短文网整理的倒数的认识教案(精选6篇),快来看看吧,希望对您有所帮助。
倒数的认识教案 篇1
教学内容:
教材P24页中的例1、例2 ,完成练习六中的部分练习题。
教学目标:
1、知识与技能:
(1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。
(2)掌握求倒数的方法,并能正确熟练的求出倒数。
2、过程与方法:
引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
3、情感、态度与价值观:
(1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。
(2)通过亲身参与探究活动,获得积极成功的情感体验。
教学重点:
概括倒数的意义,掌握求倒数的方法。
教学难点:
理解“互为”、“倒数”的含义以及0、1的倒数。
教学方法:
创设情境、启发诱导、合作交流、自学与讲授相结合等。
课 型:新授课。
教学过程:
一、游戏激趣,揭示课题。
1、理解“互为”的含义。
朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(×××和我互为朋友,我是×××的朋友,×××也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他
们二人的关系吗?(略)那我们能说×××是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——
(父子关系、母女关系等)
2、简单理解“倒”。
师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。
板书:
3
8× 8
3= 1 7
15×15
7=15×= 151112 ×12= 1
二、新课教学。
(一)引导质疑。
学生算完后,观察并思考:这些题有什么共同的地方?
生1:得数是1 生2:乘积是1
除了乘积是一,因数还有什么特点(分子分母交换位置)
师再举例如: 5/4×4/5 7/10×10/73×1/3
进一步明确并(板书):乘积是1
生3:都是两个数相乘. 〈 板书 〉:两个数
1、 你们还能写出两个数乘积是1的算式吗?
那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)
出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。
师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?
比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。
生:①模仿说 ②同桌互说
2、理解意义:
(1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?
(互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)
倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
(2)以前我们学过这种两数间相互依存关系的知识吗?
(3)2/5和5/2的积是1,我们就说??(生齐说)
(4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同
(5)辨析:下面的说法对吗?为什么?
A:2/3 是倒数。( )
B:得数为1的两个数互为倒数。( )
C、
D、12712和×43712乘积是1 ,所以32127和32712互为倒数。( ) ×=1,所以12、43、互为倒数。 ( )
3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。
(二) 探索求一个倒数的方法
1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)
根据这一特点你能写出一个数的倒数吗? 试一试!
2、写出下列各数的倒数:3/5 7/2 5 13
(1)先写3/5的倒数。教师查看学生书写的情况。
(2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示
3/5 的倒数是( ) 7/2 的倒数是( )
5 的倒数是( ) 13 的倒数是( )
师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)
师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。
3、1和0的'倒数
师:那1 的倒数是几呢?为什么?
0的倒数呢?
师:为什么?
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后????(生齐:分母就为0了,而分母不可以为0。)
4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。
三、练习巩固。
1、判断题:
①互为倒数的两个数,乘积是1。 ( )
②任何假分数的倒数是真分数。 ( )
③因为3×1/3=1,所以3是倒数。 ( )
④1的倒数是1。 ( )
2、思考题:
3/8×( )=( )×=( )×6=1
3、找出马小虎的日记错误并改正。
今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。
瞧!我学的怎么样!
四、全课小结
同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。
五、作业
课本26页第4题。
六、板书设计:
倒数的认识
乘积是1的两个数互为倒数。
求倒数的方法:分子分母交换位置,
若是整数,先划成分母是1的分数。
1的倒数还是1,0没有的倒数。
倒数的认识教案 篇2
第一课时
【学习内容】
义务教育课程标准实验教科书(西师版)小学数学六年级上册第31页例1及填一填。第32页课堂活动第1题(1),练习八第1、2、3题。
【学习目标】
1.理解倒数的意义。
2.掌握求倒数的方法,会求一个数的倒数。
3.经历探究倒数的意义的过程,培养自主探究、归纳概括的能力。
【学习重点】
理解倒数的意义,掌握求倒数的方法。
【学习难点】
理解特殊数的倒数。
【课时安排】
1课时。
【学习过程】
一、复习巩固(利用投影打出以下算式)
× = × = 6× = ×40 =
× = × = 3× = ×80=
1.让学生口算出上边等式的结果,以此复习分数乘法的相关知识。
2.让学生观察并说说下边排分式的特点从而对倒数有一定的感知。
二、让学生观看书上例题1, 分组合作,讨论解疑。
1.出示例1。 自主学习例1,相信自己是最棒的!
例1,观察下列每组数,你有什么发现?
和 和 和 3和
教师提示:1.观察每组数中的分子、分母、找出规律.
①学生思考,小组交流。②集体汇报
汇报:每组数中的`两个数的分子和分母都调换了位置.
2.将每组数中的两个数相乘,计算出结果.你发现了什么?
①学生思考,小组交流。②集体汇报
汇报:每组数中的两个数相乘,积都等于1.
归纳总结:像刚才这样的一组数叫做互为倒数。乘积是1的两个数互为倒数。(板书)
3.让学生总结倒数的特点.
分子、分母的位置 互相颠倒 倒数指的是 两个数 之间的关系。
4.让学生来说说课堂活动中1题(1)。(明确:两个数互为倒数)
三.训练探索 求 的倒数
①学生思考,小组交流。②集体汇报
学生板演:让一个学生写出来.
学生讲解:让另一个学生总结求倒数的方法.
总结:求一个数的倒数, 只要把这个数的分子、分母调换位置。
四.合作探究
1.提问:整数有没有倒数,如果有该怎么求,举倒分析。
①学生:小组交流,举倒说明。
②集体汇报
2.提问:0和1的倒数是多少?
①学生思考,小组交流。(教师提示:从分数、除法之间的关系去考虑。)
②集体汇报
③总结:0没有倒数,因为除法中0不能作除数,除数相当于分数中的分母,所以0不能作分母。因此0没有倒数,1的倒数是它本身。
总结(板书) 求倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
五,课堂练习:让学生做教材31页“填一填”
①学生独立完成。
②集体订正。
六.出示投影,探究小数的倒数。
①学生思考,小组交流。②集体汇报
③教师总结:小数也有倒数,与小数乘积为1的数就是小数的倒数。
七.出示投影,探究带分数的倒数。
①学生思考,小组交流。
②集体汇报
③教师总结:带分数要先转化成假分数后,把分子、分母调换就是这个带分数的倒数。
八.出示投影,达标检测。
把互为倒数的两个数连线。
【当堂检测】
做练习八(1、2、3)题
【拓展延伸】
1.假分数的倒数( )
A.大于1 B 小于1 C 小于或等于1
2.一个数的倒数小于1,这个数( )1
A 大于 B 小于 C 等于
九、课堂小结:通过这两节课的学习,你有什么收获?
学生畅谈收获心得,提出自已还不理解的地方,集体帮助解答。
板书:1、乘积是1的两个数互为倒数。
2、求一个数的倒数, 只要把这个数的分子、分母调换位置。
3、0没有倒数,1的倒数是它本身
【教师反思】
倒数的认识教案 篇3
教学目标
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;
2、通过互助活动,培养学生与人合作、与人交流的习惯;
3、通过自行设计方案,培养学生自主探索和创新的意识。
教学重难点
理解倒数的含义,掌握求倒数的方法。
教学工具
课件
教学过程
一、导入新课
谈话导入课题。
二、教学实施
关于倒数同学们想知道些什么呢?学习倒数的含义
1、观察教材24页的例1,归纳,总结倒数的`含义。
3.特殊数:0和1 (引导学生辩论0有没有倒数,1有没有倒数,是多少?)
教师归纳板书:0没有倒数,1的倒数就是它本身。
4.学习例2--求倒数的方法
让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法
5.反馈练习
(1)完成教材24页的“做一做”,
(2)完成练习六的第2、3题
三、课堂练习
找一找下列数中哪两个数互为倒数
四、课堂小结
学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。
五、作业
完成练习六的第1、4题
课后习题
完成练习六的第1、4题。
倒数的认识教案 篇4
教学内容:
苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。
教学目的要求:
认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。
教学重点难点:
掌握求倒数的方法,能熟练得求一个数的倒数。
教学过程:
一、导入新课
问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?
二、新授
教学例题
(1)出示例7
下面的.几个分数中,哪两个数的乘积是1?
(2)学生回答。
(3)引出概念。
乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。
(4)学生举例来说。进行及时的评议。
(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?
归纳方法
小组讨论:
观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
全班交流。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
问:5的倒数是几?1的倒数是几?
学生回答,并说原因。
追问:0有倒数吗?为什么?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
教学“练一练”
学生回答。
提醒学生正确地书写格式。
三、巩固练习。
1、做练习六第17题
学生填书上后,集体订正,并说说是怎样想的。
2、做练习六第18题
指名口头回答,选择两题让学生说说思考的过程。
3、做练习六第19题
重点引导学生讨论每一组数的规律。
4、做练习六第21题
5、做思考题
联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
练习六第20题
板书设计:
(略)
倒数的认识教案 篇5
教材分析:
本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数
教学难点:1、0的'倒数的求法。
教具准备:课件
教学过程:
一、导入
师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~~~~~~~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)
师:好朋友是双向的,可以说成“XXXX为好朋友(也可以说XXXX好朋友)
教师找一对儿同桌,让他们也说说相互间的关系。(XXXX为同桌,一起来上数学课)
二、揭示倒数的意义
师:那今天咱们来学点儿什么呢?
1、(课件出示例7)
请学生动手找找哪两个数的乘积是1?
学生回答教师演示。
2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。
教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数
3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)
师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。
引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。
师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)
4、请你再举个例子和你的同桌说一说。
(学生活动)
5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?
(学生写并汇报师板书。)
三、探索求一个倒数的方法
1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。)
师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。
2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?
(学生畅所欲言,但是一定不规范。)
教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。
3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?
4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)
5、学生自主探索5和1的倒数。
学生先独立思考,在小组交流。
师根据学生的回答及时板书。
6、0的倒数呢?
启发思考,允许讨论。
因为0和任何数相乘都得0,不可能得1。
四、归纳小结
师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个分数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。)
五、巩固练习
1、完成练习十一第一题。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(7/12=12/7)
师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。
3、完成练习十一第二题。
4、完成练习十一第三题。
5、完成练习十一第四题。
师:请你仔细观察每组数,你发现了什么?
同桌可以先互相说一说。
应该有的汇报是:
生1:我从第一组中发现真分数的倒数都是假分数(大于1)。
生2:大于1的假分数的倒数都是真分数(小于1)。
生3:几分之一的倒数都是整数。
生4:非0整数的倒数都是几分之一。…………
五、全课总结
今天我们学习了什么?你有什么收获?
认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。
倒数的认识教案 篇6
教学目标:
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程
3、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点:掌握倒数的意义,会求一个数的倒数。
教学难点:0为什么没有倒数
教学过程:
一、口算引入,揭示课题。
师:出示口算题
(评析:上课伊始,让学生进行简单的口算并进行分类,揭示课题,直奔重点,有利于让学生在一节课的最佳时域知晓今天研究的是乘积是1的两个数的关系特点。教师只有确立了以学生为本的概念,充分了解学生的学习起点和学习疑难症结,把握学生跳动的脉博,才能有针对性地下功夫。)
二、自学课本,初步理解倒数的意义。
(评析:教师恰到好处地设置疑问,有利于学生层层深入地思考,同时,老师有时假装糊涂,把聪明留给学生,老师忘了,谁来帮忙,短短的话语满足了学生求知探新的成功欲,这时促进学生有效学习的基本策略。)
三、举例验证,深入探究倒数的意义。
(评析:对于概念的教学,我们老师大多比较轻视,认为让学生读一、二遍记住就达到目的了。其实,这是表面现象,根本不能促使学生数学思维品质的`提高。所以,让学生关注基础知识的本身,这是我们数学教师不能丢的根本,也是实现新课程提出的三维目标的关键,重要的是让学生在掌握概念的过程中,学会数学思考,体会解决问题所带来的成功体验。
四、仔细观察,探究求倒数的方法。
五、综合练习:
(总评:数学的本质是一种沟通与合作,教师创设了与学生围绕倒数
这个知识目标进行民主、平等、和谐、生动的对话交流,在交流中,包含了知识信息和情感态度,行为规范等多方面的有机组合,促进了学生多方面素养的提高。本课教学活动让学生经历了学习数学知识的全过程,着力培养了学生的数学思维。)
