短文网整理的比例的意义和基本性质教案(精选6篇),快来看看吧,希望对您有所帮助。
比例的意义和基本性质教案 篇1
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的'比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
比例的意义和基本性质教案 篇2
教学内容:
课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。
教学目的:
1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。
2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。
教学重点:理解比例的意义和基本性质。
教学难点:应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学关键:
观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。
教具:投影片、小黑板
教学过程:
一、谈话导入,创设情境
(一)教师出示投影,结合画面谈话引入。
师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
教师板书课题:比例的意义和基本性质。
(二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。
二、自主探究,学习新知
(一)教学比例的意义
1.合作互动,探求共性。
先让学生在小组活动中完成“活动内容1”。
活动内容1:
(1)根据表中给出的数量写有意义的比。
(2)观察写出的比,哪些比能用等号连接,为什么?
(3)根据比与分数的'关系,这样的式子还可以怎样写?
然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。
2.抽象概括,及时巩固。
(l)教师指导学生观察以上比例式,概括出共性。
(2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。
(3)完成第2页“做一做”,并说明理由。
(4)让学生自己举出两个比例,并说明理由。
(二)教学比例的基本性质。
1.认识比例各部分名称。
(l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。
(2)让学生观察自己刚才举的比例,找出它的内项、外项。
(3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:
2.引导学生发现比例的基本性质。
(1)让学生小组活动完成以下活动内容2:
活动内容2:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②如果把比例写成分数形式,是否也有如上面发现的规律?
③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
④通过以上研究,你发现了什么?
(2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。
(3)指导学生概括出比例的基本性质,并完成板书。
三、分层练习,辨析理解
1.完成练习一第1题区别比与比例。
2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。
3.完成练习一第2题。
4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。
2、3、4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
练习一第3题。
比例的意义和基本性质教案 篇3
教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
教学重点难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
教具学具准备:幻灯片、学习卡。
教学过程:
一、创设情景,引入新课。
出示三幅场景图。
(1)图上描述的是什么情景?这几幅图都与什么有关?
(2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)
(3)你们有见过这样的国旗吗?或者这样的?
我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题
二、自主探究,明确意义
1、提问:你们知道每一幅图中国旗的`长和宽分别是多少吗?
2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?
3、学生汇报。
4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。
像这样表示两个比相等的式子叫做比例。(板书)
5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?
6、深入探讨:
(1)比例有几个比组成?
(2)是不是任意两个比都能组成比例?
(3)判断两个比能不能组成比例,关键要看什么?
7、完成“做一做”。
三、探究比例的基本性质。
1、学习比例各部分的名称。
教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)
(1)指名读一读有关知识。
(2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?
随着学生的回答教师出示:
2.4: 1.6 = 60: 40 (外项)(内项)
└-内项-┘ =
└------外项-------┘ (内项)(外项)
(3)如果把比例写成分数形式,你能找出它的内项和外项吗?
(4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。
2、研究比例的基本性质。
(1)活动探究,总结性质。
谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。
①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?
2.4:1.6=60:40 =
②你能举一个例子,验证你的发现吗?
③你能得出什么结论?
④你能用字母表示这个性质吗?
(2)运用性质。
①提问:学了比例的基本性质,你觉得运用它能解决什么问题?
②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1) 6:3和8:5 (2) 0.2:2.5 和 4:50
(3) :和 : (4) 1.2: 和 :5
四、巩固练习。
1、填空
(1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。
(2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。
(3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。
(4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。
(5)如果5a=3b,那么, = , = 。
2、判断。
(1)在比例中,两个外项的积减去两个内项的积,差是0。( )
(2)18:30和3:5可以组成比例。( )
(3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )
(4)因为3×10=5×6,所以3:5=10:6。( )
3、把下面的等式改写成比例:(能写几个写几个)
16 × 3 = 4 × 12
四、总结归纳
1、这节课我们学习了什么知识?你有什么收获?
2、判断两个比能不能组成比例,有几种方法?
比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。
板书设计
比例的意义和基本性质
表示两个比相等的式子叫做比例。
2.4: 1.6 = 60: 40 (外项)(内项)
└-内项-┘ 或 =
└------外项-------┘ (外项)(内项)
在比例里,两个外项的积等于两个内项的积。
A:B=C → AD=BC
比例的意义和基本性质教案 篇4
比例的意义和基本性质教案
作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写才好呢?下面是小编帮大家整理的比例的意义和基本性质教案,欢迎大家分享。
比例的意义和基本性质教案 篇5
教学内容:
比例的意义和基本性质 (省义务教材第十二册)
教学目标:
1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。
2、利用比例知识解决实际问题。
3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学过程:
一、 谈话导入,创设情境:
出示CAI课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。【诱发审美注意】
我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
二、 自主探究,学习新知
(一) 教学比例的意义
1、 8厘米
出示
6厘米
4厘米
3厘米
(1)根据表中给出的数量写出有意义的比。
(2)哪些比是相关联的?
(3)根据以往经验,可将相等的两个比怎样?(用等号连接)
教师并指出这些式子就是比例。
2、 让学生任意写出比例,并让学生用自己的语言描述比例的`意义。
3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。
4、 写出比值是1/3的两个比,并组成比例。
(二) 教学比例的基本性质
1、 比例和比有什么区别?
2、 认识比例的各部分
(1)让学生自己取。
(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的
外项,中间的两项叫做比例的内项。
板书: 8 : 6 = 4 : 3
内 项
外 项
(3)让学生找出自己举的比例的内外项。
( )
12
2
( )
=
(4)找出分数形式比例的内外项位置又是怎样的?
3、 出示 【启迪学生思维,展开审美想象】
(1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。
(2) 学生反馈,教师板书。
(3) 你发现了什么?
(4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。
4、 用比例性质验证你所写比例是否正确。
5、练习 8 : 12 = X : 45
0.5
X
20
32
=
求比例中的未知项,叫做解比例。
如何证明你的解是正确的?
(三) 小结:今天这堂课你有什么收获?
三、 巩固练习
1、下面哪几组中的两个比可以组成比例。
4
1
12 : 24 和18 : 36
0.4 : 和0.4 : 0.15
14 : 8 和7 : 4
5
2
2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】
3、从1 、8、0.6、3、7五个数中
(1) 选出四个数,组成比例。
(2) 任意选出3个数,再配上另一个数,组成比例。
(3) 用所学知识进行检验。
四、 实际应用
不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”
同学们,如果你是汪骏强,你准备怎么办?
执教者 方 艳
比例的意义和基本性质教案 篇6
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶164.5∶2.710∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时)
2
5
路程(千米)
80
200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或.
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15(2)20∶5和1∶4
(3)和(4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就()比例.
(2)一个比例,等号左边的比和等号右边的比一定是()的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的.外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶50.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是()和(),内项是()和().
根据比例的基本性质可以写成()×()=()×().
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶122.1.4∶2和7∶10
3.0.5∶0.2和 4.和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
2、3、4和6
五、课后作业.
根据3×4=2×6写出比例.
六、板书设计.
