数 (a>0,a≠1)的图象关于原点对称,那么实数m= .
4.求函数 ,其中x [ ,9]的值域.
四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).
五、作业
课本P70~71-4,5,10,11.
高一数学教案 篇8
学习目标 1.函数奇偶性的概念
2.由函数图象研究函数的奇偶性
3.函数奇偶性的判断
重点:能运用函数奇偶性的定义判断函数的奇偶性
难点:理解函数的奇偶性
知识梳理:
1.轴对称图形:
2中心对称图形:
【概念探究】
1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。
2、 求出 , 时的函数值,写出 , 。
结论: 。
3、 奇函数:___________________________________________________
4、 偶函数:______________________________________________________
【概念深化】
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。
6. 根据函数的奇偶性,函数可以分为____________________________________.
题型一:判定函数的奇偶性。
例1、判断下列函数的`奇偶性:
(1) (2) (3)
(4) (5)
练习:教材第49页,练习A第1题
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式
例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。
练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式
题型三:利用奇偶性作函数图像
例3 研究函数 的性质并作出它的图像
练习:教材第49练习A第3,4,5题,练习B第1,2题
当堂检测
1 已知 是定义在R上的奇函数,则( D )
A. B. C. D.
2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )
A. 增函数且最小值为-7 B. 增函数且最大值为7
C. 减函数且最小值为-7 D. 减函数且最大值为7
3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )
A. B. C. D.
4 已知函数 为奇函数,若 ,则 -1
5 若 是偶函数,则 的单调增区间是
6 下列函数中不是偶函数的是(D )
A B C D
7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函数 的图像必经过点( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )
A 0 B 1 C 2 D 4
10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__
11若f(x)在 上是奇函数,且f(3)_f(-1)
12.解答题
用定义判断函数 的奇偶性。
13定义证明函数的奇偶性
已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数
14利用函数的奇偶性求函数的解析式:
已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。
高一数学教案 篇9
教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。 幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数 。
组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。
学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
教学目标:
㈠知识和技能
1、了解幂函数的概念,会画幂函数 ,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2、了解几个常见的幂函数的性质。
㈡过程与方法
1、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2、使学生进一步体会数形结合的思想。
㈢情感、态度与价值观
1、通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2、利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。 教学重点 常见幂函数的概念和性质 教学难点 幂函数的单调性与幂指数的关系
教学过程
一、创设情景,引入新课
问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数)
问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长xx,这里a是S的函数
问题5:如果某人xxs内骑车行进了xxkm,那么他骑车的速度,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)
二、新课讲解
(一)幂函数的概念如果设变量为,函数值为xx,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?xx幂函数的定义:一般地,我们把形如xx的函数称为幂函数(power function),其中xx是自变量,xx是常数。
【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)
结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数
试一试:判断下列函数那些是幂函数(1)(2)(3)(4)我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质)
(二)几个常见幂函数的图象和性质 在初中我们已经学习了幂函数x的图象和性质,请同学们在同一坐标系中画出它们的图象。根据你的学习经历,你能在同一坐标系内画出函数x的图象吗?
【探究二】观察函数x的图象,将你发现的结论写在下表内。定义域,值域,奇偶性,单调性,定点,图象范围
【探究三】根据上表的内容并结合图象,试总结函数:x的共同性质。
(1)函数x的图象都过点
(2)函数x在x上单调递增;
归纳:幂函数x图象的基本特征是,当x是,图象过点x,且在第一象限随x的增大而上升,函数在区间x上是单调增函数。(演示几何画板制作课件:幂函数。asp)
请同学们模仿我们探究幂函数x图象的基本特征x的情况探讨x时幂函数x图象的基本特征。(利用drawtools软件作图研究)
归纳:xx时幂函数x图象的基本特征:过点x,且在第一象限随x的增大而下降,函数在区间x上是单调减函数,且向右无限接近X轴,向上无限接近Y轴。
(三)例题剖析
【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。(1) (2) (3)
分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?
方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。
(1)若函数解析式中含有分母,分母不能为0;
(2)若函数解析式中含有根号,要注意偶次根号下非负;
(3)0的0次幂没有意义;
(4)若函数解析式中含有对数式,要注意对数的真数大于0;求函数的定义域的本质是解不等式或不等式组。
结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系)
【例2】比较下列各组数中两个值的大小(在横线上填上“”)
(1)________
(2)________
(3)__________
(4)____________
分析:利用考察其相对应的幂函数和指数函数来比较大小
三、课堂小结
1、幂函数的概念及其指数函数表达式的区别
2、常见幂函数的图象和幂函数的性质。
四、布置作业
㈠课本第73页习题2.4
第1、2、3题
㈡思考题:根据下列条件对于幂函数x的有关性质的叙述,分别指出幂函数x的图象具有下列特点之一时的x的值,其中:
(1)图象过原点,且随x的增大而上升;
(2)图象不过原点,不与坐标轴相交,且随x的增大而下降;
(3)图象关于x轴对称,且与坐标轴相交;
(4)图象关于x轴对称,但不与坐标轴相交;
(5)图象关于原点对称,且过原点;
(6)图象关于原点对称,但不过原点;
检测与反馈
1、下列函数中,是幂函数的是( )
A、 B、 C、 D、
2、下列结论正确的是( )
A、幂函数的图象一定过原点
B、当xx时,幂函数x是减函数
C、当xx时,幂函数x是增函数
D、函数 既是二次函数,也是幂函数
3、下列函数中,在 是增函数的是( )
A、 B、 C、 D、
4、函数 的图象大致是( )
5、已知某幂函数的图象经过点 ,则这个函数的解析式为_______________________
6、写出下列函数的定义域,并指出它们的单调性:
同伴评 (优、良、中、须努力)
自 评 (优、良、中、须努力)
教师评 (优、良、中、须努力)
高一数学教案 篇10
【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!
本文题目:空间几何体的三视图和直观图高一数学教案
第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图
教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.
教学重点:画出三视图、识别三视图.
教学难点:识别三视图所表示的空间几何体.
教学过程:
一、新课导入:
1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;
直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.
用途:工程建设、机械制造、日常生活.
二、讲授新课:
1. 教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.
③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.
讨论:点、线、三角形在平行投影后的结果.
2. 教学柱、锥、台、球的三视图:
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图
讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高
结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.
③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (
④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.
(试变化以上的三视图,说出相应几何体的摆放)
3. 教学简单组合体的三视图:
① 画出教材P16 图(2)、(3)、(4)的三视图.
② 从教材P16思考中三视图,说出几何体.
4. 练习:
① 画出正四棱锥的三视图.
画出右图所示几何体的三视图.
③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.
5. 小结:投影法;三视图;顺与逆
三、巩固练习: 练习:教材P17 1、2、3、4
第二课时 1.2.3 空间几何体的直观图
教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.
教学重点:画出直观图.
高一数学教案 篇11
案例背景:
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
案例叙述:
(一).创设情境
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
(提问):什么是指数函数?指数函数存在反函数吗?
(学生): 是指数函数,它是存在反函数的.
(师):求反函数的步骤
(由一个学生口答求反函数的过程):
由 得 .又 的值域为 ,
所求反函数为 .
(师):那么我们今天就是研究指数函数的反函数-----对数函数.
(二)新课
1.(板书) 定义:函数 的反函数 叫做对数函数.
(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)
(学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .
(在此基础上,我们将一起来研究对数函数的图像与性质.)
2.研究对数函数的图像与性质
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧.
(3)图像恒过(1,0)
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的
当 时,在 上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的.不等式,其中特别要注意对数中真数和底数的条件限制.
2. 利用单调性比较大小
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习
练习:若 ,求 的取值范围.
四.小结及作业
案例反思:
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.
高一数学教案 篇12
教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的'单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
高一数学教案 篇13
重点
理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.
难点
理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.
一、创设情境,导入新知
展示实物:时钟,圆规,折扇等.
(1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生.
(2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画.
(3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?
学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题.
二、自主合作,感受新知
回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分.
三、师生互动,理解新知
探究点一:角的概念及表示方法
活动一:从生活中认识角
我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题.
(1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生)
(2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么?
教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边.
(3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例)
活动二:角的表示方法
我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答)
教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB.
练习:谁能指出下列各角的顶点和两条边?
注意:①三个字母的顺序有规定,顶点的字母必须写在中间.
②顶点的字母不一定用O,角的始边与终边的字母也可以随意.
(2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O.
练习:判断下列角可以用顶点的字母表示吗?
(3)用数字或小写的希腊字母表示角.(注意:角中不能有角)
练习:下面表示角的方法,哪个是正确的?哪个是错误的?
探究点二:角的度量
活动三:角的度量
(1)请同学们借助量角器画出下列各角:
①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°
学生画图,教师指导.(根据需要教师可先做示范)
(2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒.
教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制).
(3)还有什么单位是60进制?
(4)让学生画一个1°角,感受1°角有多大.
四、应用迁移,运用新知
1.角的定义
例1 下列说法中,正确的是( )
A.两条射线组成的图形叫做角
B.有公共端点的两条线段组成的图形叫做角
C.角可以看作是由一条射线绕着它的端点旋转而形成的图形
D.角可以看作是由一条线段绕着它的端点旋转而形成的图形
解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误.
方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.
2.角的表示方法
例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )
A B C D
解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误.
方法总结:角的两个基本元素中,边是两条射线,
顶点是这两条射线的公共端点.
3.判断角的数量
例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )
A.10 B.15 C.5 D.20
解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10.
方法总结:若从一点发出n条射线,则构成12n(n-1)个角.
4.角的度量
例4 见课本P144例1.
方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.
五、尝试练习,掌握新知
课本P144练习第1、2题、P145练习第1、2题.
“随堂演练”部分.
六、课堂小结,梳理新知
通过本节课的学习,我们都学到了哪些数学知识和方法?
本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象.
七、深化练习,巩固新知
课本P145~146习题4.4第1~4题.
“课时作业”部分.
高一数学教案 篇14
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
教学目的:
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
备用实例:
我国xxxx年4月份非典疫情统计:
日期222324252627282930
新增确诊病例数1061058910311312698152101
3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
二、新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的`取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论
(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域
课本P20例1
解:(略)
说明:
○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;
○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○3函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2.判断两个函数是否为同一函数
课本P21例2
解:(略)
说明:
○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
巩固练习:
○1课本P22第2题
○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)课堂练习
求下列函数的定义域
(1)
(2)
(3)
(4)
(5)
(6)
三、归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P28习题1.2(A组)第1—7题(B组)第1题
高一数学教案 篇15
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
教学目的:
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
备用实例:
我国xxxx年4月份非典疫情统计:
日期222324252627282930
新增确诊病例数1061058910311312698152101
3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
二、新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的'数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论
(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域
课本P20例1
解:(略)
说明:
○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;
○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○3函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2.判断两个函数是否为同一函数
课本P21例2
解:(略)
说明:
○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
巩固练习:
○1课本P22第2题
○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)课堂练习
求下列函数的定义域
(1)
(2)
(3)
(4)
(5)
(6)
三、归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P28习题1.2(A组)第1—7题(B组)第1题
高一数学教案 篇16
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。
(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。
(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。
高一数学对数函数教案:教材分析
(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
(2) 本节的.教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。
(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。
高一数学对数函数教案:教法建议
(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。
高一数学教案 篇17
案例背景:
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
案例叙述:
(一).创设情境
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
(提问):什么是指数函数?指数函数存在反函数吗?
(学生): 是指数函数,它是存在反函数的.
(师):求反函数的步骤
(由一个学生口答求反函数的过程):
由 得 .又 的值域为 ,
所求反函数为 .
(师):那么我们今天就是研究指数函数的反函数-----对数函数.
(二)新课
1.(板书) 定义:函数 的反函数 叫做对数函数.
(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)
(学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .
(在此基础上,我们将一起来研究对数函数的图像与性质.)
2.研究对数函数的图像与性质
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.
(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧.
(3)图像恒过(1,0)
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的
当 时,在 上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
(三).简单应用
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2. 利用单调性比较大小
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.拓展练习
练习:若 ,求 的.取值范围.
四.小结及作业
案例反思:
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.
高一数学教案 篇18
目标:
1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;
2.让学生了解函数的零点与方程根的联系 ;
3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;
4。培养学生动手操作的能力 。
二、教学重点、难点
重点:零点的概念及存在性的判定;
难点:零点的确定。
三、复习引入
例1:判断方程 x2-x-6=0 解的存在。
分析:考察函数f(x)= x2-x-6, 其
图像为抛物线容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函数f(x)的图像是连续曲线,因此,
点B (0,-6)与点C(4,6)之间的那部分曲线
必然穿过x轴,即在区间(0,4)内至少有点
X1 使f(X1)=0;同样,在区间(-4,0) 内也至
少有点X2,使得f( X2)=0,而方程至多有两
个解,所以在(-4,0),(0,4)内各有一解
定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的'零点
抽象概括
y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。
若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。
f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点
所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点
注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;
2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;
3、我们所研究的大部分函数,其图像都是连续的曲线;
4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。
四、知识应用
例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?
解:f(x)=3x-x2的图像是连续曲线, 因为
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解
练习:求函数f(x)=lnx+2x-6 有没有零点?
例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。
解:考虑函数f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。
练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。
五、课后作业
p133第2,3题
高一数学教案 篇19
【内容与解析】
本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。
【教学目标与解析】
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】
在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
【例题】:
例1求下列函数的定义域
分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合!
例2已知函数
分析:理解函数f(x)的意义
例3下列函数中哪个与函数相等?
例4在下列各组函数中与是否相等?为什么?
分析:
(1)两个函数相等,要求定义域和对应关系都一致;
(2)用x还是用其它字母来表示自变量对函数实质而言没有影响.
【课堂目标检1测】
教科书第19页1、2.
【课堂小结】
1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值;
2、理解区间是表示数集的一种方法,会把不等式转化为区间。
高一数学教案 篇20
学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!
教学目标
1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.
教学建议
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.
上述提供的高一数学教案:数列希望能够符合大家的实际需要!
高一数学教案 篇21
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.
2.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数的性质向对数型函数的演变延伸.
教学过程:
一、问题情境
1.复习对数函数的性质.
2.回答下列问题.
(1)函数y=log2x的值域是 ;
(2)函数y=log2x(x≥1)的值域是 ;
(3)函数y=log2x(0
3.情境问题.
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.
三、数学运用
例1 求函数y=log2(x2+2x+2)的定义域和值域.
练习:
(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.
(2)函数 ,x(0,8]的值域是 .
(3)函数y=log (x2-6x+17)的值域 .
(4)函数 的值域是_______________.
例2 判断下列函数的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,试求实数a 取值范围.
例4 已知函数y=loga(1-ax)(a>0,a≠1).
(1)求函数的'定义域与值域;
(2)求函数的单调区间.
练习:
1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有 (请写出所有正确结论的序号).
2.函数y=lg( -1)的图象关于 对称.
3.已知函数 (a>0,a≠1)的图象关于原点对称,那么实数m= .
4.求函数 ,其中x [ ,9]的值域.
四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).
五、作业
课本P70~71-4,5,10,11.
高一数学教案 篇22
教学目标:
1、理解对数的概念,能够进行对数式与指数式的互化;
2、渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。
教学重点:
对数的概念
教学过程:
一、问题情境:
1、(1)庄子:一尺之棰,日取其半,万世不竭、①取5次,还有多长?②取多少次,还有0、125尺?
(2)假设20xx年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20xx年的2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、问题:已知底数和幂的值,如何求指数?你能看得出来吗?
二、学生活动:
1、讨论问题,探究求法、
2、概括内容,总结对数概念、
3、研究指数与对数的关系、
三、建构数学:
1)引导学生自己总结并给出对数的概念、
2)介绍对数的表示方法,底数、真数的含义、
3)指数式与对数式的关系、
4)常用对数与自然对数、
探究:
⑴负数与零没有对数、
⑵,、
⑶对数恒等式(教材P58练习6)
①;②、
⑷两种对数:
①常用对数:;
②自然对数:、
(5)底数的取值范围为;真数的取值范围为、
四、数学运用:
1、例题:
例1、(教材P57例1)将下列指数式改写成对数式:
(1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)将下列对数式改写成指数式:
(1);(2)3=—2;(3);(4)(补充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
⑴;⑵;⑶(补充)、
2、练习:
P58(练习)1,2,3,4,5、
五、回顾小结:
本节课学习了以下内容:
⑴对数的定义;
⑵指数式与对数式互换;
⑶求对数式的值(利用计算器求对数值)、
六、课外作业:P63习题1,2,3,4、
高一数学教案 篇23
学习目标
1.能根据抛物线的定义建立抛物线的标准方程;
2.会根据抛物线的标准方程写出其焦点坐标与准线方程;
3.会求抛物线的标准方程。
一、预习检查
1.完成下表:
标准方程
图形
焦点坐标
准线方程
开口方向
2.求抛物线的焦点坐标和准线方程.
3.求经过点的抛物线的标准方程.
二、问题探究
探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?
探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.
例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.
例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.
例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.
三、思维训练
1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.
2.抛物线的焦点到其准线的距离是.
3.设为抛物线的焦点,为该抛物线上三点,若,则=.
4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.
5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。
四、课后巩固
1.抛物线的准线方程是.
2.抛物线上一点到焦点的距离为,则点到轴的距离为.
3.已知抛物线,焦点到准线的距离为,则.
4.经过点的抛物线的标准方程为.
5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.
6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.
7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。
高一数学教案 篇24
一、教材
《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情
学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的.位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标
(一)知识与技能目标
能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标
经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标
激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点
(一)重点
用解析法研究直线与圆的位置关系。
(二)难点
体会用解析法解决问题的数学思想。
五、教学方法
根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
六、教学过程
(一)导入新课
教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?
教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。
设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。
(二)新课教学——探究新知
教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。
判断方法:
(1)定义法:看直线与圆公共点个数
即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。
(2)比较法:圆心到直线的距离d与圆的半径r做比较,
(三)合作探究——深化新知
教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。
已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?
让学生自主探索,讨论交流,并阐述自己的解题思路。
当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。
(四)归纳总结——巩固新知
为了将结论由特殊推广到一般引导学生思考:
可由方程组的解的不同情况来判断:
当方程组有两组实数解时,直线l与圆C相交;
当方程组有一组实数解时,直线l与圆C相切;
当方程组没有实数解时,直线l与圆C相离。
活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。
(五)小结作业
在小结环节,我会以口头提问的方式:
(1)这节课学习的主要内容是什么?
(2)在数学问题的解决过程中运用了哪些数学思想?
设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。
作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。
七、板书设计
我的板书本着简介、直观、清晰的原则,这就是我的板书设计。
高一数学教案 篇25
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的.语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0
中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用p ,q ,r ,s ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1)5 ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0 ,则a=0 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
高一数学教案 篇26
教学目标 :
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程 设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1、比较数的大小
例 1:比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1 板书: 解:Ⅰ)当0 ∵5.1loga5.9 Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数, ∵5.1<5.9 ∴loga5.1 师:请同学们观察一下⑵中这三个对数有何特征? 生:这三个对数底、真数都不相等。 师:那么对于这三个对数如何比大小? 生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.51, log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。 板书:略。 师:比较对数值的大小常用方法: ①构造对数函数,直接利用对数函数 的单调性比大小 ②借用“中间量”间接比大小 ③利用对数函数图象的位置关系来比大小。 2、函数的定义域, 值 域及单调性。 例 2: ⑴求函数y=的定义域。 ⑵解不等式log0.2(x2+2x—3)>log0.2(3x+3) 师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。) 生:分母2x—1≠0且偶次根式的被开方式log0.8x—1≥0,且真数x>0。 板书: 解:∵ 2x—1≠0 x≠0.5 log0.8x—1≥0 , x≤0.8x>0 x>0 ∴x(0,0.5)∪(0.5,0.8〕 师:接下来我们一起来解这个不等式。 分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。 师:请你写一下这道题的解题过程。 生: 解: x2+2x—3>0 x1 (3x+3)>0 , x>—1 x2+2x—3<(3x+3) —2 不等式的解为:1 例 3:求下列函数的值域和单调区间。 ⑴y=log0.5(x— x2) ⑵y=loga(x2+2x—3)(a>0,a≠1) 师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。 下面请同学们来解⑴。 生:此函数可看作是由y=log0。5u, u=x— x2复合而成。 板书: 解:⑴∵u=x— x2>0, ∴0 u=x— x2=—(x—0.5)2+0.25, ∴0 ∴y=log0.5u≥log0.50..25=2 ∴y≥2 x x(0,0.5] x[0.5,1) u=x— x2 y=log0.5u y=log0.5(x— x2) 函数y=log0.5(x— x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1) 注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。 师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别? 生:⑴的底数是常值,⑵的底数是字母。 师:那么⑵如何来解? 生:只要对a进行分类讨论,做法与⑴类似。 板书:略。 ⒊小结 这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。 ⒋作业 ⑴解不等式 ①lg(x2—3x—4)≥lg(2x+10);②loga(x2—x)≥loga(x+1),(a为常数) ⑵已知函数y=loga(x2—2x),(a>0,a≠1) ①求它的单调区间;②当0 ⑶已知函数y=loga (a>0, b>0, 且 a≠1) ①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。 ⑷已知函数y=loga(ax—1) (a>0,a≠1), ①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。 5、课堂教学设计说明 这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分: 一 、比较数的大小,想通过这一部分的练习,培养同学们构造函数的思想和分类讨论、数形结合的思想。 二、函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。 一、指导思想: 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点: 我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点: 1。亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。 2。问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3。科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。 4。时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 三、教法分析: 1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。 2。通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。 3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。 四、学情分析: 1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。 14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。 2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。 五、教学措施: 1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。 2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。 3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。 4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。 5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。 6、重视数学应用意识及应用能力的培养。 高一数学教案汇编15篇 作为一名教师,常常要写一份优秀的教案,编写教案有利于我们科学、合理地支配课堂时间。快来参考教案是怎么写的吧!以下是小编整理的高一数学教案,希望能够帮助到大家。 本文题目:高一数学教案:对数函数及其性质 2.2.2 对数函数及其性质(二) 内容与解析 (一) 内容:对数函数及其性质(二)。 (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用. 一、 目标及其解析: (一) 教学目标 (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质; (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.. (二) 解析 (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确. (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域. 二、 问题诊断分析 在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。 三、 教学支持条件分析 在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。 四、 教学过程 问题一. 对数函数模型思想及应用: ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升. (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系? (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度. ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想 问题二.反函数: ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function) ② 探究:如何由 求出x? ③ 分析:函数 由 解出,是把指数函数 中的.自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 . 那么我们就说指数函数 与对数函数 互为反函数 ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质? ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么? ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么? 由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称) ⑦练习:求下列函数的反函数: ; (师生共练 小结步骤:解x ;习惯表示;定义域) (二)小结:函数模型应用思想;反函数概念;阅读P84材料 五、 目标检测 1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是 A. (x 0) B. (x 0) C. (x 0) D. (x 0) 1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B. 2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( ) A. B. C. D. 2. B 解析: ,代入 ,解得 ,所以 ,选B. 3. 求函数 的反函数 3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 . 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助! 一、指导思想: (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。 (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。 (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。 (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。 (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。 (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。 二、学生状况分析 本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。 教材简析 使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。 必修1,主要涉及两章内容: 第一章 集合 通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。 1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的`表示方法;新-课-标-第-一-网 2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义; 3.理解补集的含义,会求在给定集合中某个集合的补集; 4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集; 5.渗透数形结合、分类讨论等数学思想方法; 6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。 第二章 函数的概念与基本初等函数Ⅰ 教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照问题情境数学活动意义建构数学理论数学应用回顾反思的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。 1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;X|k |b| 1 . c|o |m 2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型; 3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义; 4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。 必修4,主要涉及三章内容: 第一章 三角函数 通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。 1.了解任意角的概念和弧度制; 2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式; 3.了解三角函数的周期性; 4.掌握三角函数的图像与性质。 第二章 平面向量 在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。 1.理解平面向量的概念及其表示; 2.掌握平面向量的加法、减法和向量数乘的运算; 3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算; 4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。 第三章 三角恒等变换 通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。 1.掌握两角和与差的余弦、正弦、正切公式; 2.掌握二倍角的正弦、余弦、正切公式 ; 3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。 三、教学任务 本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。 四、教学质量目标新 课 标 1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。 2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。 3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 五、促进目标达成的重点工作及措施 重点工作: 认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。 分层推进措施 1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。 2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。 3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。在衔接教学中,首先要加强基本概念和基本规律的教学。 加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。 4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力 ,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。 5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。 6、重视数学应用意识及应用能力的培养。 7、加强学生良好学习习惯的培养 六、教学时间大致安排 集合与函数概念 13 课时 基本初等函数 15 课时 函数的应用 8 课时 三角函数 24 课时 平面向量 14 课时 三角恒等变换 9 课时 教学目标: 1、理解对数的概念,能够进行对数式与指数式的互化; 2、渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。 教学重点: 对数的概念 教学过程: 一、问题情境: 1、(1)庄子:一尺之棰,日取其半,万世不竭、①取5次,还有多长?②取多少次,还有0、125尺? (2)假设20xx年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20xx年的2倍? 抽象出:1、=?,=0、125x=?2、=2x=? 2、问题:已知底数和幂的值,如何求指数?你能看得出来吗? 二、学生活动: 1、讨论问题,探究求法、 2、概括内容,总结对数概念、 3、研究指数与对数的关系、 三、建构数学: 1)引导学生自己总结并给出对数的概念、 2)介绍对数的表示方法,底数、真数的含义、 3)指数式与对数式的关系、 4)常用对数与自然对数、 探究: ⑴负数与零没有对数、 ⑵,、 ⑶对数恒等式(教材P58练习6) ①;②、 ⑷两种对数: ①常用对数:; ②自然对数:、 (5)底数的取值范围为;真数的.取值范围为、 四、数学运用: 1、例题: 例1、(教材P57例1)将下列指数式改写成对数式: (1)=16;(2)=;(3)=20;(4)=0、45、 例2、(教材P57例2)将下列对数式改写成指数式: (1);(2)3=—2;(3);(4)(补充)ln10=2、303 例3、(教材P57例3)求下列各式的值: ⑴;⑵;⑶(补充)、 2、练习: P58(练习)1,2,3,4,5、 五、回顾小结: 本节课学习了以下内容: ⑴对数的定义; ⑵指数式与对数式互换; ⑶求对数式的值(利用计算器求对数值)、 六、课外作业:P63习题1,2,3,4、 一、教材分析 1、 教材的地位和作用: 函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。 2、 教学目标及确立的依据: 教学目标: (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。 (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。 (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。 教学目标确立的依据: 函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。 3、教学重点难点及确立的依据: 教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。 教学难点:映射的概念,函数近代概念,及函数符号的理解。 重点难点确立的依据: 映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。 二、教材的处理: 将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。 三、教学方法和学法 教学方法:讲授为主,自主预习为辅。 依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。 学法:四、教学程序 一、课程导入 通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。 例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起? 二. 新课讲授: (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。 (2)巩固练习课本52页第八题。 此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。 例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。 并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。 再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。 3. f表示对应关系,在不同的函数中f的具体含义不一样。 4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。 5. 集合a中的数的任意性,集合b中数的唯一性。 66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。 三.讲解例题 例1.问y=1(x∈a)是不是函数? 解:y=1可以化为y=0*x+1 画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。 [注]:引导从集合,映射的观点认识函数的定义。 四.课时小结: 1. 映射的定义。 2. 函数的近代定义。 3. 函数的三要素及符号的正确理解和应用。 4. 函数近代定义的五大注意点。 五.课后作业及板书设计 书本p51 习题2.1的1、2写在书上3、4、5上交。 预习函数三要素的定义域,并能求简单函数的定义域。 函数(一) 一、映射: 2.函数近代定义: 例题练习 二、函数的定义 [注]1—5 1.函数传统定义 三、作业: 教学目标: 1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题. 2.培养学生数形结合的思想,以及分析推理的能力. 教学重点: 对数函数性质的应用. 教学难点: 对数函数的性质向对数型函数的演变延伸. 教学过程: 一、问题情境 1.复习对数函数的性质. 2.回答下列问题. (1)函数y=log2x的值域是 ; (2)函数y=log2x(x≥1)的值域是 ; (3)函数y=log2x(0 3.情境问题. 函数y=log2(x2+2x+2)的定义域和值域分别如何求呢? 二、学生活动 探究完成情境问题. 三、数学运用 例1 求函数y=log2(x2+2x+2)的定义域和值域. 练习: (1)已知函数y=log2x的值域是[-2,3],则x的范围是________________. (2)函数 ,x(0,8]的值域是 . (3)函数y=log (x2-6x+17)的值域 . (4)函数 的值域是_______________. 例2 判断下列函数的奇偶性: (1)f (x)=lg (2)f (x)=ln( -x) 例3 已知loga 0.75>1,试求实数a 取值范围. 例4 已知函数y=loga(1-ax)(a>0,a≠1). (1)求函数的定义域与值域; (2)求函数的.单调区间. 练习: 1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有 (请写出所有正确结论的序号). 2.函数y=lg( -1)的图象关于 对称. 3.已知函数 (a>0,a≠1)的图象关于原点对称,那么实数m= . 4.求函数 ,其中x [ ,9]的值域. 四、要点归纳与方法小结 (1)借助于对数函数的性质研究对数型函数的定义域与值域; (2)换元法; (3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合). 五、作业 课本P70~71-4,5,10,11. 教学目标: 使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系. 教学重点: 函数的概念,函数定义域的求法. 教学难点: 函数概念的理解. 教学过程: Ⅰ.课题导入 [师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的? (几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述). 设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量. [师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题: 问题一:y=1(xR)是函数吗? 问题二:y=x与y=x2x 是同一个函数吗? (学生思考,很难回答) [师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题). Ⅱ.讲授新课 [师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子. 在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应. 在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应. 在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应. 请同学们观察3个对应,它们分别是怎样形式的对应呢? [生]一对一、二对一、一对一. [师]这3个对应的共同特点是什么呢? [生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应. [师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的'数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系. 现在我们把函数的概念进一步叙述如下:(板书) 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数. 记作:y=f(x),xA 其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域. 一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应. 反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应. 二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应. 函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题. y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数. Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数. [师]理解函数的定义,我们应该注意些什么呢? (教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结) 注意:①函数是非空数集到非空数集上的一种对应. ②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可. ③集合A中数的任意性,集合B中数的惟一性. ④f表示对应关系,在不同的函数中,f的具体含义不一样. ⑤f(x)是一个符号,绝对不能理解为f与x的乘积. [师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示 Ⅲ.例题分析 [例1]求下列函数的定义域. (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x 分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合. 解:(1)x-20,即x2时,1x-2 有意义 这个函数的定义域是{x|x2} (2)3x+20,即x-23 时3x+2 有意义 函数y=3x+2 的定义域是[-23 ,+) (3) x+10 x2 这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+). 注意:函数的定义域可用三种方法表示:不等式、集合、区间. 从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况: (1)如果f(x)是整式,那么函数的定义域是实数集R; (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合; (3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合; (4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集); (5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合. 例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数. 由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定. [师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11 注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值. 下面我们来看求函数式的值应该怎样进行呢? [生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可. [师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢! [生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同. [师]生乙的回答完整吗? [生]完整!(课本上就是如生乙所述那样写的). [师]大家说,判定两个函数是否相同的依据是什么? [生]函数的定义. [师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢? (学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?) (无人回答) [师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了! (生恍然大悟,我们怎么就没想到呢?) [例2]求下列函数的值域 (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2} (3)y=x2+4x+3 (-31) 分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法. 解:(1)yR (2)y{1,0,-1} (3)画出y=x2+4x+3(-31)的图象,如图所示, 当x[-3,1]时,得y[-1,8] Ⅳ.课堂练习 课本P24练习17. Ⅴ.课时小结 本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳) Ⅵ.课后作业 课本P28,习题1、2. 文 章来 一、教学目标 (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式; (2)理解逻辑联结词“或”“且”“非”的含义; (3)能用逻辑联结词和简单命题构成不同形式的复合命题; (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题; (5)会用真值表判断相应的复合命题的真假; (6)在知识学习的基础上,培养学生简单推理的技能. 二、教学重点难点: 重点是判断复合命题真假的方法;难点是对“或”的含义的理解. 三、教学过程 1.新课导入 在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识. 初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.) (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.) 学生举例:平行四边形的对角线互相平. ……(1) 两直线平行,同位角相等.…………(2) 教师提问:“……相等的角是对顶角”是不是命题?……(3) (同学议论结果,答案是肯定的.) 教师提问:什么是命题? (学生进行回忆、思考.) 概念总结:对一件事情作出了判断的语句叫做命题. (教师肯定了同学的回答,并作板书.) 由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题. (教师利用投影片,和学生讨论以下问题.) 例1 判断以下各语句是不是命题,若是,判断其真假: 命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题. 初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识. 2.讲授新课 大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题? (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.) (1)什么叫做命题? 可以判断真假的`语句叫做命题. 判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”). (2)介绍逻辑联结词“或”、“且”、“非”. “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式. 命题可分为简单命题和复合命题. 不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题. 由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题. (4)命题的表示:用p ,q ,r ,s ,……来表示. (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.) 我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式. 给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题. 对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q . 在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题. 3.巩固新课 例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题. (1)5 ; (2)0.5非整数; (3)内错角相等,两直线平行; (4)菱形的对角线互相垂直且平分; (5)平行线不相交; (6)若ab=0 ,则a=0 . (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.) 教学目标: 1、结合实际问题情景,理解分层抽样的必要性和重要性; 2、学会用分层抽样的方法从总体中抽取样本; 3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。 教学重点: 通过实例理解分层抽样的方法。 教学难点: 分层抽样的步骤。 教学过程: 一、问题情境 1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。 2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的.样本,怎样抽取较为合理? 二、学生活动 能否用简单随机抽样或系统抽样进行抽样,为什么? 指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。 由于样本的容量与总体的个体数的比为100∶2500=1∶25, 所以在各年级抽取的个体数依次是。即40,32,28。 三、建构数学 1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。 说明: ①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的; ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。 一、教材 《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。 二、学情 学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。 三、教学目标 (一)知识与技能目标 能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。 (二)过程与方法目标 经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。 (三)情感态度价值观目标 激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。 四、教学重难点 (一)重点 用解析法研究直线与圆的位置关系。 (二)难点 体会用解析法解决问题的数学思想。 五、教学方法 根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。 六、教学过程 (一)导入新课 教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢? 教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。 设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。 (二)新课教学——探究新知 教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。 判断方法: (1)定义法:看直线与圆公共点个数 即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。 (2)比较法:圆心到直线的距离d与圆的半径r做比较, (三)合作探究——深化新知 教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。 已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系? 让学生自主探索,讨论交流,并阐述自己的解题思路。 当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。 (四)归纳总结——巩固新知 为了将结论由特殊推广到一般引导学生思考: 可由方程组的解的不同情况来判断: 当方程组有两组实数解时,直线l与圆C相交; 当方程组有一组实数解时,直线l与圆C相切; 当方程组没有实数解时,直线l与圆C相离。 活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。 (五)小结作业 在小结环节,我会以口头提问的方式: (1)这节课学习的主要内容是什么? (2)在数学问题的解决过程中运用了哪些数学思想? 设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。 作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。 七、板书设计 我的板书本着简介、直观、清晰的原则,这就是我的板书设计。 教学目标: 1、掌握平面向量的数量积及其几何意义; 2、掌握平面向量数量积的重要性质及运算律; 3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4、掌握向量垂直的条件、 教学重难点: 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学工具: 投影仪 教学过程: 一、复习引入: 1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ 五,课堂小结 (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的`体会是什么? 六、课后作业 P107习题2、4A组2、7题 课后小结 (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些? (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。 (3)你在这节课中的表现怎样?你的体会是什么? 课后习题高一数学教案 篇27
高一数学教案 篇28
高一数学教案 篇29
高一数学教案 篇30
高一数学教案 篇31
高一数学教案 篇32
高一数学教案 篇33
高一数学教案 篇34
高一数学教案 篇35
高一数学教案 篇36
高一数学教案 篇37
